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Classical and overconvergent modular forms

par ROBERT F. COLEMAN

The purpose of this article is to use rigid analysis to clarify the rela-
tion between classical modular forms and Katz’s overconvergent forms. In
particular, we prove a conjecture of F. Couv6a [16, Conj. 3] which asserts
that every overconvergent p-adic modular form of sufficiently small slope
is classical. More precisely, let p &#x3E; 3 be a prime, K a complete subfield of
Cp, N be a positive integer such that (N, p) = 1 and k an integer. Katz
[21] has defined the space Mk(f1 (N» of overconvergent p-adic modular
forms of level ri(N) and weight k over K (see §2) and there is a natural
map from weight k modular forms of level r1(Np) with trivial character
at p to Mk(rl(N». We will call these modular forms classical modular
forms. In addition, there is an operator U on these forms (see [15, Chapt.
II §3]) such that if F is an overconvergent modular form with q-expansion
F(q) = anqn then 

.

(In fact, all this exists even when p = 2 or 3 (see [21] or [9])). We prove,
Theorem 6.1, that if F is a generalized eigenvector for U with eigenvalue
A (i.e., in the kernel of (U - A)’ for some positive integer rt~ of weight k
and a has p-adic valuation strictly less than k - 1, then F is a classical
modular form. In this case the valuation of A is called the slope of F.
In the case when F has slope 0, this is a theorem of Hida [20] and, more
generally, it implies Couvba’s conjecture mentioned above (which is the
above conclusion under the additional hypothesis that the slope of F is at
most (k - 2)/2). This almost settles the question of which overconvergent
eigenforms are classical, as the slope of any classical modular form of weight
J~ is at most k - 1. In Section 7, we investigate the boundary case of
overconvergent modular forms of slope one less than the weight. We show
that non-classical forms with this property exist but that any eigenform for
the full Hecke algebra of weight k ~ 1 is classical if it does not equal 
(see below) where G is an overconvergent modular form of weight 2 -1~. In
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Section 8, we prove a generalization of Theorem 6.1, Theorem 8.1, which
relates forms of level ri {.Np) to what we call overconvergent forms of level
r1(Np) and in Section 9, we interpret these latter as certain Serre p-adic
modular forms with non-integral weight [30] .

The central idea in this paper is expressed in Theorem 5.4 which relates
overconvergent modular forms to the de Rham cohomology of a coherent
sheaf with connection on an algebraic curve. More precisely, we show that
there is a map for non-negative J~ from modular forms of weight -k
to modular forms of weight k + 2 which on q-expansions is 
When N &#x3E; 4, the k-th symmetric power of the first relative de Rham
cohomology of the universal elliptic curve with a point of order N over the
modular curve is naturally a sheaf with connection. Theorem 5.4
is the assertion that the cokernel of Ok+1 is the first de Rham cohomology
group of the restriction of this sheaf to the complement of the zeroes of the
modular form on X, (N) -

The above result, Theorem 6.1, is intimately connected with the conjec-
tures of Gouvea and Mazur on families of modular forms in [171 and [18].
Indeed, in a future article [9] we will use it to deduce qualitative versions
of these conjectures. (We will also explain how to handle p = 2 or 3 in [9 .)

We thank Barry Mazur for encouraging us to think about this problem and Fernando

Gouvea for helpful conversations.

1. The rigid subspaces associated to sections of invertible sheaves

Let v denote the complete valuation on the p-adic numbers Qp such that
v(p) = 1 and let Cp denote the completion of an algebraic closure of Qp
with respect to the extended valuation (which we still call v~ . We also fix
a non-trivial absolute value [ on Cp compatible with v. Suppose R is the
ring of integers in a complete discretely valued subfield K of Cp.

Suppose X is a reduced proper flat scheme of finite type over R and ,C is
an invertible sheaf on ~. Let s be a global section of ~C. Suppose x is a closed
point of the subscheme X := Y (9 K of ~. Let Kx denote the residue field
of x, which is a finite extension of K, so the absolute value on K extends
uniquely to Kx, and let Rx denote the ring of integers in Kx . Then, since
X is proper, the morphism corresponding to x extends
to a morphism X . Since K is discretely valued, is

generated by a section t. Let ¡;s = at where a E Rx we set = lal.
This is independent of the choice of t. We will, henceforth regard X as a
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rigid space over K. We claim, for each r &#x3E; 0 such that r E there is
a unique rigid subspace XT which is a finite union of open affinoids whose
closed points are the closed points x of X such that Is(x)1 ? r. Indeed,
there exists a finite affine open cover C of X such that the restriction of
to Z for each Z in C is trivial. For each Z E C, let tz be a generator of
G(Z) and suppose slz = fztz where fz E Let 2 denote the fiber
product of the formal completion of Z along its special fiber and SPec(K).
Then Z is an affinoid over K and n Z = {x E Z : ~ I fz (X) I &#x3E; r}.
Since this is known to be the set of points of an affinoid [2, §7.2], we have
established our claim. Now, for r E R, r &#x3E; 0, the set of closed points of
x such that such that Is(x)1 [ &#x3E; r is also the set of closed points of a rigid
space X(,) as E &#x3E; r} is an admissible cover. ,

Alternatively, if L is the line bundle whose sheaf of sections is G then
there is a natural metric on L and if we regard s as a section of L 2013~ X, Xr is
the pullback of the rigid subspace consisting of points greater than or equal
to r. Or, if a E R and Jo) = r, then Xr may be identified with the fiber prod-
uct over R of Spec(K) and thep-adic completion of SPecX(Syrn(G)/(s-a))_
(One can deal with sections of locally free sheaves just as well.)
Now suppose X is an irreducible curve and r e ICpl. Then, either Xr is

an affinoid or Xr = X, because such is true for any finite union of affinoids
in an irreducible curve. If the reduction 9 of s is not zero and

r # 0, then XT is an affinoid. In fact, if X is smooth, 9 has only zeros of
multiplicity one and 1 &#x3E; r &#x3E; 0 we claim XT is the complement of a finite
union of wide open disks. Indeed, suppose all the zeroes of s are defined
over R (this is not really necessary, it just makes things easier to visualize).
Let C etcetera. be as above and let Z E C. Then tz is a local parameter
at Q for each zero Q of s in Z and, in particular, the restriction tQ of tz
to the residue disk containing Q gives an isomorphism onto the unit disk
B(0,1). Moreover, Xr n Z = Z - U r). This establishes the above
claim. It follows that is the complement of a finite union of affinoid
disks and so is a wide open by definition. (See [6] and also [28].) Such

spaces are quasi-Stein spaces [24].

