JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

YUK-KAM LAU KAI-MAN TSANG

Mean square of the remainder term in the Dirichlet divisor problem

Journal de Théorie des Nombres de Bordeaux, tome 7, n° 1 (1995), p. 75-92

http://www.numdam.org/item?id=JTNB_1995__7_1_75_0

© Université Bordeaux 1, 1995, tous droits réservés.

L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Mean Square of the Remainder Term in the Dirichlet Divisor Problem

par Yuk-Kam Lau and Kai-Man Tsang

1. Introduction and Main Results

Let d(n) denote the divisor function. In this paper we shall consider a remainder term associated with the mean square of the error term $\Delta(x)$ in the Dirichlet divisor problem, which is defined as

$$\triangle(x) = \sum_{n \le x} d(n) - x(\log x + 2\gamma - 1) .$$

Here γ is Euler's constant. The upper bound $\Delta(x) \ll x^{1/2}$ was first obtained by Dirichlet in 1838. This was gradually sharpened by many authors in the ensuing one and a half century. Iwaniec and Mozzochi [5] proved in 1988 that $\Delta(x) \ll x^{7/22+\varepsilon}$ for any $\varepsilon > 0$, by employing intricated techniques for the estimation of certain exponential sums. Such methods, however, do not seem capable of proving the conjectured best bound: $\Delta(x) \ll x^{1/4+\varepsilon}$.

Besides this problem, there are plenty of papers written on other interesting properties of $\Delta(x)$. For instance, Tong [9] showed that $\Delta(x)$ changes sign at least once in every interval of the form $[X, X + c_0\sqrt{X}]$ where c_0 is a certain positive constant. Recently Heath-Brown and Tsang [2] showed that this is essentially best possible: – the length of the intervals cannot be reduced to $o(\sqrt{X}\log^{-5}X)$. In contrast to this erratic behaviour, $\Delta(x)$, when considered in the mean, has very nice asymptotic formula. A classical result of Tong [10] says that

(1.1)
$$\int_2^X \Delta(x)^2 dx = \left((6\pi^2)^{-1} \sum_{m=1}^\infty d(m)^2 m^{-3/2} \right) X^{3/2} + F(X)$$

with $F(X) \ll X \log^5 X$. The order of the remainder term F(X) has significant connection with that of $\Delta(x)$. Indeed, Ivić's argument in Theorem

Manuscrit reçu le 4 Mars 1994.

3.8 of [4] shows that $\Delta(x) \ll (U \log x)^{1/3}$ for any upper bound U of F(X). Thus from the result $\Delta(x) = \Omega(x^{1/4})$ we infer that

(1.2)
$$F(X) = \Omega(X^{3/4}/\log X) .$$

Ivić conjectured that $F(X) \ll X^{3/4+\varepsilon}$ is true for any $\varepsilon > 0$. This is a very strong bound since it implies $\Delta(x) \ll x^{1/4+\varepsilon}$. There are not many results on F(X) in the literature. Tong's bound was slightly improved to $F(X) \ll X \log^4 X$ by Preissmann [7] in 1988. However, the gap between this and the Ω -result (1.2) is still very wide.

In this paper we shall prove the following.

THEOREM 1. We have

$$F(X) = \Omega_{-}(X \log^2 X) .$$

Theorem 2. For $X \geq 2$ we have

$$\int_{2}^{X} F(x)dx = -(8\pi^{2})^{-1}X^{2}\log^{2}X + c_{1}X^{2}\log X + \mathcal{O}(X^{2})$$

for a certain constant c_1 .

Theorem 1, which is a direct consequence of Theorem 2, disproves the above conjecture of Ivić. Unfortunately we are still unable to obtain a comparable Ω_+ -result for F(x). In fact we believe that there is an asymptotic formula for F(x) of the form

(1.3)
$$F(x) = -(4\pi^2)^{-1} x \log^2 x + c_2 x \log x + \mathcal{O}(x)$$

with a certain constant c_2 . In a forthcoming paper, the second author [11] proves that

$$\int_X^{2X} \left(F(x + \sqrt{X}) - F(x) \right)^2 dx \approx X^3.$$

Using Preissmann's bound we see easily that

$$\int_X^{2X} \left(F(x + \sqrt{X}) - F(x) \right) dx = \int_{2X}^{2X + \sqrt{X}} - \int_X^{X + \sqrt{X}} F(x) dx$$

$$\ll X^{3/2} \log^4 X.$$

These two results together shows that $F(x+\sqrt{X})-F(x)$ changes signs in [X,2X] and

$$F(x+\sqrt{X})-F(x)=\Omega(X).$$

Consequently, if (1.3) is true the \mathcal{O} -term on the right hand side is oscillatory and cannot be reduced.

