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Definite Quaternion Orders of Class Number One

par Juliusz BRZEZINSKI

, The purpose of the paper is to show how to determine all definite quater-
nion orders of class number one over the integers. First of all, let us recall
that a quaternion order is a ring A containing the ring of integers Z as a
subring, finitely generated as a Z-module and such that A = A (8) Q is a
central simple four dimensional Q-algebra. By the class number HA of A,
we mean the number of isomorphism classes of locally free left (or right-
both numbers are equal) A-ideals in A. Recall that a left A-ideal I in A
is locally free if for each prime number p, Ip -- 1~ Q9 Zp is a principal left
Ap = A Q9 Zp-ideal, where Zp denotes the p-adic integers. Two locally free
left A-ideals I and I’ define the same isomorphism class if I’ = I a, where
cxEA.

A quaternion order is called definite if A Q9 R is the algebra of the Hamil-
tonian quaternions over the real numbers R. We want to show that there
are exactly 25 isomorphism classes of definite quaternion orders of class
number one over the integers (an analoguous result, which is much more
difhcult to prove, says that there are 13 Z-orders of class number one in

imaginery quadratic fields over the rational numbers).
First of all, we want to explicity describe all quaternion orders over the

integers. This can be done by means of integral ternary quadratic forms

where Z, which will be denoted by

It is well known that each A can be given as where f is a suitable
integral ternary quadratic form and Co (f ) is the even Clifford algebra of f .
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The following formulae can be considered as a definition of Co (f ): Co (f )
is a Z-order with a basis 1, ei , e2, e3 such that:

where i, j, k is an even permutation of 1, 2, 3.

Moreover, the above construction defines a one-to-one correspondence
between the isomorphism classes of quaternion orders and the equivalence
classes of positive definite integral ternary quadratic forms.

Two orders A and l~’ are in the same genus of orders (that is, for each
prime number p the orders Ap and Ap are isomorphic over Zp) if and only
if the corresponding ternary quadratic forms are in the same genus (which
means equivalence of them over Zp for each prime number p). It is well
known that the number of non-isomorphic orders in a genus is finite. The
number of isomorphism classes of orders in the genus of A will be denoted
by TA. TA is called the type number of A (two isomorphic orders are said
to have the same type).

The discriminant of A = Co ( f ) is d(Co(f)) = where

Co ( f ) is a Gorenstein order if and only if f is primitive, that is, SGD(aij)
= 1. Recall that A is called Gorenstein if A# = Hom(A, Z) is projective as
left (or right) A-module (see [CR], p. 778).

If Co ( f ) is not isomorphic to the matrix ring M2(Z), which happens
exactly when d (Co ( f ) ) ~ ~ 1, then define

modulo p is irreducible,

modulo p is a square of a linear factor,

modulo p is a product of two different linear factors.

Using the description of quaternion orders by means of ternary quadratic
forms, a formula for .~~ proved in [B2], (4.5) and some results on the
structure of quaternion orders proved in [Bl] , we get the following list:
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THEOREM. There are 25 isomorphism classes of Z-orders with class num-
ber 1 in definite quaternion Q-algebras. These classes are represented by
the orders Co ( f ), where f is one of the following forms (the index of the
matrix corresponding to a quadratic form f is the discriminant of the order

Proof. Let A be a quaternion Z-order with class number HA =1.. Then

_... , -

(see ~K~, Thm. 1 or [B2], (4.6)). Denoting by 0 the Euler totient function,
we have

where pi and p~ are all prime factors of d(A such that epi (A) = 1 and
= 0. This inequality implies that ~(d(A))  12 and if 4)(d(A)) = 12,

then for each prime factor p of d(A), ep(l~) _ -1. The condition ~(d(A)) 
12 says that 2  d(A)  16 or d(A) = 18, 20, 21, 22, 24, 26, 28, 30, 36, 42.

Assume now that A is a Gorenstein Z-order. Then A = Co ( f ), where
f is a primitive integral ternary quadratic form with only one class in its
genus, since TA  ~I~ (see [V], p. 88). Thus, using the tables [BI], we can
first of all eliminate all classes with ~(d(11))  12 for which TA &#x3E; 2. The
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next test is given by the inequality (*), which can be checked for the genera
with TA = 1 using the reduction modulo the primes p~d(A). In that way,
we get ep(A) and choose those classes for which (*) is valid. Finally, using
a general formula for HA proved in [B2], (4.5), we compute HA for the
remaining classes and obtain our list of 23 isomorphism classes of orders
having class number 1.

The case of non-Gorenstein orders unexpecteddly gives two more classes.
Assume that A is a non-Gorenstein order with class number 1. Then d(A)
must be divisible by a third power of an integer &#x3E; 1, since A = Z + dA’ for
an integer d &#x3E; 1 according to ~B 1~, (1.4). The only possibility is d = 2 by
0(d(A)) :!~ 12. Thus d(A) E {8,16,24}. But d(A) = 8 is impossible, since
then d(A’) = 1, which can not happen for an order in a definite algebra.
If d(A) = 24, then d(A’) = 3, which gives e3 (A) = - 1 (and, of course,
e2 (A) = 0). Using the formula of [B2], (4.5), an easy computation shows
that HA = 1. If d(A) = 16, then A = Z + 2A’, where d(A’) = 2 and, in a
similar way, we get H~ =1.

Finally notice that 10 isomorphism classes with class number 1 cor-
responding to Eichler orders (that is, those orders whose discriminant is
square-free) were determined by M.-F. Vigneras (see [V] , p. 155).
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