2. Application to overconvergent modular forms

Let p &#x3E; 3 be a prime and let N &#x3E; 4 be an integer such that (p, N) = 1.
Let X denote the model with good reduction of X1(N) over R and C the
subscheme of cusps. (We will also use C to denote the degree of the di-
visor C when no confusion will arise). Let E -~ X denote the universal

generalized elliptic curve with r1(N) structure X be the sub-
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scheme of E consisting of points smooth over X and 13 = Let
and W = 

Now w is an invertible sheaf and we have a section of Since

the reduction of Ep- i vanishes simply at each supersingular point, the rigid
spaces X(,) = &#x3E; r} are each the complement of a union of
affinoid disks, one in each supersingular residue disk by the discussion of
the previous section.

Let Z = Xi, Wl - X(p-P/(P+l» and W2 = Then W2 C Wi
and Z, the ordinary locus, is the unique minimal underlying affinoid (see
~6~ ) of either WI or W2 containing the cusps. Let Mk := 
:= w*’(Wi) for k E Z. Then Mk may be described in terms of Katz’s
overconvergent forms of weight k. Indeed, if r E R, may be

identified with S(R, r, N, k) (see [21, §2.9]]) and Mk = 
a

where s approaches from above. We call the sections of úJk on Z
convergent modular forms and those of Xs for any s  1 overconvergent
modular forms.

Remark. We point out that Katz’s overconvergent modular forms are only
defined for integral weights while Serre’s p-adic forms -may have weights in
Zp x Z/ (p - I)Z. Katz’s discusses the relationship between the two types
of objects in [21, §4.5]. In particular, he shows that Serre’s forms of weight
(k, k) for integral k are his convergent forms of weight l~. In a future article,
we will introduce a notion of "overconvergent" p-adic modular forms with
weight in x Z/(p - I)Z which incorporates the forms of both
Katz and Serre (see also §9).

Let Ei denote the pullback of Earn to Wj . Katz describes [21, Sect. 3.10~
a commutative diagram

where 4i and § are finite morphismes. There is a canonical family of subgroup
schemes IC of rank p over tVi in the family of elliptic curves El over WI
and 0 is a morphism such that the family over W2 is canonically
isomorphic to the pullback .E~~ ~ of .~1 to T~f~2. Then 16 is the composition
of the isogeny 7r: EZ -~ E2/JCE2 and the natural projection from E~~ * } to
El .
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Using this we will make 0* -linear transformations Vk:Hk(W2) -&#x3E; llk(W1)
for k E Z, k &#x3E; 0 (note that 1-lo = Ox).

We first observe that the complex C) is naturally isomorphic to
the complex (logC). What this means is that we get a natural
map of complexes,

which takes g4!*(a) to where g is a section of and
a is a section of for an open set V of El. Second, as

We get a map

Similarly we get a map

which we also call Yk .

We have a natural map of complexes
yields maps and

which we denote by F~ .

Now we have the Gauss-Manin connection Vk with log-poles at C on
1tk. I.e. and it is easy to see that

as maps from xk(W2) to (0B (log C) and from to

(Ok ~?L~~(W2) respectively.
We can also describe Vk as the composition:



and Fk as the composition

From this it is easy to see that if h E and g then

This is also true with H replaced by Sl’ 01-£.
Remarks. The restriction of Hk to Z (or better the dagger completion of
Z) is an F-crystal in the sense of Katz [22] if one takes the map from 
to rlk to be (~* ~ ~ .
We will, henceforth, use ** to denote (jt* )*’ .

3. Hodge and U

0 the Hodge filtration on 1ik is a descending filtration

such that, for 0 ::; i ::; r and 0 ::; j $ s,

as coherent sheaves. It is clear that Vk and respect these filtrations.

We observe that 1, is self-dual with respect to a natural inner
product ( , )k: x 1ik ---~ which when J~ = 1, away from the cusps,
is just the cup product and more generally satisfies

for fi, gi local sections Of1il. This leads, in particular, to the exact sequence

which together with (3.1) implies Gri1-lk = is canon-

ically isomorphic to Wk-2i.
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We will identify Mj with Gro1tj(W1) when j &#x3E; 0 and with 

when j  0. We let be the operator on Mj

We will frequently drop the subscript (j) from U(j) when the context makes
it clear on which space we are acting and sometimes abuse notation and
allow to mean when j &#x3E; 0.

Remark. The operator extends to any of the spaces for any
1 &#x3E; s &#x3E; but any overconvergent eigenvector for U(k) analytically
continues to Wl. (See the proof of [16, Cor.II.3.18~.) The value of consid-
ering these larger spaces is that for s E IKI they are Banach spaces and
one can apply the theory of Serre [29].

Suppose g E Mk. We set equal to Fk(g)/pk = when
k &#x3E; 0 and Fk(g) when k  0. So that E Wk(W2). It then follows from
(2.4) that if h E wi (W2) and kj &#x3E;_ 0,

In particular, if h E Mk and a is a rigid function on W2 then

Equation (3.3) will follow, in general, from the following proposition.