One of the key ingredients in our argument is an asymptotic formula for the sum

$$\sum_{m \le x} d(m)d(m+h) .$$

Such a sum has been investigated by several authors in connection with other problems in analytic number theory. In our proof we use a result of Heath-Brown [1] which is quite sufficient for our purpose. (see (2.12)-(2.15) below)

2. Notations and some Preparation

Throughout the paper, ε denotes an arbitrary small positive number which need not be the same at each occurrence. The symbols c_0, c_1, c_2, \ldots etc. denote certain constants. We shall also use the well-known inequality $d(n) \ll n^{\varepsilon}$ from time to time without explicit reference. The constants implicit in the symbols \mathcal{O} and \ll depend at most on ε .

A useful formula for studying problems concerning $\Delta(x)$ was obtained by Voronoi [12] at the beginning of this century. The formula expresses $\Delta(x)$ as an infinite series involving the Bessel functions. In practice, the following truncated form of the formula

$$\Delta(x) = (\pi\sqrt{2})^{-1}x^{1/4} \sum_{n \le N} d(n)n^{-3/4} \cos(4\pi\sqrt{nx} - \pi/4) + \mathcal{O}(x^{\varepsilon} + x^{1/2+\varepsilon}N^{-1/2})$$

for $1 \leq N \ll x$ is quite sufficient. However, for our present problem, the above \mathcal{O} -term is far too large and we shall use instead the following approximation to $\Delta(x)$ given by Meurman [6, Lemma 3].

LEMMA 1. For $x \ge 1$ and $M \gg x$, let

$$\delta_M(x) = (\pi\sqrt{2})^{-1}x^{1/4} \sum_{n \le M} d(n)n^{-3/4} \cos(4\pi\sqrt{nx} - \pi/4) .$$

Then $\triangle(x) = \delta_M(x) + R(x)$ where $R(x) \ll x^{-1/4}$ if $||x|| \gg x^{5/2} M^{-1/2}$ and $R(x) \ll x^{\varepsilon}$ otherwise.

Using this we obtain

LEMMA 2. Let $x \ge 2$ and $x^7 \ll M \ll x^{100}$. Then

$$\int_2^x \triangle(u)^2 du = \int_2^x \delta_M(u)^2 du + \mathcal{O}(x) .$$

Proof. Firstly,

$$\int_{2}^{x} \triangle(u)^{2} du = \int_{2}^{x} \delta_{M}(u)^{2} du + 2 \int_{2}^{x} \delta_{M}(u) R(u) du + \int_{2}^{x} R(u)^{2} du .$$

Next, by Lemma 1, we have

(2.1)
$$\int_2^x R(u)^2 du \ll \sum_{n=2}^{[x]+1} n^{\varepsilon} n^{5/2} M^{-1/2} + \int_2^x (u^{-1/4})^2 du \ll \sqrt{x} .$$

Moreover, following the argument of [3, Theorem 13.5] we show that

$$\int_2^x \delta_M(u)^2 du \asymp x^{3/2}$$

for $M \ll x^{100}$. Thus, by Cauchy-Schwarz's inequality and (2.1) we have

$$\int_{2}^{x} \delta_{M}(u) R(u) du \ll x$$

and hence our lemma.

Square out $\delta_M(u)$ and then integrate term by term, we get

$$\begin{split} & \int_{2}^{x} \delta_{M}(u)^{2} du \\ &= (4\pi^{2})^{-1} \sum_{m,n \leq M} d(m) d(n) (mn)^{-3/4} \int_{2}^{x} \sqrt{u} \cos \left(4\pi (\sqrt{n} - \sqrt{m}) \sqrt{u} \right) du \\ &+ (4\pi^{2})^{-1} \sum_{m,n \leq M} d(m) d(n) (mn)^{-3/4} \int_{2}^{x} \sqrt{u} \sin \left(4\pi (\sqrt{n} + \sqrt{m}) \sqrt{u} \right) du. \end{split}$$

In the first double sum the diagonal terms yield a total contribution of

$$(4\pi^2)^{-1} \sum_{m \le M} d(m)^2 m^{-3/2} \frac{2}{3} (x^{3/2} - 2^{3/2})$$

$$= (6\pi^2)^{-1} \sum_{m=1}^{\infty} d(m)^2 m^{-3/2} x^{3/2} + \mathcal{O}(x^{3/2} M^{\epsilon - 1/2} + 1) .$$

Here the main term is the same as that in (1.1). Hence by Lemma 2, we can write

(2.2)
$$F(x) = S_1(x) + S_2(x) + \mathcal{O}(x) ,$$

where for any $y \geq 2$,

(2.3)
$$S_1(y) = (2\pi^2)^{-1} \sum_{m < n \le M} d(m)d(n)(mn)^{-3/4} \times \int_2^y \sqrt{u} \cos\left(4\pi(\sqrt{n} - \sqrt{m})\sqrt{u}\right) du ,$$

and

(2.4)
$$S_2(y) = (4\pi^2)^{-1} \sum_{m,n \le M} d(m)d(n)(mn)^{-3/4} \times \int_2^y \sqrt{u} \sin\left(4\pi(\sqrt{n} + \sqrt{m})\sqrt{u}\right) du .$$

From now on, we let X to be a sufficiently large number, $M=X^7$ and $L=\log X$. For any $\nu\geq 0$, let

(2.5)
$$g(\nu) = \nu^{-3/2} J_{3/2}(\nu) - 4\nu^{-5/2} J_{5/2}(\nu) ,$$

where J_k denotes the Bessel function of order k. It is well-known that [13, §§3.3, 3.4]

$$J_k(z) \ll \min(|z|^k, |z|^{-1/2})$$

for any real z. Hence,

$$(2.6) g(\nu) \ll \min(1, \nu^{-2})$$

for any $\nu \geq 0$.

