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Mean Square of the Remainder Term
in the Dirichlet Divisor Problem

par Yuk-Kam LAU and Kai-Man TSANG

1. Introduction and Main Results

Let d(n) denote the divisor function. In this paper we shall consider a
remainder term associated with the mean square of the error term A(z) in
the Dirichlet divisor problem, which is defined as

Az) = Z d(n) —z(logz +2y—-1) .

n<lz

Here ~ is Euler’s constant. The upper bound A(z) < z'/? was first ob-
tained by Dirichlet in 1838. This was gradually sharpened by many authors
in the ensuing one and a half century. Iwaniec and Mozzochi [5] proved in
1988 that A(x) <« x7/?22*¢ for any £ > 0, by employing intricated techniques
for the estimation of certain exponential sums. Such methods, however, do
not seem capable of proving the conjectured best bound: A(z) <« z1/4+=.

Besides this problem, there are plenty of papers written on other inter-
esting properties of A(z). For instance, Tong [9] showed that A(z) changes
sign at least once in every interval of the form [X, X + covX | where ¢ is
a certain positive constant. Recently Heath-Brown and Tsang [2] showed
that this is essentially best possible: — the length of the intervals cannot
be reduced to o(v/X log™ X). In contrast to this erratic behaviour, A(z),
when considered in the mean, has very nice asymptotic formula. A classical
result of Tong [10] says that

X oo
(1.1) /2 A2)de = ((6n%)71 Y d(m)*m=/2) X¥/2 + F(X)
m=1

with F(X) < Xlog® X. The order of the remainder term F(X) has sig-
nificant connection with that of A(z). Indeed, Ivié’s argument in Theorem

Manuscrit regu le 4 Mars 1994.
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3.8 of [4] shows that A(z) < (U logx)'/3 for any upper bound U of F(X).
Thus from the result A(z) = Q(z'/4) we infer that

(1.2) F(X)=Q(X%*/log X) .

Ivié conjectured that F(X) <« X3/4t¢ is true for any € > 0. This is a
very strong bound since it implies A(z) <« z/4*¢. There are not many
results on F(X) in the literature. Tong’s bound was slightly improved to
F(X) < Xlog* X by Preissmann [7] in 1988. However, the gap between
this and the Q-result (1.2) is still very wide.

In this paper we shall prove the following.

THEOREM 1. We have

F(X)=0_(Xlog’ X) .

THEOREM 2. For X > 2 we have
X
/ F(z)dz = —(87%) 71 X%1log® X + c; X% log X + O(X?)
2

for a certain constant c;.

Theorem 1, which is a direct consequence of Theorem 2, disproves the above
conjecture of Ivié. Unfortunately we are still unable to obtain a comparable
Q4 -result for F(z). In fact we believe that there is an asymptotic formula
for F(x) of the form

(1.3) F(z) = —(4n%)"1zlog’ z + cozlog z + O(x)

with a certain constant c;. In a forthcoming paper, the second author {11]
proves that

2X
/ (F(z + VX) —F(a:))2dxxX3 .
X

Using Preissmann’s bound we see easily that

2X 2X4+vVX X+vVX
/ (F(z + VX) — F(z))dz = / — / F(z)dz
X 2X

X
< X3?logt X .



Mean Square of the Remainder Term in the Dirichlet Divisor Problem 77

These two results together shows that F(z 4+ v/ X) — F(z) changes signs in
[X,2X] and
F(z +VX) - F(z) = (X)) .

Consequently, if (1.3) is true the O-term on the right hand side is oscillatory
and cannot be reduced.

One of the key ingredients in our argument is an asymptotic formula for

the sum
Z d(m)d(m + h) .

m<z

Such a sum has been investigated by several authors in connection with
other problems in analytic number theory. In our proof we use a result of
Heath-Brown [1] which is quite sufficient for our purpose. (see (2.12)-(2.15)
below)

2. Notations and some Preparation

Throughout the paper, € denotes an arbitrary small positive number
which need not be the same at each occurrence. The symbols co, ¢, c2, . ..
etc. denote certain constants. We shall also use the well-known inequality
d(n) <« nf from time to time without explicit reference. The constants
implicit in the symbols O and <« depend at most on €.

