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Elasticity of factorizations in atomic
monoids and integral domains

par Franz HALTER-KOCH

REsuME — L’élasticité p(R) d’un anneau d’intégrité atomique R est définie
par : p(R) = sup {m/nju; - -um = uy - vy, pour u; et v; irréductibles
dans R]. Nous étudions ici P’élasticité des anneaux d’intégrité noethériens
au moyen des invariants plus fins um (R) définis par :

pm(R) = sup {n|uy - tm = u1-- vy pour u; et v; irréductibles dans R}
Le résultat principal que nous donnons permet de caractériser les anneaux
d’entiers des corps de nombres qui ont une élasticité finie. Chemin faisant
nous obtenons une série de résultats sur les invariants g, et p des monoides
et des anneaux d’intégrité qui ont un intérét propre.

ABSTRACT — For an atomic domain R, its elasticity p(R) is defined by :
p(R) =sup{m/n|ui-...-um =wvy-... v, forirreducible u;,v; € R}.
We study the elasticity of one-dimensional noetherian domains by means
of the more subtle invariants p;, (R) defined by :

pm(R)=sup{n |ui ... -um =v1-...-vn for irreducible w;,v; € R}.
As a main result we characterize all orders in algebraic number fields having
finite elasticity. On the way, we obtain a series of results concerning the
invariants u,, and p for monoids and integral domains which are of
independent interest.

INTRODUCTION

An integral domain R is called atomic if every non-zero non-unit of
R possesses a factorization into a product of (finitely many) irreducible
elements of R. We are interested in the deviation of R from being

factorial. One possible measure of this deviation is the elasticity p(R),
defined by :

p(R)=sup{%|u1~...-um=vl-...~vn for irreducible u,-,vieR} .

Clearly, p(R) € [1,00], and if R is factorial, then p(R) =1.

The concept of elasticity was introduced by R. J. Valenza [20] for rings
of integers in algebraic number fields. Using a different terminology, the
elasticity of Dedekind domains was investigated by J. L. Steffan [19]. In
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368 Franz HALTER-KOCH

a systematic way, the elasticity of various classes of integral domains was
studied in [1], [2] and [3].

If R is the ring of integers of an algebraic number field, then p(R)
depends only on the class group of R (cf. Corollary 1). More generally,
if R is a Krull domain, then p(R) depends only on the pair (G,G,),
where G is the divisor class group of R and Gy is the set of all divisor
classes which contain prime divisors (cf. the Remark after Theorem 2).

If R is an order in an algebraic number field, then p(R) = co may
occur. A necessary and sufficient condition for p(R) < oo is given in
Corollary 5. In Theorem 5 we produce estimates for p(R), depending on
the class group G = Pic(R) and on the ”local” elasticities p(R,) for
primes p dividing the conductor of R.

Since factorization properties of a domain only depend on its multiplica-
tive structure, it suggests itself to investigate them in a purely multiplicative
context. Thus we derive and formulate our main results in the context of
commutative and cancellative monoids. This has the advantage of being
more general and — what is more important — of revealing the combinatorial
structure of factorization properties. Even though most notions and results
of the paper concern monoids, the emphasis is on their ring theoretical ap-
plications.

§ 1 PRELIMINARIES; [,, AND p

Throughout this paper, a monoid H is a multiplicatively written
commutative monoid satisfying the cancellation law, with unit element 1 €
H . We denote by H* the group of invertible elements of H; H is called
reduced if H* = {1}. If H, and H; are monoids, we denote by H; x H,
their direct product, and we view H; and Hj; as submonoids of H; x H; ,
so that every a € H; x Hy has a unique decomposition a = aja;, where
a; € Hy and a; € H,. For a monoid H , we use the notions of divisibility
theory in H as introduced in [17; 2.14].

By a factorization of an element a € H\H> we mean a representation
of the foom a = u;-... - t,, where r > 1 and wu;,...,u, € H are
irreducible; we call r the length of that factorization, we denote by
LH(a) c N the set of lengths of factorizations of a, and we set

1¥(a) = min £¥ (a), L (a) =supL¥(a) e NU{o0} ;
finally, we call
L7 (a)

€ Q>1 U {OO}
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the elasticity of a (in H ). For a € H*, weset pH(a)=1.
A monoid H is called atomic if every a € H\H* possesses a factor-
ization. For an atomic monoid H , we call

p(H) = sup{p™(a) | a € H} € Rx; U {00}

the elasticity of H; we say that H has accepted elasticity if p(H) =
pH(a) < co for some a € H.