LEMMA 3. We have

$$\int_0^X F(x)dx = \sqrt{2}\pi^{-3/2}X^{5/2} \sum_{m < n \le M} d(m)d(n)(mn)^{-3/4}g(\theta_{m,n}) + \mathcal{O}(X^2)$$

where $\theta_{m,n} = 4\pi(\sqrt{n} - \sqrt{m})\sqrt{X}$.

Proof. By [8, Lemma 4.2], for any real α and $y, y \geq 2$ we have

(2.8)
$$\int_{2}^{y} \sqrt{u}e^{i\alpha\sqrt{u}} du \ll y|\alpha|^{-1} .$$

We first obtain some preliminary bounds for $S_1(y)$ and $S_2(y)$. According to (2.3) and on applying (2.8), we have

(2.9)
$$S_1(y) \ll y \sum_{m < n < M} d(m)d(n)(mn)^{-3/4} (\sqrt{n} - \sqrt{m})^{-1}$$

(2.9)
$$S_1(y) \ll y \sum_{m < n \le M} d(m)d(n)(mn)^{-3/4} (\sqrt{n} - \sqrt{m})^{-1}$$

Similarly,

(2.10)
$$S_2(y) \ll y \sum_{m,n \leq M} d(m)d(n)(mn)^{-3/4} (\sqrt{n} + \sqrt{m})^{-1} \ll yM^{\varepsilon}$$
.

Next, for $x \in [\sqrt{X}, X]$ we have $x^7 \ll M \ll x^{14}$ so that, by (2.2)

(2.11)
$$\int_{\sqrt{X}}^{X} F(x) dx = \int_{\sqrt{X}}^{X} S_1(x) dx + \int_{\sqrt{X}}^{X} S_2(x) dx + \mathcal{O}(X^2)$$

$$= \int_{2}^{X} S_1(x) dx + \int_{2}^{X} S_2(x) dx + \mathcal{O}(XM^{\varepsilon} + X^2) ,$$

since, by (2.9) and (2.10), $\int_2^{\sqrt{X}} S_i(x) dx \ll XM^{\epsilon}$. The main term on the right hand side of (2.7) arises from $\int_2^X S_1(x) dx$. Indeed, by (2.3),

$$\int_{2}^{X} S_{1}(x)dx = (2\pi^{2})^{-1} \sum_{m < n \le M} d(m)d(n)(mn)^{-3/4} \times$$
$$\int_{2}^{X} \int_{2}^{x} \sqrt{u} \cos\left(4\pi(\sqrt{n} - \sqrt{m})\sqrt{u}\right) du dx .$$

Write $\theta = 4\pi(\sqrt{n} - \sqrt{m})\sqrt{X}$ for short. Then the above double integral is equal to

$$\begin{split} & \int_{2}^{X} (X - u) \sqrt{u} \cos \left(4\pi (\sqrt{n} - \sqrt{m}) \sqrt{u} \right) du \\ &= 2X^{5/2} \int_{\sqrt{2/X}}^{1} (1 - v^2) v^2 \cos(\theta v) dv \\ &= 2X^{5/2} \Big\{ \int_{0}^{1} (1 - v^2) \cos(\theta v) dv - \int_{0}^{1} (1 - v^2)^2 \cos(\theta v) dv \\ &- \int_{0}^{\sqrt{2/X}} (1 - v^2) v^2 \cos(\theta v) dv \Big\} \; . \end{split}$$

By the well-known integral representation

$$J_{k+\frac{1}{2}}(z) = \frac{2}{\sqrt{\pi}} \left(\frac{z}{2}\right)^{k+\frac{1}{2}} \frac{1}{k!} \int_0^1 (1-v^2)^k \cos(zv) dv , \quad k = 0, 1, 2, \dots$$

for the Bessel functions [13, §3.3], the first two integrals on the right hand side is equal to

$$\sqrt{2\pi} \left(\theta^{-3/2} J_{3/2}(\theta) - 4\theta^{-5/2} J_{5/2}(\theta) \right) = \sqrt{2\pi} g(\theta) ,$$

by (2.5). Moreover, using integration by parts we find that

$$\int_{0}^{\sqrt{2/X}} (1 - v^2) v^2 \cos(\theta v) dv \ll X^{-1} \theta^{-1} .$$

Hence

$$\int_{2}^{X} (X - u) \sqrt{u} \cos \left(4\pi (\sqrt{n} - \sqrt{m}) \sqrt{u}\right) du = 2\sqrt{2\pi} X^{5/2} g(\theta) + \mathcal{O}(X^{3/2} \theta^{-1}),$$

and then

$$\int_{2}^{X} S_{1}(x)dx = \sqrt{2}\pi^{-3/2}X^{5/2} \sum_{m < n \leq M} d(m)d(n)(mn)^{-3/4}g(\theta) + \mathcal{O}\left(X \sum_{m < n \leq M} d(m)d(n)(mn)^{-3/4}(\sqrt{n} - \sqrt{m})^{-1}\right).$$

The sum inside the \mathcal{O} -term can be treated by the argument in (2.9), and we then find that the \mathcal{O} -term is bounded by XM^{ε} , which is smaller than that on the right hand side of (2.7).