Remark. The map Q is what is called cp in [21, §3] (and Frob in [16, Chap.
2 §2]), which is only defined there when k &#x3E; 2 in general and when k = 1 in
some cases. Indeed, we may regard an element h of Mk as a function which
assigns to pairs (G/ B, w) where B is a K algebra, G is a fiber of E1/W1
over a B valued point of WI and w is a differential on G which generates
the invariant differentials on G over B, an element H(GIB, w) of B by the
rule hIG = h(G/B, w)wk. Then if G/B is the fiber over a B valued point of
W2
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PROPOSITION 3.1. Suppose k &#x3E; fl. The map induced by ~~ o Resy~’j’j,.2 on
Mk-2i is for 0 ~ i  k.

Proof. We pass to the underlying affinoid Z and repeat all previous con-
structions in this context. This gives us the advantage of not having to
worry about the fact that W2. We will let A denote the pullback of
E to Z.

We will now follow Appendix 2 of [21] . (Note: What is denoted by the
symbol p there is what is called 4&#x3E;* here.)

Suppose v is an invariant differential on ~4 generating w. Then, **v =
Av(4* ) and ~-* v-1 - ~ {v~ x } t~* ~ for some invertible A. Suppose f is a section
of such that f = au(h)(A, modulo Filk+l-i11.k where
h is a weight k - 2i modular form and a is a rigid function on Z. (Here we
are using the equation (3.1).) Then,

Now then,

using (2.3), while

Thus

and so, on Grz, Vk acts as using (3.4).

4. Kodaira-Spencer and the theta operator

We have a Kodaira-Spencer map K,: CJ.)2 2013~ of coherent sheaves
on Xl(N) defined as follows: If w and v are two local sections of w we set
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where on the right we regard w and v as sections of This map is an

isomorphism. More generally, we have an injection of sheaves
.. - .. .

determined by the correspondence

where 77 is a local section of c~~ and on the right we regard it as a local
section of 1-lk.

PROPOSITION 4.1.

Proof. Suppose
the one hand,

Then on

On the other hand,

The proposition follows from this and the definitions. I

LEMMA 4.2. The map

is an isomorphism of sheaves of vector spaces.

Proof. The map shifts the filtrations by 1 (Grif-
fiths transversality) and induces isomorphisms on the graded pieces by what
we know about the Kodaira-Spencer map. I

This implies that we get a natural map M_k -&#x3E; Mk+2. Indeed, let
w E M_kw-k(W1). Lift it to a section w of 71,. Let s be a section of
Fi117-lk on Wl such that Vail = Os modulo

Then the map is t~ 2013~ V(n) 2013 s)). At the cusp oo, one computes (see [7, §91)
that this map is 

- . 7 I 1 - -

where 0 = qd/dq. In particular,
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PROPOSITION 4.3. There is a linear map from M-k to Mk+2 which on
q-expansions is 

We will, henceforth, denote this map by the expression ok+l - Katz tells
us [21, Appendix 1] that we can "canonically, but not functorially," regard

for l~ &#x3E; 0, as 
." - .

Suppose f E Mk. Suppose first k &#x3E; 0. By the above we can consider it as
a section Then Vf is a section of (log C). By virtue of Katz’s
decomposition (4.1), we can project onto which by
virtue of Kodaira-Spencer isomorphism we can identify with Mk+2- Call
this element 6k f . Now suppose k  0. By (4.1), we can regard f as an ele-
ment of 1-l-k(Wl). Then the projection of V-kf onto Mk 
can be regarded as an element of Mk+2 and we call this element 8kf. In
either case, calculating at oo we find

We will use this to show in [11~ that 0(f) is not overconvergent when neither
f nor k equals zero. 

5. Cohomology

For a rigid analytic open subspace W of Xl(N) set

Let SS denote the set of supersingular points on Xl (N) mod p and let
SS be a set of liftings. (We will also denote by SS the degree of the divisor
SS when appropriate.) By [5, Theorems 2.1 and 2.4), via the natural maps
H(k)(Wi) and H(k) (W2) are both isomorphic to

where Q (1ik) (log SS) is the complex

We therefore let H(k) denote any one of these cohomology groups. The
above and (2.4) imply
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THEOREM 5.1. The space H(k) is finite dimensional and F and V induce
endorriorphisras Frob and Trer of H(k) such that

Let ]C[ denote the union of the cuspidal residue classes and ]88[= W1-Z.
Then JSS[ is the inverse image in WI under reduction of SS and af-
ter étale base extension is a disjoint union of wide open annuli, one for
each element of SS. We call these the supersingular annuli. Now let

be the subcomplex of rf (1ik), ’H.k 0 xk,
where Ic is the ideal sheaf of the cusps. We let denote the kernel
of the map H(k)(]C(U~SS[). This is naturally isomorphic to the
classical weight k parabolic cohomology on Xl(N) which is the image of

Also, stable
under Frob and V er and

THEOREM 5.2. There is a natural perfect pairing

such that

Proof. It is classical that the self-duality of 1ik leads to a perfect pair-
ing on (essentially Poincar6 Duality between compactly and non-
compactly supported cohomology). By standard arguments (e.g. see [6,
Thm. 4.5]) we can compute it as follows: Let h and g be elements of
(1-lk 0 with trivial residues on the supersingular annuli and
let [h] and [g] denote their respective cohomology classes in Hpar(k) . It

follows, in particular, that for each supersingular annulus A, there exists
a ÀA E such that V ÀA = IIA- For each supersingular point x of
Xi (N) let Ax denote the supersingular annulus above x. Then

where ResAx is the residue map associated to the orientation on Ax coming
from WI (see [6, §3]). Now let Tx be an orientation preserving uniformizing
parameter on We may write
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where the Then

and

We deduce that

Now we can identify the the space of horizontal sections of B7 on Ax with
K) where is the supersingular elliptic curve correspond-

ing to x, the restriction of ( , ) to this space with the natural pairing and
the map from to ~r* a~~~ ~ , with the Frobenius
morphism from to It follows
that

The result follows from this and the fact that = pReSA.9- I

It follows immediately from Theorems 5.1 and 5.2 that

COROLLARY 5.2.1. We have

By a generalized eigenvector with eigenvalue a, E K for a linear

operator L on a vector space W over K, we mean a vector in W which is
in the kernel of (L - a)’ for some positive integer n.

