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27-4 

Analytical Construction of Weil
Curves Over Function Fields

par Ernst-Ulrich GEKELER (*)

Let f : H -7 C be a cuspidal modular form of weight two for the Hecke
congruence subgroup ro(N) of the modular group SL (2, Z), and suppose it
is a new eigenform with rational eigenvalues for the Hecke algebra. With f
one can associate an elliptic curve E = E f defined over Q with conductor
cond(E) = N and a Q-morphism p from the modular curve Xo (N) -

H U (cusps) to E such that f (z)dz = p* (w), where ú) is an invariant
differential on ~E. Such a curve E is called a Weil curve, and a strong Weil
curve if p is maximal.

In different levels of clarity and concreteness, Y.Taniyama, G. Shimura
and A. Weil conjectured that each elliptic curve E/Q appears as a Weil
curve in an essentially unique way. Modulo known facts, the truth of the
conjecture yields canonical bijections between the sets of

a) normalized cusp forms f as above;
b) one-dimensional isogeny factors of new part of the

Jacobian of Xc (N);
and

c) isogeny classes of elliptic curves E/Q with cond(E) = N.
Andrew Wiles perhaps (**) has proven the above conjecture in the case
where N is squarefree, which would have remarkable arithmetic conse-
quences.

In the present article, I want to describe a similar relationship between
elliptic curves and modular/automorphic forms, but where the base field Q
is replaced by a rational function field K = Fq(T) over a finite field Fq. In
contrast with the number theoretical situation, the assertion (see (1.13))
corresponding to Shimura-Taniyama-Weil’s conjecture STW is proven, in-
cluding bijections between the sets that over K substitute the sets a), b),

Manuscrit reçu le 23 Novembre 1994.
(*) Supported by DFG, Schwerpunkt "Algorithmische Zahlentheorie und Algebra"
(**)After some turns, Wiles’ proof seems now to work (time of proofreading

Nov. 94).
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c) above. Here c) deals with elliptic curves E/K with split multiplicative
reduction at infinity. The assertion comes out by combining deep results
of Grothendieck, Jacquet-Langlands, and Drinfeld, and is treated in detail
in [10]. Actually, the function field analogue of STW is valid for arbitrary
global function fields. But in order to avoid complications coming from
class numbers, and since some more concrete results on the relationship
between cusp forms and elliptic curves are established only over rational
function fields, I will restrict to this case.

We will have need for some ingredients that replace e.g. the complex
upper half-plane ~, the modular curves Xo (N), and the modular forms for
subgroups of SL(2, Z). In fact, there are different substitutes, leading to

- a rigid analytic theory (Drinfeld modular curves and forms, values
in characteristic p = char(Fq), see [8]), and

- an automorphic theory (as in Jacquet-Langlands [15], values in
characteristic zero),

the two being related through congruences.
I will give a brief sketch of these theories in section one. In section two, I

will discuss theta functions for subgroups r of GL(2, A), where A = Fq [T] is
the ring of integers in K. They provide the link between the characteristic p
and characteristic zero theories, which technically is given by diagram (2.7).
Now we can analytically construct the Jacobian Jr of a Drinfeld modular
curve as a torus divided by the period lattice of theta functions. There
results a description of the group o(r) = ~(Jr) of connected components
of the Néron model of Jr through automorphic data.

In section 3, the strong Weil curve E~ associated with an automorphic
Hecke eigenform cp is described. It is a Tate curve at the place o0 of K,
whose period can be calculated by means of theta functions. In particular,
its Néron type at infinity is determined. Except for Theorems 3.2 and 3.17
and their corollaries, this is carried out in detail in the joint paper [10]
with M. Reversat, to which I refer for proofs. So far, everything can be
generalized to arbitrary function fields (of transcendence degree one over
Fq). In the case of a rational function field, however, one can do much bet-
ter. Among others, we calculate the degree n~ of the Weil uniformization
p~ onto E~, and show that its prime divisors are precisely the congruence
primes of cp.

There are two reasons why the proofs of these last-mentioned results
presently fail to work for general function fields: First, it is not known
whether the map j:Ï’ ~ of (1.9) is always bijective (see also
the discussion in [10]). Second, in the case of a class number &#x3E; 1, the
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argument (3.17) showing the perfect duality (after tensoring with Z[p-1])
of the Hecke algebra 5l with H, (T, Z) must apparently be replaced by some
adelic argument, which at the least will require additional efforts.

In the fourth and last section, some examples are given that illustrate
how "automorphic" (and easily calculable) properties of cp correspond to
properties of the Weil curve E~.

I am convinced that evaluating that relationship will produce important
progress in questions like the Birch-Swinnerton-Dyer conjecture (or rather
the Artin-Tate conjecture) for elliptic curves over function fields. While

completing this paper, I enjoyed the hospitality of the Institute for Ad-
vanced Study in Princeton, to whose staff and members I would like to
express my sincere gratitude.