A useful formula for studying problems concerning A(z) was obtained
by Voronoi [12] at the beginning of this century. The formula expresses
A(z) as an infinite series involving the Bessel functions. In practice, the
following truncated form of the formula

A(z) = (rv/2)1zt/4 Z d(n)n=3/% cos(4mv/nz — 7/4)

n<N
+ O(xs + x1/2+sN—1/2)

for 1 < N < z is quite sufficient. However, for our present problem,
the above O-term is far too large and we shall use instead the following
approximation to A(z) given by Meurman [6, Lemma 3].

LEMMA 1. Forxz > 1 and M > z, let

o (z) = (rv/2)"1zt/4 Z d(n)n=3/% cos(4nv/nz — 7 /4) .

n<M
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Then A(z) = 6p(x) + R(x) where R(z) < a4 if ||z]| > 25/2M~1/2 and
R(z) < zf otherwise.

Using this we obtain

LEMMA 2. Letz>2 and 27 <« M < 2190, Then
T T
/ A(u)?du = / Sar (0)2du + O(z) -
2 2
Proof. Firstly,

/; A(uw)du = /2”” Sar(u)?du + 2 /2“’ 6ae(w) R(u)du + /; R(uw)%du .

Next, by Lemma 1, we have

[z]+1

(2.1) / R(u)%du < Z nEn®2M~1/2 +/ (w2 < Vz .
2 2

n=2

Moreover, following the argument of {3, Theorem 13.5] we show that

T
/ pr (u)2du < 2%/2
2
for M < z199, Thus, by Cauchy-Schwarz’s inequality and (2.1) we have

/: Sp(w)R(u)du € x

and hence our lemma.

Square out é5s(u) and then integrate term by term, we get

/2 ’ Sar(w)%du
= (4r?)7? Z d(m)d(n)(mn)~3/4 :\/t_wos (4n(vn — vVm)vu)du

mn<M

+ (47?)7! Z d(m)d(n)(mn)~3/4 /; Vusin (47 (v/n + vVm)y/u)du.

m,n<M
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In the first double sum the diagonal terms yield a total contribution of

_ _3/92
(47(2) 1 Z d(m)2m 3/2§($3/2 _ 23/2)
m<M

— (67!'2)_1 Z d(m)2m—3/2$3/2 +O(:II3/2ME_1/2 + 1) .
m=1

Here the main term is the same as that in (1.1). Hence by Lemma 2, we
can write

(2.2) F(z) = S1(z) + Sa2(x) + O(z) ,

where for any y > 2,

(2.3) Siy) = (2r*)" D d(m)d(n)(mn)~/*x

m<n<M

/: Vucos (4m(v/n — vVm)vu)du ,
and

(2.4) Sa(y) = (4n)™" Y d(m)d(n)(mn)=*/*x

m,n<M

Y
/ Vusin (4r(v/n + vm)Vu)du .
2
From now on, we let X to be a sufficiently large number, M = X7 and
L =logX. For any v > 0, let
(2.5) 9W) = v 32Dy (v) — w2 T 0 (v)

where Ji, denotes the Bessel function of order k. It is well-known that [13,
§§3.3, 3.4]
Ji(2) < min(Jz[*,|2| /)

for any real z. Hence,
(2.6) g(v) < min(1,r72)

for any v > 0.
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LEMMA 3. We have
(2.7)

/X F(z)dz = V2r3/2x5/2 Z d(m)d(n)(mn)~34g(Om.n) + 0(X?%)
0

m<n<M

where O, n, = 47(\/n — ym)VX.