Theorems 5.1, 5.2 and the previous corollary imply

COROLLARY 5.2.2. The map Ver is an isomorphisme and if a E K* then
the dimension of the generalized eigensubspace of Hpar(k) with eigenvalue
a for Ver is equal to that of the generalized eigensubspace with eigenvalue
pk+l/a.
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NOTE. We have not yet shown that the eigenvalues of Ver acting on H(k)
are integers in This will follow frorri Theorem 6.1.

Proof. We take cohomology of the short exact sequence,

where Sk is the complex of skyscraper sheaves which makes this sequence
exact. First 

where is the ideal sheaf of SS (via a residue map). Second, the
boundary map of the complex S. takes Sk into Hk 0 OX(N;p)/Io with
respect to this decomposition with a one dimensional cokernel at each cusp
(as one can deduce from the results of [21, AI]). Thus as Hk is locally
free of rank k + 1 we see that dimK = C + (k + 1)SS. The lemma
follows from the facts that dimK H2 (n = 0 for l~ &#x3E; 0 and

= 0 if k &#x3E; 0 and 1 if k = 0. 

Now on q-expansions it is evident that 0 o U = pU o 0. Using this,
Proposition 4.1 and Lemma 4.2 we deduce:

THEOREM 5.4. The quotient naturally isomorphic to
H(k) and the following diagram commutes:

Let P(k,T) denote the characteristic series of U restricted to wk(Y)
where Y is any underlying affinoid of Wl strictly containing Z. This series
exists since U is completely continuous on this space as explained in [15].
Then,

COROLLARY 5.4.1.
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We will interpret the polynomial det(1- 2)) in terms of
Hecke operators and classical modular forms on in §7. This will
generalize Theorem 2 of [25].

6. Small slope forms are classical

For a module M and a rational number a, we set Ma equal to
the slope a part of M, that is, the submodule of F E M such that there
exists a polynomial f(T) E K[T] ] whose roots in Cp all have valuation a
such that f (U}F = 0. We say that a non-zero element of MQ has slope a.

Let X((N; p) denote the fiber product of and Xo(p} over the j-line.
Let Sk,ci := Mk,cl := Mk(N;p) denote the spaces of cusp forms
and modular forms of weight k on X(N; p}. We may use JC to identify Wl
with a subspace of X(N; p) and get a natural Hecke compatible injection
from into .~k under which U~ corresponds to U. We call elements in
the image classical modular forms.

THEOREM 6.1. Every p-adic overconvergent form of weight k + 2 and slope
strictly less than 1~ + 1 in Mk+2 is classical.

An immediate consequence of this theorem and the main result of [18]
is the following generalization of a result of Koike’s [25]:

COROLLARY 6.1.1. If = det (1 :.- Up TIMk,cl(N;p») then if k, k’
and n are integers such that k’ &#x3E; k &#x3E; 2, n &#x3E; k-1 and k’ = k mod pn-l (p- 1),
then

We now begin the proof of Theorem 6.1. It is vacuous for k  0. There-
fore suppose 1~ &#x3E; 0. Also, suppose N &#x3E; 4. We will explain how to handle
small levels at the end of this section. Let Sk denote the subspace of cusp
forms in Mk, and let 82 denote the subspace of sk of forms with triv-
ial residues on the supersingular annuli (see [7] ) . Then S2+2/0k+l M-k is
naturally isomorphic to the parabolic cohomology Hpar(k) . Let 82 cl :=
S2,cl(N¡p) denote the space of p-old (or equivalently (by [7, Thm. 9.1] )
with trivial residues on the supersingular annuli) cusp forms on of

weight k. Then S2,cl maps into 82 and

LEMMA 6.2. We have
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Proof. The dimensions of both spaces are twice the dimension of the space
of cusp forms on Xl(N). (For Hpar(k), this follows from the classical
Shimura isomorphism [31]-) 1

The next observation is

LEMMA 6.3. If F is a non-zero element of Mk+2 with slope strictly less
than k + 1, it is not in 

Proof. We may suppose that F is an eigenform with eigenvalue -y such
that V(/)  k + 1. Suppose G E M-k such that øk+1G = F and let

. . Then

This implies G(q) has unbounded coefBcients which contradicts the suppo-
sition that G E 

COROLLARY f .3.1. The natural map from (Mk+2,cl)o: to is an in-

jection if a  k + 1. ,

In particular,

if a  k + 1. Now it follows from Corollary 5.2.2 that

Let fl, f2 denote the two degeneracy maps from X(N; p) to Xi(N) and
let F be a form of weight k + 2 on X, (N) so that if (E, P, C) represents a
point on X (N; p), where E is an elliptic curve P is a point of order N on
E and C is a subgroup of order p of E, and pc : E -+ pcE is the isogeny
with kernel C,

Consider the identities
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Suppose

for d E (Z/NZ)*. Let u be a root of x2 - Apx + Then the
above identities imply that G = fi F - is an eigenvector for

Up with eigenvalue u. This implies that for any A E K*, any character
E: (Z/NZ)* - K* and any root U of x2 - Ax + we have a homo-

morphism hu from the subspace of Sk+2 (N) which is the eigenspace
for Tp with eigenvalue A and character E for the action (Z/NZ)* to the sub-
space W (u, E) of with eigenvalue u for Up and character E.