In view of (2.11) and (2.7), it remains to bound the two integrals $\int_0^{\sqrt{X}} F(x)dx$ and $\int_2^X S_2(x)dx$ by X^2 . By Preissmann's bound, we have

$$\int_0^{\sqrt{X}} F(x) dx \ll X \log^4 X$$

which is acceptable. Next, by (2.4),

$$\int_{2}^{X} S_{2}(x)dx = (4\pi^{2})^{-1} \sum_{m,n \leq M} d(m)d(n)(mn)^{-3/4} \times$$

$$\int_{2}^{X} (X-u)\sqrt{u} \sin\left(4\pi(\sqrt{n}+\sqrt{m})\sqrt{u}\right)du$$

$$= (2\pi^{2})^{-1}X^{5/2} \sum_{m,n \leq M} d(m)d(n)(mn)^{-3/4} \times$$

$$\int_{\sqrt{2/X}}^{1} (1-v^{2})v^{2} \sin\left(4\pi(\sqrt{n}+\sqrt{m})\sqrt{X}v\right)dv .$$

The inner integral, on applying integration by parts twice, is found to be

$$\ll X^{-3/2}(\sqrt{n}+\sqrt{m})^{-1}+X^{-1}(\sqrt{n}+\sqrt{m})^{-2}$$

Thus,

$$\int_{2}^{X} S_{2}(x)dx \ll X \sum_{m \leq n \leq M} d(m)d(n)(mn)^{-3/4}n^{-1/2} + X^{3/2} \sum_{m \leq n \leq M} d(m)d(n)(mn)^{-3/4}n^{-1}$$

$$\ll XM^{\epsilon} + X^{3/2} \ll X^{3/2} .$$

This completes the proof of Lemma 3.

For any y > 0, let

(2.12)
$$\psi_h(y) = \sum_{m \le y} d(m)d(m+h) .$$

In his work on the fourth power moment of the Riemann zeta-function on the critical line, Heath-Brown [1] proved that

(2.13)
$$\psi_h(y) = I_h(y) + E_h(y),$$

where the main term $I_h(y)$ is of the form

(2.14)
$$I_h(y) = y \sum_{i=0}^{2} \log^i y \sum_{d|h} d^{-1} (\alpha_{i0} + \alpha_{i1} \log d + \alpha_{i2} \log^2 d)$$

for certain constants α_{ij} , and the remainder $E_h(y)$ satisfies

$$(2.15) E_h(y) \ll y^{5/6+\varepsilon}$$

uniformly for $1 \le h \le y^{5/6}$. In particular $\alpha_{20} = 6\pi^{-2}$, $\alpha_{21} = \alpha_{22} = 0$. We note that $I_h(y)$ is roughly of order $y \log^2 y$. In our proof of Theorem 2 in §3 we shall need $I'_h(y)$, the derivative of $I_h(y)$. By (2.14)

(2.16)
$$I'_h(y) = a_2(h)\log^2 y + a_1(h)\log y + a_0(h)$$

where

$$\begin{split} a_2(h) &= 6\pi^{-2} \sum_{d|h} d^{-1} \ , \\ a_1(h) &= \sum_{d|h} d^{-1} (12\pi^{-2} + \alpha_{10} + \alpha_{11} \log d + \alpha_{12} \log^2 d) \ , \end{split}$$

(2.17)
$$a_0(h) = \sum_{j \in I} d^{-1} \sum_{j=0}^{2} (\alpha_{0j} + \alpha_{1j}) \log^j d.$$

For any y > 0, Q > 3 let

(2.18)
$$\xi(y,Q) = \sum_{h \le y} h^{-1} \left(4a_2(h) \log^2 Qh + 2a_1(h) \log Qh + a_0(h) \right).$$

LEMMA 4. We have

$$\xi(y,Q) = \frac{4}{3}\log^3 Qy + c_3\log^2 Qy - \frac{4}{3}\log^3 Q + c_4\log^2 Q + c_5\log Q + c_6\log y + c_7 + \mathcal{O}(y^{-1}\log^3 y\log^2 Qy) .$$

Proof. In the argument below we use the symbol c to denote a certain constant which may not be the same at each occurrence.