Notation

1FQ = finite field of characteristic p with q elements

A = Fq [T], T indeterminate
K = Fq (T), with completion at infinity
- ~q~~~))~ ~ = T’ 1 .

Ooo = IF q oo-adic integers
C = completed algebraic closure of w.r.t.

its normalized = q) absolute value 1.1 [
G = group scheme GL(2) with center Z

r(1) = G(A) = GL(2, A)
r = congruence subgroup of r(1), in most cases
r = ro(n): = {( ~~) c c - 0 (mod n)}, where n c A

non-zero ideal = positive divisor of K coprime with o0

r = rab modulo torsion
X = G(Ooo) = GL(2,Ooo)
J = {( ~ ~) E X Ie == 0 (mod 7r)} Iwahori subgroup
T = Bruhat-Tits tree of PGL(2, with sets

of vertices and of oriented edges
Tm = Hecke operator (m positive divisor)
x = Hecke algebra over Z, acting on

H = 
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1. Modular and automorphic forms over K

(1.1) The K-analogue of the complex upper half-plane H is the Drinfeld
upper half-plane

It has a natural structure of one-dimensional analytic space over C and even
over (~12~, ~5~, [10]). The group G(K~) acts on il through fractional
linear transformations: = az+b The subgroup r(l) and thusC c d ) cz+d 

*

each congruence subgroup r C r(l) acts with finite stabilizers, whence the
quotient r B S2 exists as an analytic space over In fact, we have the
following result due to Drinfeld [4].

THEOREM 1.2. There exists a smooth affine algebraic curve Mr defined
over a finite abelian extension K’ of K such that r B S2 is isorrtorphic as an
analytic space with the analytification Mrn of Mr.

Let Mr be the smooth projective model of Mr. The curves Mr are called
Drinfeld modular curves; their study is the content of [8], to which we refer
for the following. On Mr, there are two kinds of distinguished points: the

Mr(C), which are in canonical bijection with the finite set
r B of orbits of r on and the elliptic points, which are the
classes mod r of those z E 9 whose stabilizers r., are strictly larger than
r fl Z(K). Since Mr is uniquely determined by the closed analytic space
r B f2 U {cusps}, we henceforth will make no difference between e.g. the

point set r B S2, the associated analytic space - Mrn, and Mr.

(1.3) A Drinfeld modular form of weight k and type m for r (where k is a
non-negative integer and m a class modulo d(r) = cardinality of det(r) c
lFq) is a function that satisfies:

(ii) f is holomorphic (in the rigid sense);
(iii) f is holomorphic at the cusps.

Condition (iii) means that for each cusp s of r, , f has a power series expan-
sion with respect to a uniformizer ts of s. Clearly, ts, or rather too, plays
the role of the classical uniformizer q(z) - e2"2z; it is specified in loc. cit.
V 2, 3. We let be the C-vector space of i times cuspidal modular
forms of weight k and type m, where f is i times cuspidal if its order w.r.t.
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ts is &#x3E; i for each cusp s of r. Then dime Mk,m is always finite, and

{holomorphic differential forms on Mr}.

Note that f (z)dz is holomorphic at a cusp s if and only if ords, f (z) &#x3E; 2

since 9 = const. t2 whereas classically, = 2Jriq. This explains thedz .8) y dz q p
"double cuspidal" condition.

EXAMPLE 1.5 (cf. [14], [6], ~9~). Let r = r(l) = GL(2, A). Then there
are three distinguished modular forms g, h, A of (weight, type) equal to
(q - 1, 0), (q + 1,1), (q~ -1, 0), respectively, such that

Moreover, = -A, and j := g9+1/0 identifies with There
is precisely one cusp ( j = oo ) and one elliptic point ( j = 0).

Formulas for the numbers of cusps and elliptic points and for the gen-
era g(r) = genus(Mr), when r = ro(n) or r = F(n) (= full congruence
subgroup of divisor n), may be looked up in [6] or [8].

(1.6) Let T be the Bruhat-Tits tree of PGL(2, (cf. [21]). It is a

(q + I)-regular tree with set of vertices X(T) = G(Koo)jX Z(K~) and
set of oriented edges Y(T) = Z(K~), where the canonical map
from Y (T) to X (T) associates with each edge e its terminus t(e). The group