Proof. By [8, Lemma 4.2], for any real a and y, y > 2 we have

y .
(2.8) / VuelVidy < yla| ™t .
2

We first obtain some preliminary bounds for S;(y) and S2(y). According
to (2.3) and on applying (2.8), we have

(2.9) Sily) <y Y d(m)d(n)(mn)~*4(Vn - vm)™!

m<n<M

(2.9) Siy) <y Y, d(m)d(n)(mn)~¥*(Vn - vm)™!

m<n<M

<yM{ Y () AR+ ym)(n—m)h

m<n<l2m<M

+ Z m-3/4n-5/4}

2m<n<M

<<yM5{ Z m~! Z (n—m)‘1+logM} L yM°® .
m<M/2 m<n<M

Similarly,

(210)  Sx(y) <y Y, dm)d(n)(mn) ¥V + vm)Tt < yMe= .

mn<M

Next, for z € [VX, X] we have 27 < M < z'* so that, by (2.2)
(2.11)

X X X \
/ﬁ F(z)dz = /\/Y S1(z)dz + /\/)_{_ Sy (x)dz + O(X?)

b'e b's
=/ Sl(x)da:+/ So(z)dz + O(XM* + X?)
2 2
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vx
since, by (2.9) and (2.10), / Si(z)dz « XM*®. The main term on the
2

X
right hand side of (2.7) arises from / S1(z)dz. Indeed, by (2.3),
2

/ Sy (z)dx = (2n2)~1 Z d(m)d(n)(mn)~3/*x

m<n<M

[2 /2 Vucos (4n(v/n — vm)v/u)dudz .

Write 8 = 4m(y/n — v/m)vX for short. Then the above double integral is
equal to

X
[ = uicos (an(v - Vim)Vadu
= 5/2 1 -'1)2 ’U2C S{0V )av
2X /\/zv_x(l Y02 cos(6u)d

= 2X5/2{ /1(1 — v?) cos(fv)dv — /1(1 — v2)2 cos(fv)dv
0 0
/\/Z/X

0

(1 —v?)v? cos(0v)dv} .

By the well-known integral representation

Jery(2) = \/_( k+21/(1 kcos(zv)dv, k=0,1,2,...

for the Bessel functions [13, §3.3], the first two integrals on the right hand
side is equal to

V2m (6732 J3/5(6) — 4075/2J5/5(6)) = V2mg(6) ,
by (2.5). Moreover, using integration by parts we find that

/w/—x

(1 — v?)v? cos(Bv)dv <« X191
Hence

/X(X — w)vaucos (4n(vn — vm)Vu)du = 2v2r X3/2g(0) + O(X3/%67),
2
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and then

/ * Si(z)dz = V2r 32 X512 N~ d(m)d(n)(mn)~3/*g(6)

m<n<M

+ (’)(X Y dm)d(n)(mn)~¥/4(v/n - m)—l) .

m<nM

The sum inside the O-term can be treated by the argument in (2.9), and
we then find that the O-term is bounded by X M€, which is smaller than
that on the right hand side of (2.7).

In view of (2.11) and (2.7), it remains to bound the two integrals

vx X
/ F(z)dz and / S3(z)dz by X?. By Preissmann’s bound, we have
0 2

vx
/ F(z)de < X log* X
0

which is acceptable. Next, by (2.4),

D'
L Sy(x)dz = (4m?)~1 Z d(m)d(n)(mn)~3/4x

m,n<M
X
/2 (X — u)vusin (47r(\/ﬁ + \/n_z)\/ﬂ)du,
= (2r2)71X%2 " d(m)d(n)(mn)"*/4x

mn<M
/\;z/—x(l — v?)v?sin (47(v/n + vVm)VXv)dv .

The inner integral, on applying integration by parts twice, is found to be
< X732(r+vm)Tt+ XN (Vn+ vm) 72,
Thus,

/X Sa(z)dzr < X E d(m)d(n)(mn)~3/4n="1/24
2 m<n<M
X323 d(m)d(n)(mn)~%/4n!
min<M

<<XME+X3/2 <<X3/2 .
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This completes the proof of Lemma 3.