LEMMA 6.4. The homomorphisme hu is an isorrcorphism. Moreover, W(u, t)
is the kernel of (Up - u)2 in the E eigencomponent unless V(A, E) ~ 0 and
u = =: u’. In this case, the kernel of (Up - U)2 in the f eigen-
component equals the kernel of (Up - 1.1,)3 in this component and is strictly
bigger than W (u, E) .1

Proof. We will use the fact that fiSk+2(1V) fl f2,Sx+2(N) _ ~0}. This 
already implies that hu is an injection. Suppose L = fl* H + f2* G E W(u, 6).
Then we see that

This implies that HITP = (u + = AH and huH = L. Thus
H E and hu is an isomorphism. Now suppose U)2 = 0 and
L is in the E. eigencomponent. Then by what we now know there exists an
F E V(A, E) such that

This implies

Hence,

UI

But since Tp is diagonalizable, we must have either ~’ = 0 or u’ = u.

Finally, if u = u’ the above implies that if H E Ii u) =
So if H 0 0, Ii H is in the kernel of (Up - u) 2 but is not in

W {u, 6) ..

1 Wath Edixhoven, we have shown in "Simplicity of Frobenius eigenvalues in the Galois
representations associated to modular forms" that this latter case does not occur when
I~ = 0 and discuss there its likelyhood for arbitrary weight.
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COROLLARY 6.4.1. Suppose 0: :$ (k + 1)/2. Then

and

where Sk+2(r1(N»a is the slope a subspace of Sk+2(r1 (N» when
a  (k + 1)/2 and is the sum of the subspaces of slope at least (k + 1)/2
when a = (k + 1)/2.

Proof. Using the fact that Tp is diagonizable on Sk+2(1V), the lemma implies
that if a  (k + 1)/2, both the dimensions in (6.5) equal

The second statement is an immediate consequence of the lemma if a
 (k + 1)/2 and is a consequence of the proof if a = (k + 1)/2. 1

Putting (6.1~, (fi.2~, (6.3) and (6.5) together we deduce all the inequali-
ties in (6.2) are equalities and so

LEMMA 6.5. The map from (S2+2,cl)a to an isomorphism if
a~+1. 

’

This is enough to prove Theorem 6.1 for elements of we shall
see. To deal with arbitrary elements of Mk+2 we will need

PROPOSITION 6.6. The map from (Mk+2,cZ)a: to is ac?2 isomorplt2sm

Proof. First we have

LEMMA 6.7. Suppose a  k + 1. Then

Prnnf_ nnrl F_ 11T· m Qnvkpoc nf RiQnnofnin oorino nf



350

denote the space cusp forms new at p on X(N; p) identified with its image
in Mk(r1(N». First the map from +Sk+2,cl to 
is an isomorphism. Now Sk+2,cl C and by [7, Lemma 5.1] has
dimension SS(k + 1) unless k = 0 in which case it has dimension S~’ -1.
Also Ek (N; p) C (Mk+2,a)0 + (Mk+2,cl)k+l and Sk+2,cl n Ek+2 (N; p) = o.
From this we deduce the lemma when Ek+2(N) is an
eigenform for Tp with eigencharacter E, its eigenvalue is 61 + where
,61 and E2 are roots of unity of relatively prime order such that eiE2 = E(p)
(see [14, §3]). It follows that

are eigenvectors for Up in Ek+2 (N; p) with eigenvalues E I and f2Pk+l. . Since
Tp is diagonizable on Ek+2 (N) if k &#x3E; 0, dimK Ek+2 (N) = C if 1~ &#x3E; t~ and

dimK Ek+2 (N; p) = 2C if 1~ &#x3E; 0 the lemma follows as long as k &#x3E; o.

Now suppose k = 0. Then by the above arguments since dimK =

C - 1 diMK E~ (N; p) a &#x3E; C - 1 if a = 0 or 1. However the pullback W
of the one dimensional space of Eisenstein series on Xo(p) to X(N;p) lies
in because Up on Xo(p) acts on weight 2 forms as minus the
Atkin-Lehner involution. On the other hand, this space is not contained in
¡; E2(N) + /2 E2(N). This can be seen by considering weight 2 forms as
differentials. Then if Coo is the set of cusps on X(N; p} lying over 00 on
Xo (p), Respw equals zero if w E + f2* E2 (N) but not if
w E W. Since dimK E2 (N; p) = 2C - 1 this implies the remaining cases of
the lemma. I

Now consider the diagram with exact rows:

i )

Since, for a  1~ + 1, the first vertical arrow is an isomorphism and the
second is an injection the third is an injection as well. Thus the map

is an injection. By Lemmas 5.3 and 6.7 both these vector spaces have the
same dimension so this map is an isomorphism. It follows that the last
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vertical arrow in (6.7) is an isomorphism and Proposition 6.6 follows from
this and Lemma 6.5. ~

Since the eigenvaules of Up acting on classical modular forms are alge-
braic integers we deduce

COROLLARY fi.7.1. The eigenvalues of Frob and Ver acting on H(k) are
atgebraic integers.

Finally suppose G is a generalized eigenform for U in Mk+2 of slope
a  k + 1. Then, by Proposition 6.6, its class in H(k) is equal to the
class of a classical generalized eigenform F for Up of slope a. Hence
G - F E (Mk+2)a: and its class in is 0. By Lemma 6.3
we see that G -- F = 0 which proves Theorem 6.1. g

Remark. We can make Theorem 6.1 work for small levels.

Suppose first N &#x3E; 4, {R, p) = 1 and The map from 
to Mk(rl(R» is clearly a U equivariant injection (look at q-expansions).
We will now choose R large enough so that all the levels mentioned in this
paragraph divide R and identify with its image in Mk(r1(R».
One can show (again using q-expansions) that if (,M, N) &#x3E; 4,

Now suppose 4, A, B &#x3E; 4, (AB, p) = 1 and (A, B) = N. Then, it
follows from the above that the intersection of Mk(r1(A)) and Mk(r1(B))
is independent of A and B and is stable under U. All this is compatible
with changing R. We set (Mk(f1(N», U) equal to any element in this
isomorphism class. One can show this is compatible with Katz’s definition
of overconvergent forms in small level. Since classical forms which are both
of level and of level ri(B) are of level ri ((A, B)) it follows from
Theorem 6.1 that its statement is now also true for all ~V &#x3E; 1.