Firstly, for j = 0, 1, 2 there are constants $\beta_0, \beta_1, \beta_2$ such that

(2.19)
$$\sum_{h \le y} a_j(h) = \beta_j y + B_j(y)$$

with $B_j(y) \ll \log^3 y$. (Note $B_j(1^-) = -\beta_j$). Indeed, by (2.17),

$$\begin{split} \sum_{h \le y} a_0(h) &= \sum_{d \le y} d^{-1} \sum_{j=0}^2 (\alpha_{0j} + \alpha_{1j}) (\log^j d) (y d^{-1} + \mathcal{O}(1)) \\ &= y \sum_{d \le y} d^{-2} \sum_{j=0}^2 (\alpha_{0j} + \alpha_{1j}) \log^j d + \mathcal{O}\left(\sum_{d \le y} d^{-1} \log^2 d\right) \\ &= y \sum_{d=1}^\infty d^{-2} \sum_{j=0}^2 (\alpha_{0j} + \alpha_{1j}) \log^j d + \mathcal{O}\left(y \sum_{d > y} d^{-2} \log^2 d\right) + \\ &+ \mathcal{O}(\log^3 y) \\ &= \beta_0 y + \mathcal{O}(\log^3 y) \end{split}$$

with

$$\beta_0 = \sum_{d=1}^{\infty} d^{-2} \sum_{j=0}^{2} (\alpha_{0j} + \alpha_{1j}) \log^j d.$$

Similar argument establishes (2.19) for j=1 and 2. Further we find that $\beta_2=1$.

Next by Riemann Stieltjes integration and (2.19), we have

$$\begin{split} &\sum_{h \leq y} a_2(h)h^{-1} \log^2 Qh \\ &= \int_1^y t^{-1} \log^2 Qt dt + \left[t^{-1} \log^2 Qt \ B_2(t)\right]_{1^-}^y \\ &- \int_1^y B_2(t)t^{-2}(2\log Qt - \log^2 Qt) dt \\ &= \frac{1}{3}(\log^3 Qy - \log^3 Q) + \log^2 Q + \mathcal{O}(y^{-1} \log^3 y \log^2 Qy) \\ &- \int_1^y B_2(t)t^{-2}(-\log^2 Q + 2(1 - \log t) \log Q + 2 \log t - \log^2 t) dt \\ &= \frac{1}{3}(\log^3 Qy - \log^3 Q) + \log^2 Q + c \log^2 Q + c \log Q + c \\ &+ \mathcal{O}\Big(\int_y^\infty (\log^3 t)t^{-2}(\log^2 Q + \log^2 t) dt\Big) + \mathcal{O}(y^{-1} \log^3 y \log^2 Qy) \\ &= \frac{1}{3}(\log^3 Qy - \log^3 Q) + c \log^2 Q + c \log Q + c + \mathcal{O}(y^{-1} \log^3 y \log^2 Qy) \ . \end{split}$$

In the same way, we find that

$$\sum_{h \le y} a_1(h)h^{-1}\log Qh = \frac{1}{2}\beta_1(\log^2 Qy - \log^2 Q) + c\log Q + c + \mathcal{O}(y^{-1}\log^3 y\log Qy)$$

and

$$\sum_{h \le y} a_0(h)h^{-1} = \beta_0 \log y + c + \mathcal{O}(y^{-1} \log^3 y) .$$

Collecting all these in (2.18) our lemma follows.

Lastly we evaluate some integrals involving the function $g(\nu)$.

LEMMA 5. We have

$$\int_0^\infty g(\nu)d\nu = 0 ,$$

$$\int_0^\infty g(\nu)\log\nu d\nu = -\sqrt{\pi}2^{-7/2} .$$

Proof. It is known that $[13, \S 13.24]$

$$\int_0^\infty J_k(\nu)\nu^{s-k-1}d\nu = \Gamma\left(\frac{s}{2}\right)2^{s-k-1}/\Gamma\left(k-\frac{s}{2}+1\right)$$

for $0 < \operatorname{Re} s < \operatorname{Re} k + 1/2$. Hence

$$\int_0^\infty \left(\nu^{-k} J_k(\nu) - (2k+1)\nu^{-k-1} J_{k+1}(\nu) \right) \nu^s d\nu$$
$$= -s2^{s-k-1} \Gamma\left(\frac{s+1}{2}\right) / \Gamma\left(k - \frac{s}{2} + \frac{3}{2}\right)$$

for -1 < Re s < Re k - 1/2. Setting k = 3/2 and in view of (2.5) we have

(2.20)
$$\int_0^\infty g(\nu)\nu^s d\nu = -s2^{s-5/2}\Gamma(\frac{s+1}{2})/\Gamma(3-\frac{s}{2})$$

for -1 < Re s < 1. On putting s = 0 we get $\int_0^\infty g(\nu) d\nu = 0$. The remaining integral is equal to

$$\frac{d}{ds} \left(\int_0^\infty g(\nu) \nu^s d\nu \right) \Big|_{s=0}$$

which can be evaluated by differentiating the right hand side of (2.20).

3. Proof of Theorem 2

We shall now complete the proof of Theorem 2 by evaluating the double sum

$$(3.1) T = \sum_{m < n \le M} u_{m,n}$$

in Lemma 3, where

$$u_{m,n} = d(m)d(n)(mn)^{-3/4}g(4\pi(\sqrt{n}-\sqrt{m})\sqrt{X})$$
.