For any y > 0, let
(2.12) Yn(y) = ) d(m)d(m + h) .

m<y

In his work on the fourth power moment of the Riemann zeta-function on
the critical line, Heath-Brown [1] proved that

(2.13) Yr(y) = In(y) + En(y),

where the main term Ip(y) is of the form

2
(2.14) Iy =y Z logi y Z d_l(aio + a;; logd + a2 log2 d)
i=0 dih

for certain constants c;j, and the remainder Fj(y) satisfies
(2.15) En(y) < y*/%*

uniformly for 1 < h < 9%/, In particular ago = 6772, a1 = ag = 0. We
note that I (y) is roughly of order ylog?y. In our proof of Theorem 2 in
§3 we shall need I (y), the derivative of I(y). By (2.14)

(2.16) I1,(y) = az(h) log?y + a1 (h) log y + ao(h)
where
ap(h) =672 d*,
dlh

ai(h) = Z d=1(12772 4 00 + o1 logd + a1z log? d) |
dlh
(2.17)

2
ao(h) =) d™' D (ao; +ou)log’ d .

d|h 3=0

For any y > 0, @ > 3 let

(2.18) &y, Q) = _ h~'(4ay(h)log® Qh + 2a:(h) log Qh + ao(h)) -

h<y
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LEMMA 4. We have

4 4
£(y, Q) = 5 10g” Qy + cslog” Qy — 5 10g° Q + calog® Q +¢5 log @
+ cglogy + cr + Oyt log® ylog® Qy) .

Proof. In the argument below we use the symbol ¢ to denote a certain
constant which may not be the same at each occurrence.

Firstly, for j = 0,1, 2 there are constants (o, 51, 82 such that

(2.19) > " a;(h) = Bjy + B;(y)

h<y

with B;(y) < logy. (Note B;(1~) = —f;). Indeed, by (2.17),

] ‘
> ao(h) =) d™' D (ao; +a1)(log’ d)(yd™" + O(1))

h<y d<y Jj=0
2
=y d 2 (ao; +aij) log’ d+ o( Y d log? d)
d<y Jj=0 d<y
[eS) 2 )
=y Z d=? Z(an + ;) log’ d + O(y Z d~2log? d) +
d=1 j=0 a>y
+O(log y)
= Boy + O(log’ y)

with

00 2
,30 = Z d_z Z(O[oj + Oqj) log’ d.

d=1 3=0

Similar argument establishes (2.19) for j = 1 and 2. Further we find that
B2 = 1.
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Next by Riemann Stieltjes integration and (2.19), we have

> az(h)h~ log” QR

h<y

= /1 e log® Qtdt + [t log® Qt Ba(t)]}-
- /1 ! By (t)t~%(21og Qt — log? Qt)dt

= - (log? Qy — log® Q) +1log? Q + O(y ™" log® y log” Qy)

- / ’ By(t)t~2(—log? Q + 2(1 — log t) log Q + 2logt — log® t)dt

1 1 3 3 2 2

§(log Qy—log° Q) +1log” Q + clog”Q + clogQ + ¢

+ (9( /y ” (log® t)t~2(log? Q + log® t)dt) + O(y~ ! log® y log® Qy)

= %(log3 Qy —log® Q) + clog? Q + clog Q + ¢+ Oy~ log® ylog® Qy) .

In the same way, we find that

1
Z a1(h)h~'log Qh = —2-ﬂ1 (log? Qy — log® Q) + clog Q + c+
h<y

+ Oy~ log® ylog Qy)

and

> " ao(h)h™ = Bology +c+ Oy logy) .
h<y

Collecting all these in (2.18) our lemma follows.

Lastly we evaluate some integrals involving the function g(v).