For an integral domain R, we denote by R®* = R\{0} its multiplicative
monoid. We set LR = LB" LR =[R" |R=[R" ;R _ )R° and we call
p(R) = p(R®) the elasticity of R. We say that R has accepted elasticity
if R* has.

For an atomic monid H and m € N, we set
pm(H) = sup{L"(a) | a € H\H*, m € L¥(a)},

pir(H) = sup{L¥ (a) | a € H\H*, m =1"(a)} ;

the invariants u,,(H) were introduced in [12] and also investigated in [7]
and [16]. They are connected with the elasticity as follows.

PROPOSITION 1. Let H be an atomic monoid, H # H* .
i) For every m € N we have

pi(H) < pm(H) = sup{L"(a) | a € H\H*, m > 1" (a)} ;
if H contains a prime element, then py (H) = pnm(H) .
iil) We have

P (H) o () . um(H)
H) = BmiA7) Nl = EmA) = lim 2™\
p(H) = sup{ | m € N} = sup{ |m e N} Jim
iii) The following assertions are equivalent:

a) H has accepted elasticity.

b) There exists some N € N such that p(H) = pnm(H)/Nm for
all meN.

c) p(H) = pm(H)/m for some meN.

Proof. i) By definition,

pon(H) <t (H) < T = sup{L¥(a) |a € H\H*, m > 1" (a)} .
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If a € H\H*, m > 1%(a) and N = LY(a), let a = uy - ... - us
be a factorization of a of length s < m, let usy1,...,um € H be
any irreducible elements, and set a’ = augyy - ... - Uy . Then we obtain

m e LP(@’) and N < N+m-—s < L¥(a’) < pm(H), which implies
Pom < pim(H) .

Now let p € H be a prime element, a € H, m € £LH(a) and N =
LH(a). If 1¥(a) = s <m,then [H(ap™ %) =m, L (ap™*) = N+m—s
and consequently N < N +m — s < u* (H), which implies p,(H) <
pim (H) .

ii) The first equality holds by definition; i) implies pm (H) = max{u;(H) |
1 < j <m}, and therefore the second equality holds.

For the proof of the limit assertion, observe that pini-(H) > pn(H)+7
and pn,(H) > rpun(H) forall n,r € N. Let A < p(H) be a real number
and N € N such that uy(H) > A.For ne N, n> N,set n= Nqg+7r,
where ¢,r € Ng, r < N, and obtain

po(H) _ gun(H)+7  gunv(H)+ N -1
n ~ gN+r — ¢gN+N-1 '~

which implies u,(H)/n > A for all sufficiently large n; thus the limit
assertion holds true. '

iii) It suffices to prove that a) implies b). Let a € H be such that
p(H) = pH(a) and N = [¥(a). Then we have mLH(a) < LH(a™) <
umn(H), since mN € L¥(a™), and hence

pmn(H) _ L¥(a)
mN ~ [H(q)

P (H )

= p"(a) = p(H) 2 =2

forall meN. O

Proposition 1 has a counterpart for minimal lengths. For an atomic
monoid H # H* and m € N, we define the following quantities:

om(H) =min{l(a) |a € H\H*, m € L¥(a)},
ot (H) = min{i¥(a) |a € H\H*, m < L¥(a)},
on (H) = min{l¥(a)|a € H\H*, m = L¥(a)} ;

they are connected with the elasticity as follows.
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PROPOSITION 2. Let H be an atomic monoid, H # H* . Then we have
o' (H) < om(H) < oll(H) forall meN, and

mzinf{&%@)—lmel\l}=inf{#|melﬂ}=inf{g’—"—7—n(i)|meN}

/
m—oco m m—oo m

Proof. By definition, we have p(H)™! = inf{c/ ,(H)/m | m e N}, p(H)"1<
ol (H)/m and ol ,(H) < on(H) <0} (H) for all m € N. Therefore it
remains to prove the limit assertions.