In view of Lemma 3, we can allow errors of order up to $X^{-1/2}$ in the course of our analysis.

First of all, we consider those terms $u_{m,n}$ for which m < n/2. In this case $\sqrt{n} - \sqrt{m} \approx \sqrt{n}$ so that, by (2.6)

$$g(4\pi(\sqrt{n}-\sqrt{m})\sqrt{X})\ll (nX)^{-1}$$
.

The contribution to T from these $u_{m,n}$ is therefore

$$\ll X^{-1} \sum_{m < n \le M} d(m)d(n)(mn)^{-3/4}n^{-1} \ll X^{-1},$$

which is acceptable.

For the remaining terms $u_{m,n}$ in T, we write n=m+h with $1 \leq h \leq m$. Then

$$T = \sum_{h \le M/2} \sum_{h \le m \le M-h} u_{m,m+h} + \mathcal{O}(X^{-1}) .$$

For $h \leq m$, we have $4\pi (\sqrt{m+h} - \sqrt{m})\sqrt{X} \approx 2\pi h \sqrt{X/m}$ so that, by (2.6) again

(3.2)
$$g(4\pi(\sqrt{m+h}-\sqrt{m})\sqrt{X}) \ll mh^{-2}X^{-1}$$

and each term $u_{m,m+h}$ satisfies

$$u_{m,m+h} \ll M^{\varepsilon} m^{-3/2} m h^{-2} X^{-1}$$
.

Thus, the contribution to T from those $u_{m,m+h}$ with $h > \sqrt{M}$ is $\ll X^{-1}M^{\varepsilon}$ and the error caused by extending the upper limit for the summation on m to M is $\mathcal{O}(X^{-1}M^{-1/2+\varepsilon})$. Hence we have

$$T = \sum_{h \le \sqrt{M}} \sum_{h \le m \le M} u_{m,m+h} + \mathcal{O}(X^{-1}M^{\varepsilon}) .$$

For simplicity let

$$D_h = h^2 X L^{-8} .$$

Then we can further write

(3.3)
$$T = \sum_{h \le \sqrt{M}} \sum_{h \le m \le \min(D_h, M)} + \sum_{h \le X^3 L^4} \sum_{D_h < m \le M} + \mathcal{O}(X^{-1} M^{\varepsilon})$$
$$= \sum_{1} + \sum_{2} + \mathcal{O}(X^{-1} M^{\varepsilon}) ,$$

say. Using the same bound (3.2), each term $u_{m,m+h}$ in \sum_{1} is

$$\ll (d(m)^2 + d(m+h)^2) (m(m+h))^{-3/4} m h^{-2} X^{-1}$$

$$\ll d(m)^2 m^{-1/2} h^{-2} X^{-1} + d(m+h)^2 (m+h)^{-1/2} h^{-2} X^{-1} ,$$

since $m+h \approx m$ for $1 \leq h \leq m$. An application of the well-known estimate

$$\sum_{m \le y} d(m)^2 m^{-1/2} \ll \sqrt{y} \log^3 y \qquad \text{ for } \quad y > 1 \ ,$$

then yields

$$\sum_{1} \ll X^{-1} \sum_{h \le \sqrt{M}} h^{-2} \sqrt{\min(D_h, M)} \log^3 M \ll X^{-1/2} .$$

Putting this into (3.3), we have

(3.4)
$$T = \sum_{h \le X^3 L^4} \sum_{D_h < m \le M} d(m)d(m+h) (m(m+h))^{-3/4} g(\theta_{m,m+h}) + \mathcal{O}(X^{-1/2})$$

with
$$\theta_{m,m+h} = 4\pi (\sqrt{m+h} - \sqrt{m})\sqrt{X}$$
.

Next, we transform the above inner sum over m into an integral. By (2.12), (2.13) and Riemann Stieltjes integration we have

(3.5)
$$\sum_{D_{h} < m \leq M} = \int_{D_{h}}^{M} (y(y+h))^{-3/4} g(\theta_{y,y+h}) d\psi_{h}(y)$$

$$= \int_{D_{h}}^{M} (y(y+h))^{-3/4} g(\theta_{y,y+h}) I'_{h}(y) dy$$

$$+ \left[(y(y+h))^{-3/4} g(\theta_{y,y+h}) E_{h}(y) \right]_{D_{h}}^{M}$$

$$- \int_{D_{h}}^{M} E_{h}(y) \frac{d}{dy} \left\{ (y(y+h))^{-3/4} g(\theta_{y,y+h}) \right\} dy$$

$$= W_{1}(h) + W_{2}(h) + W_{3}(h) ,$$

say. We bound $W_2(h)$ by using (2.15) and the trivial estimate $g(\nu) \ll 1$. Whence

$$W_2(h) \ll M^{-3/2} M^{5/6+\varepsilon} + D_h^{-3/2} D_h^{5/6+\varepsilon} \ll D_h^{-2/3+\varepsilon} \ll h^{-4/3} X^{-2/3+\varepsilon}$$
.