LEMMA 5. We have
o0
/ g(v)dv =0,
)
/ g(W) logvdy = —/m277/2 .
)
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Proof. Tt is known that [13, §13.24]
/ J = T(2)2 D (k= 5 + 1)

0
for 0 < Res < Rek + 1/2. Hence

[ @ 00) = @kt Dy s 0) v

0
s 3

/F(k —3 + 5)

for -1 < Res < Rek — 1/2. Setting k = 3/2 and in view of (2.5) we have

= —32"’“‘11"(———8 ; 1)

(2.20) /0 ~ gv)vidv = —328—5/21“(¥) /T(3— %)

oo
for —1 < Res < 1. On putting s = 0 we get / g(v)dv = 0. The
0

remaining integral is equal to

;—3 ( /000 g(u)l/sdy)

which can be evaluated by differentiating the right hand side of (2.20).

8=0

3. Proof of Theorem 2

We shall now complete the proof of Theorem 2 by evaluating the double
sum

(3 1) T= Z Um,n

in Lemma 3, where
Unn = d(m)d(n)(mn) =¥/ 4g(4n (v — VM)V .

In view of Lemma 3, we can allow errors of order up to X ~1/2 in the course
of our analysis.
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First of all, we consider those terms %m,, for which m < n/2. In this

case /n — /m < /n so that, by (2.6)
g(dn(vm— VmIVE) < (nX) ™"
The contribution to T from these wp, n is therefore
<X Y dm)dm)mn)~ Tt < X7
m<n<M

which is acceptable.

For the remaining terms unm, n in T, we write n =m+h with 1 < h <m.

Then
T= Y Y  tmmntOX).
h<M/2 h<m<M-—h
For h < m, we have 47 (vm + h— /m)vVX < 2rhy/X/m so that, by (2.6)
again
(3.2) g(4r(vVm+h— vVm)VX) < mh72X
and each term m, m+n satisfies

U, m+h K MEm=32mh—2X"1 .

Thus, the contribution to T' from those tm m+x With b > VM is < X' M*
and the error caused by extending the upper limit for the summation on m
to M is O(X~1M~1/2+¢). Hence we have

h<vM h<m<M

For simplicity let
Dy = R2XL78.
Then we can further write

(3.3)

T=Y 3 + > > +oxXIM)

h<vP h<m<min(Dn,M) h<X3L4 Dp<m<M

=Y +) oM,
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say. Using the same bound (3.2), each term wm m4n in ), is
< (d(m)? + d(m + b)) (m(m + h)) "/ *mh=2x "
< d(m)’m~2h2 X"+ d(m + h)*(m + B) V272X

since m+h < m for 1 < h < m. An application of the well-known estimate

Z d(m)*m~Y% < \fylog®y for y>1,

m<y

then yields

Zl <X Y h7%/min(Dp, M)log? M < X71/2

h<vVM

Putting this into (3.3), we have

T=3Y Y dmdm+h)(mim+h) " g0mmrn)
(3.4) h<X3L* Dp<m<M

+O(X~1/?)

with O min = 4dn(vVm+h — \/ﬁ)\/)?

Next, we transform the above inner sum over m into an integral. By
(2.12), (2.13) and Riemann Stieltjes integration we have

Dp<m<M

M
(3.5) Y = [ m) et
M

= / (y(y-}-h))-a/ 9(8y.y+n) 1 (y)dy

Dy,

+ [0 +0) g B

M
- /D Eh(y);%{(y(y+ 1)) 490, 4+4) Yy
= Wi (h) + Wa(h) + W3(h) ,

say. We bound W3(h) by using (2.15) and the trivial estimate g(v) < 1.
Whence

Wa(h) < M—3/2p5/6+e +D;3/2D2/6+e < D;2/3+E &« h—43x-2/3+e
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For W3(h), by [13, §3.2] we have
g )= —V—3/2J5/2(V) + 41/“5/2J7/2(v) v for v20,

since Ji(v) < v*. Hence, by g(v) < 1 and (2.15) we have

M d
W3(h) < / y5/6+s {y-5/2 + y—3/2|0y,y+h‘la_ey,y+hl}dy
Dy Y
M
< {y—5/3+5 + y-—-2/3+e hy—1/2X1/2hy—3/2X1/2 }dy
Dy,
< h—4/3x—2/3+e

In view of (3.4) and (3.5), the contribution to T from W5(h) and W3(h) is

therefore
& Z h—4/3x—2/3+€ < X-»2/3+€ ,
R<X3LA

which is again acceptable. Thus,

M —3/4 -
36 T= ) Wy + 1)~ *9(0, yrn) T (m)dy + O(X~1/2) .
Dy,

h<X3ILA

To evaluate the inner integral, we begin by making the change of variable

w=0yyn =47(Vy+h— VH)VX .