For any n,r € N, we have op4r(H) < 0n(H) +7r and op-(H) <
ron(H). Let A > p(H)™! be a real number and N € N such that
pun(H) < A.For ne N, n> N ,set n= Ng+r,where ¢,r € Ng, r <N,
and obtain

on(H) _gon(H)+r _gon(H)+ N —1
n ~— ¢qgN+r ~— gN+N-1 '’

which implies o,(H)/n < A for all sufficiently large n. Thus the limit
assertion for o,,(H)/m follows; that for o,,(H)/m is proved in the same
way. O

The following finiteness result is of central importance.

THEOREM 1. Let H be a monoid such that H/H> is finitely generated.
Then H has accepted elasticity.

Proof. |3; Theorem 7].
Remark. Let H be a monoid having tame factorizations of degree N as
defined in [7]; then we have
p(H) < N .
This follows from [7], Remark 2 on p. 688, where the more precise result
pr(m) <1+ (m-1)N

is asserted. Since every finitely generated monoid has tame factorizations
[7; Prop. 2], this implies again p(H) < oo for every finitely generated
monoid H .
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§ 2 DIVISOR HOMOMORPHISMS AND COPRODUCTS

Recall from [11}, Definition 2.3 that a monoid homomorphism ¢ : H —
S is called a divisor homomorphism if z,y € H and ¢(z) | ¢(y) implies
zly. f ¢ : H — S is a divisor homomorphism, then ¢ induces an
isomorphism ¢* : H/H* = pH ,and @pH C S is a saturated submonoid,
i.e, a,be pH, ce S and a =bc implies ¢ € ¢H . The factor monoid
S/pH consists of all congruence classes for the congruence ~,,, defined
by a ~, b if ap(x) = bp(y) for some =z,y € H; its quotient group
is denoted by C(y) and is called the class group of ¢. C(yp) is an
abelian group; we usually write it additively, and for a € S we denote by
[a] € S/pH C C(p) theclass of a. Since pH C S is saturated, we have
[a] =0 if and only if a € pH .

The class group of a divisor homomorphism admits the following group-
theoretical description. For a monoid H ,let @ be a quotient group of H ,
and call G(H) = Q/H* the group of divisibility of H (corresponding
with the notions in ring theory). Clearly, G is a functor from monoids
to abelian groups. If ¢ : H — S is a divisor homomorphism, then
G(p) : G(H) — G(S) is a group monomorphism, and the natural map
S — G(S) induces a functorial group isomorphism C(p) — cokerG(yp) .

For any set P, let F(P) be the multiplicative free abelian monoid
with basis P. Let G be an additive abelian group and Go C G a subset;
for an element S =g¢;-...-gs € F(Go) we call o(S)=s € Ny the size
and «(S)=g1+---+gs € G the content of S; o: F(Go) — Ny and
t : F(Go) — G are monoid homomorphisms. The monoid

B(Go) = {S € F(Go) | L(S) = 0}

is called the block monoid over Gy, it is a Krull monoid and was in-
vestigated in [9] and [10]. Davenport’s constant D(Go) is defined as
D(Go) =0 if B(Go) = {1}, and

D(Gy) = sup{o(B) | B € B(Gy) irreducible } € NU {o0}

otherwise. If G, is finite, then D(Go) < o0; if Go = {0}, then D(Gy) =
1;if Go # {0} and B(Gq) # {1}, then D(Go) > 2. If #G = o0, then
D(G) = oo by [9; Prop. 2|. For a survey and recent results concerning
D(G), see [13].



Elasticity of factorizations in atomic monoids and integral domains 373

THEOREM 2. Let ¢ : H — S be a divisor homomorphism of atomic
monoids, H # H* and G = C(p). Let Go be the set of all classes
g € G containing irreducible elements of S.

i) For all m e N, we have pn(H) < pmp(a,)(S), and
p(H) < D(Go)p(S) -

il) Suppose that S = F(P) for some set P and D(Go) > 2. Then
- we have

fim(H) < 3D(Go)m

for all m € N, with equality if m =0 mod2 and Go = —Gy.
Moreover, we have

1
with equality if Go = —Go.