For $W_3(h)$, by [13, §3.2] we have

$$g'(\nu) = -\nu^{-3/2} J_{5/2}(\nu) + 4\nu^{-5/2} J_{7/2}(\nu) \ll \nu \text{ for } \nu \ge 0$$
,

since $J_k(\nu) \ll \nu^k$. Hence, by $g(\nu) \ll 1$ and (2.15) we have

$$W_3(h) \ll \int_{D_h}^M y^{5/6+\varepsilon} \Big\{ y^{-5/2} + y^{-3/2} \Big| \theta_{y,y+h} \Big| \Big| \frac{d}{dy} \theta_{y,y+h} \Big| \Big\} dy$$

$$\ll \int_{D_h}^M \Big\{ y^{-5/3+\varepsilon} + y^{-2/3+\varepsilon} h y^{-1/2} X^{1/2} h y^{-3/2} X^{1/2} \Big\} dy$$

$$\ll h^{-4/3} X^{-2/3+\varepsilon} .$$

In view of (3.4) and (3.5), the contribution to T from $W_2(h)$ and $W_3(h)$ is therefore

$$\ll \sum_{h < X^3L^4} h^{-4/3} X^{-2/3 + \varepsilon} \ll X^{-2/3 + \varepsilon} \ ,$$

which is again acceptable. Thus,

(3.6)
$$T = \sum_{h \le X^3 I^4} \int_{D_h}^M (y(y+h))^{-3/4} g(\theta_{y,y+h}) I_h'(y) dy + \mathcal{O}(X^{-1/2}) .$$

To evaluate the inner integral, we begin by making the change of variable

$$\omega = \theta_{u,v+h} = 4\pi(\sqrt{y+h} - \sqrt{y})\sqrt{X} .$$

Then

$$y = 4\pi^2 X \omega^{-2} h^2 - \frac{1}{2} h + (64\pi^2 X)^{-1} \omega^2 = 4\pi^2 X \omega^{-2} h^2 \left(1 + \mathcal{O}(\omega^2 X^{-1} h^{-1}) \right) \,,$$

so that

$$(y(y+h))^{-3/4} = (4\pi^2 X \omega^{-2} h^2 - (64\pi^2 X)^{-1} \omega^2)^{-3/2}$$
$$= (2\pi h)^{-3} X^{-3/2} \omega^3 (1 + \mathcal{O}(\omega^4 X^{-2} h^{-2}))$$

and

$$\frac{dy}{d\omega} = -8\pi^2 X \omega^{-3} h^2 \left(1 + \mathcal{O}(\omega^4 X^{-2} h^{-2}) \right) .$$

Moreover, by (2.16)

$$I'_h(y) = 4a_2(h)\log^2\left(2\pi\sqrt{X}\omega^{-1}h\right) + 2a_1(h)\log(2\pi\sqrt{X}\omega^{-1}h) + a_0(h) + \mathcal{O}(\omega^2X^{-1}h^{-1}(|a_2(h)|L + |a_1(h)|)).$$

Set

(3.7)
$$u_1 = 4\pi \left(\sqrt{M+h} - \sqrt{M}\right)\sqrt{X} = 2\pi h X^{-3} + \mathcal{O}(h^2 X^{-10})$$

and

(3.8)
$$u_2 = 4\pi \left(\sqrt{D_h + h} - \sqrt{D_h}\right)\sqrt{X} = 2\pi L^4 + \mathcal{O}(h^{-1}X^{-1}L^{12}).$$

Then with the help of all these estimates we find that

$$\int_{D_h}^{M} (y(y+h))^{-3/4} g(\theta_{y,y+h}) I'_h(y) dy$$

$$= \frac{1}{\pi \sqrt{X}} \int_{u_1}^{u_2} g(\omega) h^{-1} \{ 4a_2(h) \log^2 \left(2\pi \sqrt{X} \omega^{-1} h \right) + 2a_1(h) \log \left(2\pi \sqrt{X} \omega^{-1} h \right) + a_0(h) \} d\omega + \mathcal{O}(h^{-2} X^{-3/2 + \varepsilon}) .$$

In obtaining the above \mathcal{O} -term, we have used $g(\omega) \ll 1$, (3.8) and the observation that $a_j(h) \ll \log^3 h \ll L^3$. The integration limits u_1 and u_2 can be replaced by $2\pi h X^{-3}$ and $2\pi L^4$ respectively, since the error thus caused is

$$\ll X^{-1/2}h^{-1}L^5(h^2X^{-10} + h^{-1}X^{-1}L^{12}) \ll hX^{-21/2}L^5 + h^{-2}X^{-3/2}L^{17}$$

 $\ll h^{-2}X^{-3/2+\varepsilon}$.

by (3.7) and (3.8). Collecting these into (3.6), we get

$$T = \frac{1}{\pi\sqrt{X}} \sum_{h \le X^3L^4} \int_{2\pi hX^{-3}}^{2\pi L^4} g(\omega) h^{-1} \left\{ 4a_2(h) \log^2 \left(2\pi\sqrt{X}\omega^{-1}h \right) + 2a_1(h) \log \left(2\pi\sqrt{X}\omega^{-1}h \right) + a_0(h) \right\} d\omega + \mathcal{O}(X^{-1/2}) .$$