NOTES. 1. Since Frobenius, it follows that

2. The image of the form F2 which has slope k + 1 in (6.6) in H(k) is
0 using the fact that f2 /p is Robenius and thus there must be an overcon-
vergent modular forrrc H of weight -k and slope 0 such that 8k+l H = F2.
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In fact, if ~F = Gk+2, k &#x3E; 0, the classical Eisenstein series of level one and
weight k + 2, H is the p-adic Eisenstein series G* k (see [80, § ~. ~J).

7. The Boundary Case

We now know that no overconvergent forms of weight k of slope strictly
larger than k - 1 are classical and all of strictly smaller slope are. In this
section, we will investigate the boundary case of forms of weight k and

Suppose 2. It follows from the results of §6 that

for 1~ &#x3E; 2 (we will prove subsequently that these two spaces are isomorphic
Hecke modules). Hence, it will follow from the following proposition and
Note 2 of §6 that there exist non-classical overconvergent modular forms of
weight k and slope k -1.

Suppose L is an imaginary quadratic field of discriminant D, (1: 
is an embedding and 1b is a Gr6ssencharacter of L with infinity type 0’ k-I
and conductor .II~. Let 0 be the Dirichlet character associated to L, M the
norm of ~I and E the Dirichlet character modulo given by
the formula

," . " ’B. L --- 1

Then there exists a weight k cuspidal newform on X1(IDJM), G~, with
character E and q-expansion

where the sum is over integral ideals .A prime to Jvl (see (2?], [32~). (This
is true even if k = 1 as long as 1/J is not the composition of a Dirichlet
character with the norm (see [26; Thm. 4.8.2]).)

Now, identify C with Cp. Suppose p splits in L, and let p be the

prime of L above p such that = k - 1. Then the coefficient of qP in
G1jJ(q) is + It follows that = is an

eigenform for UP on X (N; p) with eigenvalue and so lies in 

PROPOSITION 7.1. The image of F1/J in H(k - 2) is zero.

Proof. First, we observe that
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Now choose a sequence of positive integers I r,, I such that rn =

-1 where the limit is taken in Z. Then the sequence G 1jJrn converges in the
sense of [30] to the weight 2 - k modular form H of slope 0 with q-expansion

Since H has slope zero it lies in M2-k [15, Prop. 11.3.22]. As
it follows from (7.1) that = F. This com-

pletes the proof.

Remarks. 1. Suppose G(q) _ is the normalized weight 2
cusp form on Xo (49) and p is a non-zero square modulo 7. Then Ap is a
unit modulo p. Using the notation of (6.4) and subsequent lines, if u is the
non-unit root of x2 - Apx + p and F = fi G - then since G
has CM by the previous proposition implies that the image of F
in H(0) is zero.

2. It would be interesting to know whether there are any non-CM classical
weight k cusp forms whose image in H(k - 2) is zero.

3. Another way to obtain non-classical forms of slope k - 1 and weight k
is to use the map ok-1. Indeed,

So for example, by standard procedure we may deal with the A-Iiiie
(which sits between Xo(4) and Xi(4)). Then (S2,cl)1 = 0 and dimK(So)o =
(P-1)/2 by [12].  Hence, in this case, (S2), is a (P-3)/2 dimensional space
of non-classical overconvergent modular forms of weight 2 and slope 1. (See
also [1] where the the dimension of the space of overconvergent forms of
weight 0 and slope 0 of level 3 is computed when p - 1 mod 3.)
4. In particular, if p = 13 and A is Atkin’s overconvergent weight 0 form of
level 1 (see [21, §3.12]), 8A is a non-classical overconvergent form of level
1, weight 2 and slope 1.

Let T be the free K-algebra generated by the symbols p and

(d)N, d E (Z/NZ)* modulo the relations (djN(d’)N = (dd’)rr. Then both
Hpa,(k - 2) are naturally T[U] modules via the homomorphism
which sends Ai to T, if I Á Np and Ui if IIN, U to UP and (d}N to (d)N.
Moreover, the natural map
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is compatible with this action, but as we have seen it is not generally an
isomorphism even though the two spaces have the same dimension. How-
ever,

THEOREM 7.2. The two T[U]-modules and Hpar(k - 2) are isomor-
phic. 

’

Proof. This will follow from Lemma 6.5 and

LEMMA 7.3. There exists a non-degenerate (and non-canonical) 
variant pairing

Proof. We regard points on X (N, p) as triples (E, P, C) where E is an
elliptic curve P is a point of order N on E and C is a subgroup scheme of
rank p of E. Fix a primitive N-th root of unity ~N in K. Let w~ and WN
be the automorphisms of X (N; p)

where (P) is the subgroup scheme generated by P, pAE is the
isogeny with kernel A and Q = p~ p~ ~~’~ where Q’ is a point of order ~V on
E which satisfies (P, Q’)Weil = (N. Then, if ~’ is a modular form of weight
k on 

and

First, the operator U is invertible on both and 82 cl and the
pairing ( , ) k on 2) satisfies 

’

for h E T and

Next consider the map r: defined by
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This map satisfies

ms i .. s i , , i

for h E T. In fact, r o hu = (pu - on E) where u and u’ are
the two roots of X2 - Ax + In particular, the restriction of r to

an isomorphism onto We may now set

for m E 2)_1 and rt E That this pairing is T(U)-
equivariant follows from (7.2) and (7.3). That it is non-degenerate fol-
lows from the fact that the restriction of t to is an injection onto

’

We do get the following positive result in the boundary case,

COROLLARY 7.2.1. 2. If F is an overconvergent weight k
Hecke eigenform of slope J~ -1 such that F ft M2-k, then F is classical.