Proof. See [12; Theorem 1] for the results concerning u.,,; the results
concerning p are easy consequences. Note that the notion of a divisor
homomorphism used in [12] differs slightly from that used here. The proofs
given there are valid literally in our case. O '

Remark. Theorem 2 applies for Krull monoids and hence for Krull domains;
see [10] and [14] for the corresponding background material. In particular,
we obtain the estimates given in [1; Theorem 2.2]. For convenience we
formulate our result in the most interesting case of rings of integers in
algebraic number fields, where the class group is finite and every class
contains a prime.

COROLLARY 1. Let R be the ring of integers of an algebraic number field
and G its class group; then

A(R) = 3D(C) .

COROLLARY 2. Let G be an abelian group, Go C G a subset, By =
B(Go) and D(Go) > 2. Then we have

p(Bo) < 5D(Go)
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with equality Zf Go = —-Gop.

Proof. By Theorem 1, applied for ¢ = (By — F(Gy)). O

Recall that a monoid H is called half-factorial if it is atomic and any
two factorizations of an element a € H\H* have the same length; note
that H is half-factorial if and only if p(H)=1. If H # H*, then H
is half-factorial if and only if u.,(H) =m for all m e N.

PROPOSITION 3. Let H be an atomic monoid, H # H*, and let F
be a half-factorial monoid. Then we have ppm(H X F) = p,(H) for all
meN, and p(H x F) = p(H).

Proof. It suffices to prove the assertion concerning .. For any 2z €
H\H*, we have L£H(z) = LH*F(2), and therefore p.,,(H) < pm(H x F).
Let a=yge HxF besuchthat y€ H, g€ F and m € LF*F(a).
If ye H*,then L¥*F(g) = {m} and hence L¥*F(a) =m < pm(H);
if y¢ H*, then m =k+1, where k€ LH(y) and LF(q) = {I}, which
implies L#*F(a) = 1+ L¥(y) < 1+ px(H) < prti(H) = pm(H) . In any
case fUm(H X F) < um(H) follows. 0

For a family of monoids (Hx)xea , We consider their coproduct

H= ]_I H) = {(m)‘))\eA € H H)y la»‘ =1 for almost all A € A} ,
AEA AEA

together with the canonical embeddings ¢y : Hy — H, defined by
L,\(:l})\) =(...,1L,z)1,...) € H.
If all Hy are atomic, then H is also atomic, and the irreducible elements

of H are (up to associates) the elements of the form ¢y(uy), where A € A
and u) € H is irreducible.

PROPOSITION 4. Let (Hy)xea be a family of atomic monoids, and H =
I15ca Hx . Then we have

p(H) = sup{p(H»x) | A € A} ;
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if p(H) = p(H)) for some A€ A such that H) has accepted elasticity,
then so has H .

Proof. Since tx(x») € H is irreducible whenever xz) € H) is irreducible,
we obtain p(H,) < p(H) for all A€ A (confer [3; Lemma 6}), and hence
sup{p(H») | A € A} < p(H).

For the proof of the reverse inequality, we suppose that r = sup{p(H>) |
A€A} <oo. For = (x\)rea € H\H*, we obtain

LA@)= Y LM@)<r Y M (x) =rf(z),
A€A A€EA
my\eH;‘ a:AQH;f

and therefore pf(z) < r, which implies

LH
p(H)—sup{lH(( 2) |lze H} <r.

If p(H) = p(H,) = pH*(z,), where z\ € Hy, then p(H) = p¥ (1a(z))) -

Let H be a monoid and @ a quotient group of* H. A family H =
(Hx)xea of submonoids H) C Q is called a defining family of H , if

H=()H,
A€A

and, for each z € H,theset {A€ A|z & H} is finite. In this case, the
mapping
¢:H— [ Hy/HY,
AEA

defined by ¢(x) = (xH )xea , is a divisor homomorphism; see [11; § 3].
We call C(H) = C(p) the class group of H. Using this terminology,
Theorem 2 and Proposition 4 immediately entail the following corollary.

COROLLARY 3. Let H be an atomic monoid, H = (Hx)axear a defining
family of H, where all H) are atomic, and G =C(H). Then we have

p(H) £ D(G)sup{p(H\) | A € A} ;

if G ={0}, then
p(H) = sup{p(H)) | A € A} .
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Remark. Corollary 3 applies in particular for atomic domains R having a
finite character representation
R=()Ry

for some set & C spec(R) such that all R, are atomic. Indeed, in this
case the family (Rp)pes Is a defining family of R®. The ideal theory of
domains having such a finite character representation was investigated in
[5]. Perhaps the most interesting case arises if & = ¥(W(R), the set of
prime ideals of height 1 of R. Following [1], we call R a weakly Krull
domain if R = {R,|p € XV (R)} is a finite character representation;
see [14] for a description of weakly Krull domains by means of generalized
divisor theories.