Next we interchange the summation and integration. In view of (2.18) we have

(3.9)
$$T = \frac{1}{\pi\sqrt{X}} \int_{2\pi X^{-3}}^{2\pi L^4} g(\omega) \xi((2\pi)^{-1} \omega X^3, 2\pi\sqrt{X}\omega^{-1}) d\omega + \mathcal{O}(X^{-1/2}) .$$

By Lemma 4, and after some simplifications, we have

$$\xi((2\pi)^{-1}\omega X^3, 2\pi\sqrt{X}\omega^{-1}) = \log\omega\log^2 X + (c_8\log\omega + c_9\log^2\omega)\log X + c_{10}\log\omega + c_{11}\log^2\omega + c_{12}\log^3\omega + \Phi(X) + \mathcal{O}(\omega^{-1}X^{-3}L^5),$$

where $\Phi(X) = c_{13} \log^3 X + c_{14} \log^2 X + c_{15} \log X + c_{16}$ and c_8, c_9, \ldots, c_{16} are certain constants. Finally inserting this into (3.9) we get

(3.10)
$$T = \frac{1}{\pi\sqrt{X}} \int_{2\pi X^{-3}}^{2\pi L^4} g(\omega) \{ \log \omega \log^2 X + (c_8 \log \omega + c_9 \log^2 \omega) \log X + c_{10} \log \omega + c_{11} \log^2 \omega + c_{12} \log^3 \omega + \Phi(X) \} d\omega + \mathcal{O}(X^{-1/2}) .$$

It remains to evaluate the integrals

$$K_j = \int_{2\pi X^{-3}}^{2\pi L^4} g(\omega) \log^j \omega d\omega$$

for j = 0, 1, 2, 3. Writing

$$K_{j} = \int_{0}^{\infty} g(\omega) \log^{j} \omega d\omega - \int_{0}^{2\pi X^{-3}} g(\omega) \log^{j} \omega d\omega - \int_{2\pi L^{4}}^{\infty} g(\omega) \log^{j} \omega d\omega ,$$

we see, by (2.6), that the last two integrals are bounded by $X^{-3}L^j$ and L^{-4+j} respectively. Hence, by Lemma 5 we have

$$K_0 \ll L^{-4}, \ K_1 = -\sqrt{\pi}2^{-7/2} + \mathcal{O}(L^{-3})$$

and by (2.6),

$$K_2, K_3 = \text{constant} + \mathcal{O}(L^{-1})$$
.

When these are inserted into (3.10) we obtain

$$T = -2^{-3}(2\pi X)^{-1/2}\log^2 X + c_{17}X^{-1/2}\log X + \mathcal{O}(X^{-1/2}),$$

and Theorem 2 now follows from (3.1) and Lemma 3.

REFERENCES

- [1] D. R. HEATH-BROWN, The fourth power moment of the Riemann zeta-function, Proc. London Math. Soc. 38 (3) (1979), 385-422.
- [2] D. R. HEATH-BROWN and K.M. TSANG, Sign changes of E(T), $\Delta(x)$ and P(x), J. Number Theory **49** (1994), 73–83.
- [3] A. IVIĆ, The Riemann zeta-function, Wiley, New York-Brisbane-Singapore 1985.
- [4] A. IVIĆ, Lectures on mean values of the Riemann zeta-function, Springer Verlag, Berlin-Heidelberg-New York-Tokyo, 1991.
- [5] H. IWANIEC and C.J. MOZZOCHI, On the divisor and circle problems, J. Number Theory 29 (1988), 60-93.
- [6] T. MEURMAN, On the mean square of the Riemann zeta-function, Quart. J. Math. (Oxford) (2)38, (1987), 337-343.
- [7] E. PREISSMANN, Sur la moyenne quadratique du terme de reste du problème du cercle, C.R. Acad. Sci. Paris Sér. I 306 (1988), 151-154.
- [8] E. C. TITCHMARSH, The theory of the Riemann zeta-function, (2nd ed. revised by D.R. HEATH-BROWN), Clarendon Press, Oxford, 1986.
- [9] K. C. TONG, On divisor problems I, Acta Math. Sinica 5, no.3 (1955), 313-324.
- [10] K. C. TONG, On divisor problems III, Acta Math. Sinica 6, no.4 (1956), 515-541.
- [11] K. TSANG, A mean value theorem in the dirichlet divisor problem, preprint.
- [12] G. F. VORONOI, Sur une fonction transcendante et ses applications à la sommation de quelques séries, Ann. École Normale 21(3) (1904), 207-268; 459-534.
- [13] G. N. WATSON, A treatise on the theory of Bessel functions, 2nd edition, Cambridge University Press, 1962.

Yuk-Kam LAU and Kai-Man TSANG Department of Mathematics The University of Hong Kong Pokfulam Road, HONG KONG