Proof. Since F is assumed to have positive slope it must be cuspidal,
the image of F in H(k - 2) is non-trivial and lies in 2). Let

F(q) = The theorem implies that there exists a classical form
G such that al G for 1 a prime not equal to p and apG.
Hence, G has the same q-expansion as F and so the two forms are equal. I

Remark. Richard Taylor has asked whether an overconvergent eigenform
of weight 1 and slope zero is classical if the image of inertia at p under the
representation associated to F is finite.

Let h(i) : T ~U~ - T [U~ denote the homomorphism such that

For a T(U)-module M and an integer i, we define the "twisted" T(U)
module M(i) = M Q9h(i) T[U].

COROLLARY 7.2.2. Tlae T[UJ modude (Mk)k-i sits in an exact sequence

where A = K if k = 2 and A = 0 otherwise.

Proof. This follows immediately from the theorem and the fact that
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for g E T(U).

It follows from [20] and the results of §6 that

where 6 is SS if k = 2 and 0 otherwise.

Remark. Let F and notation be as in Remark 1 above. Let mF be
the maximal ideal of T(U) corresponding to F. It follows from Theorem
7.2 that U does not act semi-simply on the mF-isotypic component of
~2(ro(49)). Hence there exists an overconvergent form H E s2(ro(49)),
which is not an eigenform and p-adic numbers ml for each prime number I
such that

for prime 1 :A 7 and

At present we have no further information about H. We do not even know
whether H is an element of 8Mo(ro(49»). More precisely, Theorem 7.2 tells
us that the dimension of the mF-isotypic component of S2(ro(49)) is at

least 2 and the previous corollary tells us that it is at most 
but we do not know what it is.

In summary, the main results of this section have concerned relationships
among three spaces of overconvergent modular forms; (Mk)k- 1 and its two
subspaces (Sk)x-i and We have shown that

is isomorphic to (Sk)k-1 as a Hecke module (Theorem 7.2) but that

may be non-zero (Theorem 7.1) and it is if and only if there exist non-
classical forms Moreover, none of the latter
can be eigenforms for the full Hecke algebra (Corollary 7.2.1). We also
deduce from Proposition 6.6 and Theorem 7.2;



357

PROPOSITION 7.4.

We can relate the right hand side of the above expression to the classical
Hecke polynomials [13]. When k &#x3E; 2,

where Mk(ri(N)) denotes the space of modular forms of weight k on
Xi(N). When k = 2 this formula holds with the left hand side divided
by 1 - T

8. Level Np

In this section we will explain how to generalize the results of the previ-
ous sections to modular forms on X1(Np). We could have worked in this
generality from the beginning but thought the extra complications would
have been too distracting. ,

Suppose pp C K. As explained in §6, the subgroup 1C of El gives us an
embedding of Wl into X(N; p) so that E1 is the pullback of the universal
elliptic curve over X (N; p) with rl (N)nTo(p) structure. We will henceforth
regard Z and Wi as rigid subspaces of X (N; p). Let X (N; p)
be the natural map, Z(p) := g-1Z and = Also
let f(p): El(Np) -+ X1(Np) the universal generalized elliptic curve over
X1(Np) and Ei(p) = E1(Np)lwi. Then we have a commutative diagram
analogous to (2.1).
We can define sheaves analogous to w and sheaves with connection anal-

ogous to Vk) on X1(Np) by the same procedures followed in §2 using
E¡(Np) in place of El(N) (or we can just pull back the ones we have from
Xl(N)) and we will denote them w(p) and respectively.
We call sections of Wk on Zi(Np) convergent forms of level I’1(Np),
sections on any strict neighborhood of Z,(Np) overconvergent forms of
level rl(Np) and we set Mk(p) := Mk(r1(Np) := wk(W¡(P)). Then we
can define a U operator on Mk(p) in the same way as before.

Restriction gives a natural map from Mk,cZ(P), the space of weight k
modular forms on X1(Np), into Mk(p) and we call the elements in the
image classical. We have the following generalization of Theorem 6.1.
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THEOREM 8.1. Every p-adic overconvergent f orm of weight k + 2 and slope
strictly less that k + 1 in Mk+2 (P) is classical.

The definitions and results of Sections 2-4 carry over without difficulty.
For a rigid open subspace W of X, (Np) set

let ]C(p) [ denote the union of the cuspidal residue classes, ]SS(p) [= 
Z(p) and let denote the kernel of the map

The only results of Section 5 which require additional comment in this
context are that H(k,p)(W1(p» is finite dimensional, the natural map from
H(k, p) (Wi (p)) to H(k, p) (W2 (p)) is an isomorphism and p) (Wi (p))
has a natural non-degenerate pairing.

We will again use the main results of ~5~, the only problem is that Wi (p)
is not naturally a wide open in a complete curve with good reduction to
which Vk(p)) extends. However, we can overcome this difficulty as
follows:

First let Woo and Wo be the inverse images of the two components of the
reduction of the Deligne-Rapoport model of X1 (Np) over R and suppose
the cusp c is a point of We. Then C Woo and the rigid space Woo n Wo
is a disjoint union of wide open annuli, Ax(p) , one for each supersingular
point x E SS. We may glue a disk Dx to each such annulus as in [8, §A2]
to obtain a complete curve Y whose reduction is the Igusa curve of level N.
Now we will define an extension of B7k(P» to a sheaf gk with
connection on Y. Let Bx denote a basis of horizontal sections of Vx(p) on
Ax(p) for each x E SS. Then Gk is determined by the data

and if f E Maps(Bx, 0’(D,,))

The extension of is determined by requiring the elements of Maps (Bx,
K) in to be horizontal. Let R be an effective divisor on Y such that
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there is one point (counting multiplicity) in the support of R in each disk
D,. Now we can apply [5, Theorems 2.1 and 2.4] to conclude that the nat-
ural maps from H(k,p)(Woo) to H(k,p)(W1(p) and from H(k,p)(W1(p)
to are isomorphisms. Moreover, each of these groups is

isomorphic to the first hypercohomology group of the complex

Thus the space H(k, p) := H(k,p)(W1(p» is finite dimensional.