Let R be a weakly Krull domain and G(R) = G(R®) is its group of
divisibility; then there is an exact sequence

*) 1-GR) ~» [[ G(R)—C(R) -0
peX(M(R)

identifying the t-class group Ci(R) with the class group of the family
(Rp)pexwy(ry (see [15; Theorem 4.6]. Therefore Corollary 3 implies [1;
Theorem 2.14 and Cor. 2.15]. The conjecture stated in [1] after Cor. 2.15
(on p. 231) is false; we give a counterexample at the end of this paper.

If R is a one-dimensional noetherian domain, then X()(R) = max(R), R
and all R, are atomic, and C:(R) = Pic(R) is the usual class group. In
this case, (x) is proved in [18; Satz (12.6)]. For later use, we state Corollary
3 in this particular case.

COROLLARY 4. Let R be a one-dimensional noetherian domain and G =
Pic(R) . Then we have

p(R) < D(G) sup{p(Ry) | p € max(R)} ;
if G is trivial, then
p(R) = sup{p(R,) | p € max(R)} .

In § 5 we shall prove substantially stronger results than Corollary 4 under
the assumption that the integral closure R of R is a finitely generated
R-module. In § 3 and § 4 we develop the necessary combinatorial tools in
the context of monoids.
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§ 3 T-BLOCK MONOIDS

We recall the concept of T-block monoids as introduced in [8]. Let
G be an (additively written) abelian group, Go C G a subset, T a
reduced monoid and ¢ : T — G a homomorphism. We extend ¢ to a
homomorphism

i F(Go)xT - G

by setting
G- gnt) =) gi+u(H) €G,

i=1

i. e, * | F(Go) is the content already considered. Then
B(Go,T,t) = {a € F(Go) x T | () = 0}

is called the T-block monoid over Gy with respect to ¢. If in particular
t(t)y =0 forall t €T, then B(Go,T,t) = B(Go) x T, where B(Gyp) is
the ordinary block monoid. The usefulness of T-block monoids is shown by
the following proposition.

PROPOSITION 5. Let H be an atomic monoid and ¢ : H — S = F(P)xT
a divisor homomorphism, where T is a reduced monoid and P 1is any set.
Let G =C(yp) be the class group of ¢, Go={9g€ G |gNP #0}, and
for t €T let «(t) € G be the class of t. Then B(Go,T,t) is atomic,
pm(H) = pm(B(Go,T,1)) for all m €N, and p(H) = p(B(Go,T,v)) . If
Go is finite and T s finitely generated, then H has accepted elasticity.

Proof. Since ¢ induces an isomorphism ¢* : H/H* 5 pH onto a
saturated submonoid of S, we may assume that H C S is a saturated
submonoid and ¢ = (H — S). For p€ P, let B(p) € Go be the class of

p, and define B:S — F(Go) XT by B(p1-...-pat) =B(p1)-...-B(pn)t.
By [8; Prop. 4], B8 induces a surjective homomorphism

ﬂ ‘H— B(G())T) L)

mapping irreducible elements of H onto irreducible elements of B(Gy,T,t)
(whence B(Go,T,t) is atomic) and satisfying L#(a) = £B(Go.T:¥)(Ba) for
all a € H. This implies pm(H) = pm(B(Go,T,t)) for all m € N, and
consequently p(H) = p(B(Go,T,t)). Moreover, H has accepted elasticity
if and only if B(Go,T,t¢) has. If Gy is finite and T is finitely generated,
then B(Go,T,) is finitely generated by [8; Prop. 2] and hence has accepted
elasticity by Theorem 2. [
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Remark. Proposition 2 implies in particular that Krull monoids (and hence
Krull domains) have accepted elasticity, provided that the set Go of divisor
classes containing prime divisors is finite; for this particular case see [3;
Theorem 10].