Then
y = 4n*Xw 2% — %h+ (64n°X) " 1w? = 4r? Xw 2R? (1+ O(W? X 1h71))
so that
(wly + 1) ™ = (4n?Xw2h? - (64n2X) " 1w?) /2
= (2rh) X720 (14 OW'X~2h7%)
and

% = —8m’Xw™3h*(1 + O(w'X~2h72)) .
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Moreover, by (2.16)
7 (y) = daz(h) log? (2rVXw1h) + 2a1 (h) log(27r vV Xwth) + ag(h)
+ O(w? X' (Jaz(B)|L + |as (R)))) -
Set
3.7  w=4r(VM+h-VM)VX =27hX 3+ O(h2X"1)
and

(3.8)  wa=4n(v/Dn+h—/Dp)VX =2rL* + O(h~1X1L1?) .
Then with the help of all these estimates we find that

M
[+ m) g )iy

m})_( uz g(w)h"{4az(h) log? (2rvXw™h)

+ 2a1 (h) log (2rVXw™h) + ao(h) }dw + O (h=2X ~3/2+¢)

In obtaining the above O-term, we have used g(w) < 1, (3.8) and the
observation that a;j(h) < log® h < L3 The integration limits u; and ug
can be replaced by 27hX 3 and 2wrL* respectively, since the error thus
caused is

< X—1/2h—-1L5(h2x—10 + h—lx—1L12) < hx—-21/2L5 + h—2X—3/2L17
< h—2X—3/2+E ,

by (3.7) and (3.8). Collecting these into (3.6), we get

1 /%If -1 2 ~1
T= 9(w)h™ {4az(h) log? (2nVXw R
W\/.Y hs;lz“ 2rhX—3 { )

+ 2a; (h) log (27VXw™th) + ag(h) }dw + O(X1/2) .

Next we interchange the summation and integration. In view of (2.18) we
have

89 T= ,T;_—)E / i g(w)é(2m) T 'wX?®, 2rVXw ) dw + O(X ~1/2)
2rX—3



Mean Square of the Remainder Term in the Dirichlet Divisor Problem 91

By Lemma 4, and after some simplifications, we have

£((2m)twX3 2rVXw ™) = logwlog? X + (cs logw + cg log® w) log X+
+ ciologw + c11 log? w + ez log® w + (X)) + O(w™ 1 X~3L%)

where ®(X) = ;13 long + C14 1og2 X + c15log X + c16 and cs, c9, ... ,C16
are certain constants. Finally inserting this into (3.9) we get

1 27I’L4
3.10 T=—e w){ logwlog? X + (cglogw + cglog? w) log X
(3-10) m/j(-/zwx_sg(){g g” X + (cslogw + co log” w) log

+ ciologw + c11 log® w + crzlog? w + (X)) }dw + O(X~1/2) .

It remains to evaluate the integrals

2nL* )
K;= / g(w) log” wdw
2n X3

for j =0,1,2,3. Writing

2n X3

K;= /000 g(w) log? wdw — /0 g(w) log? wdw — L:4 9(w)log’ wdw

we see, by (2.6), that the last two integrals are bounded by X 3L’ and
L=%*7 respectively. Hence, by Lemma 5 we have

Ko < L™, Ky = —/m27 /2 + O(L73)

and by (2.6),
Ko, K3 = constant + O(L71) .

When these are inserted into (3.10) we obtain
T =-2732rX) 2 1og? X + c17 X /2log X + O(X /%),

and Theorem 2 now follows from (3.1) and Lemma 3.
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