Now let Pk denote Then a Meyer-Vieitoris argu-
ment making use of [3), [4] and the covering Wo} yields

In particular, the dimension over K of H(k, p)(W~) is finite and this can be
used to give another proof of the finite dimensionality of H(k, p). Moreover,
the self-duality of induces a perfect pairing ( , )k on Pk and we can
define pairings ( , )~ and ( , )~ on H(k, p)(W~) and H(k, p)(Wo) by the
same procedure as in the proof of Theorem 5.2 and show

where a and # are elements of Pk. It follows that ( , )I is non-degenerate.
We also conclude in the same way as in §5 that

PROPOSITION 8.2. There exists an endorrcorphisrrc Ver of H(k, p), the quo-
tient is naturally isomorphic to H(k, p) and the fol-
lowing diagram commutes:

Moreover, if

PROPOSITION 8.3. The space stable under Ver and if a is a
rational number
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One thing we can now use is the action of (Z/pZ)*, F - for

d E (Z/pZ)*, on modular forms in Mk,cl(p) and in Mk(p). It also acts on

Pk, H(k, p) and preserves If V is any of these spaces, we set
V"ew equal to the subspace of v E V such that ¿dE(Z/PZ)* VI (d)P = o. Let
Sk,cl(p) denote the cusp forms in and those with trivial

residues on ]SS(p)[. It follows, in particular that after suitable identifica-
tions

and

PROPOSITION 8.4. We have

Proof. In view of (8.2) and (8.3) and using Lemma 6.2, we only have to
show = On one hand, the classical
Shimura isomorphism tells us that

On the other hand, a Meyer-Vieitoris argument, as above, applied to the
covering of X1(Np) tells us that is naturally isomorphic
to

Let w be an Atkin-Lehner type automorphism depending on a fixed prim-
itive p-th root of unity as in §5 or [19, §6]. As w induces an isomorphism
between these latter two cohomology groups, we deduce that

This and (8.5) completes the proof I
We can prove an analogue of Lemma 6.3 in the same way and deduce

LEMMA 8.5. The natural map an injec-
tion if a  k + 1.

This implies
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LEMMA 8.6. We have

Proof. After Corollary 6.4.1, we only have to prove

But the map F ~ F~w is an isomorphism from

generalizing [19, Prop. 6.14]..

LEMMA 8.7. The map from (Sk+2,cl(P)a to Hpc,,(k,p)a is an isomorphism.
ifak+1.

Proof. After Lemma 6.5, it suffices to prove that the map from 
to is an isomorphism if a  k + 1. But this follows from (8.1)-
(8.4), (8.6) and (8-7). 

,

Theorem 8.1 will now follow from the following proposition as Theorem
6.1 did from Proposition 6.6.

PROPOSITION 8.8. The map frorri (Mk+2,cl(P»a to H(k,p)a: is an isomor-
phism if a  k + 1.

Proof. First we observe

and

where Ek+2,cl(p) is the space of Eisenstein series of weight J~ -~- 2 over K on
Thus, after Proposition 6.5, all we need prove is that the natural

map from to is an isomorphism . We
can show that this map is an injection using Lemma 8.5. Hence we must
show
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But now we observe that the map from .

is an isomorphism. Let H(k, denote the kernel of the natural map
from H(k, p) to Then as = H(k, p),
since H(k) surjects onto H(k)(S) = H(k, p)()SS(p)[), we see that the group
in (8.9) is isomorphic to + Hpar(k,p». Thus we
have a short exact sequence

On one hand, we know by the proof of Lemma 5.3, that

On the other hand, is isomorphic to the image of
H1(Y,Q(Gk) 7) in n. where J is the ideal sheaf on Y of
C(p) n W, (p). Analyzing the relevant long exact sequence as we did in the
proof of Lemma 5.3 and using the fact that #(C(p) f1 Wi (p)) = (p - 1)C
we see that

This combined with {8.10) establishes (8.8) which concludes the proof.

In (10~, we generalize these resesult to modular forms on X1(Npn) for
integers n &#x3E; 1.

9. Convergent forms of level Np and Serre modular forms

Let t: (Z/pZ)~ 2013~ denote the Teichmfller character.

THEOREM 9.1. The space of convergent forms of level rl (Np), weight k
and eigencharacter ti at p is naturally isomorphic to the space of Serre
modular forms of level ri (N) and weight (k, k + i) E Zp x Z/(p - 1)Z.

Compare Theorem 12 of [30] which is a corollary of this.
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LEMMA 9.2. There is a unique oveTCOnvergent modular form Dp of level
IP i (Np) such that for d E (Z/pZ)*

Proof. Uniqueness follows from the fact that a form is determined by its
q-expansion. There is a weight one form a on the Igusa curve II (N) such
that = B,-,, a(q) = 1 and al(d) = d-la by [19, Prop. 5.2}. Let
d be a lifting of a to M¡(r1(Np») over By replacing a with

we may suppose lil (d) = t(d)-la. It follows, in particular,
that H := is an element of Mo(Tl(N» and H(q) - 1 mod x
on Z. Hence there exists an overconvergent function h of level ri(N) such
that hP-1 = H. Finally, it is clear we may take Dp to be a/h.
We note that Dp is independent of N in an obvious sense. Does Dp

extend to an element of Ml(rl(Np))?

Proof of Theorem.

As Dp(q) is the limit of the sequence a n

tends to infinity, Dp(q) is a Serre modular form of weight (1, 0). Suppose
F E and has eigencharacter ti. Then FDp E wk+i(Z). . By [21,
Thm.4.5.1], this space is naturally isomorphic to the space of Serre modular
forms of weight (k + i, k + i). Hence F(q) is a Serre modular form, of weight
(k -f-i, k + i) - (i, 0) = (k, k +i). Since this procedure is obviously invertible
we obtain the theorem. I _

We could also have proven this result using the classical form labelled

E(I,O) in [30] in place of Dp.
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