Next we investigate the invariants u,, and p for T-block monoids. If

H is a monoid and E C H, then [E] denotes the submonoid generated
by E.

THEOREM 3. Let G be an abelian group, Go C G a subset, T a
reduced atomic monoid, T #T>, «:T — G a monoid homomorphism,
U the set of irreducible elements of T and G, = GoU t(U). Let
Bo = B(Go) # {1} be the ordinary block monoid and assume that the
T-block monoid B = B(G,,T,t) is atomic.

i) For all m € N, we have pm(Bo) < pim(B) < un(T)D(G1), and
p(Bo) < p(B) < p(T)D(G1) -

ii) Suppose that «(U) C [—Go); then we have pm(T) < pum(B)D(G1)
for all meN, and

p(T) < p(B)D(G,) -

Proof. 1t is sufficient to prove the assertions concerning fip, .

i) If bo € Bo, b€ B and b|by, then b € By, and hence LBo(by) =
LB (bo) ; this implies pm(Bo) < pm(B) -

By [8, Proposition 1], the injection B — S = F(Go) x T is a divisor
homomorphism; its class group identifies in a natural way with a subgroup
of G. Clearlyy, GoUU is the set of irreducible elements of S, and
therefore G; is the set of all classes containing irreducible elements of
S. Theorem 2 implies pm(B) < um(S)D(G1), and Proposition 3 implies
pm(S) = pn(T) -

il) We may assume that D(G;) < oo, and we must prove that n e N,

ULy ooy UmyV1yeve oo ,Un € U and Uy ... Um = v1-... vy implies
N < pm(B)D(G,). Let ne N and wu,...,U%n,01,...,9, € U be given,
and %y ... Uy = Vy-... Up. We may suppose that there exists some

le{0,...,m} suchthat uy,...,w; € B and u4y,...,%, € B. For 1<
J <1, (uj) € (U) C[-Go] implies the existence of g;1,...,g5,4; € Go
such that

d;
Wu)+ ) gin =0,

v=1
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and we may assume that d; € N is minimal with this property. If b; =
gip - .- 9id; € F(Go), then the element bju; € B is irreducible (since
d; is minimal), and

(blul)-...-(bluz)uz+1~.,.~um=v1-...»vnblo...-bl .

The zero sum

n i d;
0= v)+>.) ginv
r=1

i=1lv=1

of elements of G, splits into k& > 0 zero subsums each of which has at
most D(G;) summands; This implies

’U1'..."Unbl'...'blz'wl'..."w:c,

where w; € B and kD(G;) >n+d; +---+d; > n. Factoring each w;
into irreducible elements of B, we obtain

(blul)-...-(bzuz)uH]-...-umzyl-...-y.,,

where y; € B are irreducible and r > k. This implies

whence the assertion. [

§ 4 FINITELY PRIMARY MONOIDS

DEFINITION. A monoid T iscalled finitely primary of rank s € N and of
exponent o € N, if it is a submonoid of a factorial monoid F containing
exactly s mutually non-associated prime elements p,,...,p,,

TCF:[ph'--vps]XFx )

satisfying the following two conditions:
1. T*=TNF*.
2. Forany a = pi*-...-p%u € F (where o4,...,0, € No and
u € F*), the following two assertions hold true:
2a) If a € T\T>, then oy >1,...,a,>1.
2b) If ;> a,...,a >0, then a€T.
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The simplest examples of finitely primary monoids are finitely generated
submonoids of (Ng,+). Indeed, if T = [d1,...,dm] C No and d =
ged(dy, .. .,dy), then there exists some o € N such that do+dNyo CT';
we set F'=dNy and see that T is finitely primary of rank 1 and exponent
Q.

Every finitely primary monoid is atomic, and it is primary in the sense of
[15]. Our interest in finitely primary monoids comes from their appearance
in the theory of one-dimensional domains, which is shown by the following
proposition.

PROPOSITION 6. Let R be a one-dimensional local noetherian domain

such that its integral closure R is a finitely generated R-module. If
max(R) = {p1,.-.,ps} and [R: R] = p’f‘ -...-pP  then R® is finitely
primary of rank s and of exponent B = max{f,...,B8,}.

Proof. Being a semilocal Dedekind domain, R is principal; if max(R) =
{p1,---,ps}, then _ ~

R* = [len,Ps] x R y
where p; = p; R, and p:NR is the maximal ideal of R. Since R DR is
integral, we also have R* N R = R*.

Now let @ =pf*-...-p*u € R® be given, where o,...,0, € No and
ue R*.If a € R, then either a1 =---=a, =0 or a1 > 1,...,as > 1;
if o3 >p0,...,0,>0then aRC[R:R]C R and hence ac R. O

THEOREM 4. Let T be a finitely primary monoid of rank s and exponent
o, and suppose that T C F = [p1,...,ps| X F* as in the definition.

i) T/T> is finitely generated if and only if s=1 and (F* : T>*) < 0.
il) If s=1, then pm(T) < 2a—-1)m forall m € N, and p(T) <
20-1.

iii) If s>2, then pm(T) =00 for every m >2c, and p(T) =occ.
Proof. Assume first that s > 2. For n € N, we consider the sets
To={z€T|z=p7* ...-p5°y, c1 21, 2 < @,...,a, <, u€ F*},

T,={z2€T|z=p{"....p%u, s <, @z >n,...,a, >n, uc F*}.

For every z € T,UT., wehave IT(z2)<a.If z€T and 2’ €T, then

22 =pP - pPeu,
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where a1,...,as >n+1 and u € F*. Since p?'-...-pPv € T whenever
B1>a,...,8, >a and v € F*, the element 2z factorsin T in the
form

22 =[(p1-...-ps)°]t - DT ST

where ¢ = [2t1] — 1 this implies

LT (z7) > [”—“] .

(6

On the other hand,
T(z2") <17 (2) +17(2") < 2ax,

and therefore pm(T) > [2£l], whenever m > 2cr. Since n was arbitrary,
we obtain p.,,(T) = oo if m > 2a, and consequently also p(7T) = co. By
Theorem 1, T/T* is not finitely generated.

Now we assume s = 1. The irreducible elements of T' are of the form
pYw, where 1 <y<2x—~1 and weTX.If zeT\T", z = pPu, where
Be€N and v €T™, then

B
LT()<B, T(2) > a1

and hence LT (z) < (2o —1)IT(2), which implies pm(T) < (20— 1)m for
all meN and p(T) <2a-1.

Let (u;)ier be a set of representatives of F* /T ; then the set
To = {PPuT* € T/T* | 1<B<q, iel}

generates T/T>* . If (F>* :T>)=#I < oo, then Tp is finite and hence
T/T* is finitely generated. If (F>* :T*) = #I = oo, then T, contains
infinitely many irreducible elements, and therefore T/T>* is not finitely
generated. [J

Remark. In the context of one-dimensional (noetherian) domains, parts of
Theorem 4 are proved in [4; Theorem 2.12].
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§ 5 ONE-DIMENSIONAL DOMAINS

We start with some finiteness conditions for one-dimensional local do-
mains.

PROPOSITION 7. Let R be a one-dimensional local noetherian domain
with mazimal ideal p and R its integral closure. Suppose that R is
a finitely generated R-module, R # R, and that R s also local, with
mazimal ideal p. Then the following conditions are equivalent:

a) (R*:R*) < 0.

b) (R:p) <oo.

c) (R:p) <oo.
Proof. We set k = R/p, k = R/p, and we view k as a subfield of
k. Since R is a finitely generated R-module, we obtain [k : k] < oo;
therefore b) and c) are equivalent.

For the following, recall that there are (canonical) isomorphisms R* /(1+
p)~k* and (1+p*)/(1+p*t!)~k for any a > 1;see [6; ch. 1, Prop.
4].

c) = a): If [R: R] =p° is the conductor of R, then 14 p°C RX,
and consequently there is an epimorphism

R*/(1+p°) — R*/R* .

Since k is finite, the same is true for R*/(1+p°) and hence for R*/R* .

a) = c): The canonical mapping R — k induces an epimorphism
R*/R* — kX [k*, showing that k*/k* is finite. If k # k, this implies
that both, k and k, are finite. If £ =k, then R+p = R; by Nakayama’s
Lemma, we have R+pR # R and hence pR = p°® for some e > 2. Since
R =R +p, weobtain R* = R*(1+p), and therefore

R*/R* =~ (1+p)/1+p)NR* =(1+p)/(1+p).
is finite. But 1+p C 1+pR =1+p° C 1+p, and consequently
(1 +p)/(1+pe) is also finite, which implies that k is finite. [

THEOREM 5. Let R be a one-dimensional noetherian domain with class
group G = Pic(R). Suppose that the integral closure R of R is a finitely
generated R-module, and let § = [R : R] be the conductor of R. Let
P1,---,Pm € max(R) be the prime ideals of R lying above F, and set

p*(R) = max{p(Ry;) | 1 <j<m}.
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Let Go be the set of all classes g € G containing some prime ideal
p € max(R) different from pi1,...,pm.
i) We have the estimate

p(B(Go)) < p(R) < D(G)p*(R) .
ii) If G =[Go), then
p*(R) < p(R)D(G) .

iii) Suppose that G = [Go]; then we have p*(R) < oo if and only if,
for each j € {1,...,m}, there is exzactly one prime ideal p; of R
lying above p; ; if this is the case and F=p7" -... - por then

p"(R) < 2max{ay,...,Qm} —1.

iv) Suppose that p*(R) < oo, Go is finite and (R : p;) < oo for
1<j<m. Then R has accepted elasticity.

Proof. Let
p:R*— H Ry /R

pEmax(R)
be the divisor homomorphism associated with the finite character repre-
sentation
R= () R,.
pEmax(R)

Weset P = max(R)\{p1,.--,pm}, T =Ry /Ry; and T =Ty X --xTp,.
If p€ P,then R, is a discrete valuation ring, and we denote by m, € R,
a prime element. The mapping

_{}-(P) - HpepR;/R:
HpeP prr = (M Ry )pep
is an isomorphism, and
~ —1_ .
o:R*-% [ R/RIPZFP)xT
pemax(R)

is a divisor homomorphism whose class group coincides with the class group
of R. If +: F(P)xT — G is the canonical homomorphism, then
«(P) = Go . By Proposition 5,

p(R) = p(B(Go,T, l’)) ’
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and if Gy is finite and T is finitely generated, then R has accepted
elasticity. Now i) and ii) follow from Theorem 3, since

p(T) = max{p(T;) | 1 <j <m} =max{p(Ry,) | 1 <j<m}=p*(R)
by Proposition 4.

For j € {1,...,m}, let s; be the number of prime ideals of R
lying above p;, and let R;;) be the integral closure of Ry, ; then
#max(R,,) = s; and, by Proposition 6 Ry, is finitely primary of rank
sj. If s; 22 forsome je€ {1,...,m}, then p(R}) = oco by Theorem
4 and consequently p*(R) = co. If s; =1, then [R,, : R,,] = [R:
R] Ry, = (p;R,,)* , and Theorem 4 implies p(Rj,) < 2a; — 1, whence
p*(R) < 2max{ay,...,am}—1.

It remains to prove iv). We suppose that s; =--- =s,, =1 and that
(R:pj) <oo for 1 <j<m. Then we obtain (Ry, : p;jRp;) = (R:p;) <
oo and hence

(R},‘j :Ry) < oo
by Proposition 7. Hence all T; are finitely generated by Theorem 4.

Consequently, T is finitely generated and R has accepted elasticity by
Proposition 5. [

COROLLARY 4. Let R be an order in an algebraic number field and R
its integral closure.
i) If for some prime ideal p of R there is more than one prime ideal
of R lying above p, then p(R) = co.
ii) If for every prime ideal p of R there is exactly one prime ideal of
R lying above p, then R has accepted elasticity.

Proof. If R is an order in an algebraic number field, then its class group is
finite and every class contains infinitely many prime ideals; R is a finitely
generated R-module, and all residue fields are finite. Now the assertion
follows from Theorem 5.

EXAMPLE. We consider the ring R = Z[3i] (i = +/=1I). Then we have
R =1ZJi], [R: R] = 3R, and the class group of R is of order 2. Theorem
5 implies p*(R) = 1, and consequently p(R) < 2. The conjecture stated
on p. 231 in [1] would imply p(R) =1, but this is not the case.

If =142, B =1-2i,then 38, 33’, 3 and 5 are irreducible
elements of R satisfying (38)(30') = 32-5. In fact, it is not difficult to
see that p(R) = 3.
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