acts from the left on T. If r C r(I) is a congruence subgroup, the
quotient graph rB ’T is the edge-disjoint union of a finite graph (rB7)0 and a
finite number of half-lines hs (i.e., h, is isomorphic with o o a
labelled by the cusps s E r B Pl (K) of r. There is a canonical surjective
G(Kc,,c,)-equivariant map A from S2 to (= points of the realization
T(R) of ~’ with rational coordinates), which may be described as follows:
Recall [13] that corresponds bijectively to the set of similarity classes
of non-archimedean norms on the Koo-vector space K~. Then A(z) is the
class of the norm ~~ I . liz, where lI(u, v)lIz := The map A and the
derived maps Ar: r B S2 -&#x3E; (r B 7)(Q) may be used to describe admissible
coverings of n and of Mr = rB0. E.g. for v E X(T) and e E Y(T), 
is isomorphic with minus (q + 1) discs and a-1 (e) with an annulus
Iz E C  Izl [  1}. The orientation of e corresponds to an orientation
of À -1 ( e) .
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(1.7) For any abelian group B, let be the group of maps

p: - B subject to 
-

We also put .B)r c B)r c B)r C H(7, B) for the sub-
groups of those p that also satisfy (iii) + (iv’), (iii) + (iv), (iii), respectively,
where

(iii) cp( Ie) = cp(e) (1’ E r); ]
(iv) cp has compact (= finite) support modulo r;
(iv’) p comes from Hi (1’, B --+ a! (1’, B)r.

Intuitively, (iv) means that ~p vanishes eventually on each of the half-lines
hs, and (iv’), that it vanishes on the whole of h. Here and in the sequel,
we consider cp E B)r as a B-valued function on the edges Y (F B T) of
the graph r 1 T.

(1.8) These groups, for B equal to one of

are closely related to the geometry of Mr,. Namely, let r be the group rab
(r made abelian) modulo its torsion subgroup. It is a finitely generated
free abelian group of rank g = g(r), where

a) g = rank H, (r B T, Z) = rank H! (’1, Z)  , and
b) q = genus Mr (see ( I .12 ) ) .

The first relation comes out as follows: Let F* be the factor group of r
modulo the subgroup generated by the elements of finite order. Then r* is
canonically isomorphic with the fundamental group of r B T ([21] I Thm.
13, Cor. 1), which yields (F*) ~ ~’, 7~) . Let ~p E T, Z),
regarded as a r-invariant function p: Z. For e E put n(e) : =
index of in the stabilizer group r~ of e in r. Then ~p*: e H
n(e)cp(e) is a well-defined element of Z) , and cp H p* : HI (r 1 ~’, z)
1Jj (J’, Z) r is injective with finite cokernel. Together, we have a map

that factors through r. Let j: r ~ Ui (T, Z) r be the induced map.
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THEOREM 1.9. If r is a Hecke congruence subgroup ro(n) then j is an
isomorphism.

The proof is given in [17], using an explicit description of the graph rBT.
This method neither works for more general groups r nor for more general
function rings A than Fq[T]. However, the statement remains true for
congruence subgroups r which are p’-torsion free. In general, the cokernel
of j is finite with order prime to p (see [10] for details).

(1.10) From now on, we assume that r = ro(n) with some divisor n of
A. In [7] and [10] it is shown how H, (7, C)r may be interpreted as a
space of automorphic forms in the sense of Jacquet and Langlands [15]. In
particular, that space is equipped with

a) a "Petersson" scalar product ( . , . );
b) Hecke operators Tm for each divisor m of A;
c) a canonical integral structure H~(’J’,7G)r.

The scalar product comes from the L2-norm on the discrete set Y(r B ~),
where the volume of an edge i E Y(r B T) is given by =

2 n(e)-1 (e E Y (7) above e, see (1.8)).
The Hecke operator Tm is derived from a correspondence on Y(r BT) =

r B Z(Koo). Regarding the latter as an adelic double coset ([7]
3.3), Tp for m = p prime and coprime with n may be defined as in [24] Ch.
VI. For p a divisor of n, the definition has to be slightly modified. One

possible definition (compatibilities are checked in [10] Sec. 9) is as follows:
Consider p as a function on G(Koo) . Then

where the sum is over a, b, d E A such that a, d are monic, (ad) = m,
(a, n) = 1, and deg b  deg d.

These Hecke operators Tm have the usual properties: They commute
mutually, satisfy Tm.m’ = Tm Tm for m and m’ coprime, for a prime p, Tpi
is a polynomial with integral coefficients in and Tm is Hermitian w.r.t.
the Petersson product if m is coprime with n. Furthermore, the integral
structure is stable under the Z-algebra J£ generated by the Tm,
and is integral w.r.t. the Petersson product.

(1.11) Now the correspondence Tm may also be defined on Mr, using the
interpretation of Mr as a coarse moduli scheme for Drinfeld A-modules.
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If e.g. m and n are coprime, Tm associates with each point x on Mr (=
rank-two Drinfeld module with a certain level structure) the collection of
all x’ E Mr for which there exists a cyclic m-isogeny from x to x’ (see [8]
for details) . Let Jr = Jo (n) be the Jacobian of Mr (recall that r = ro(n)).
Thus Tm induces an endomorphism of Jr, and of the .~-adic cohomology
HI (Mr, Ql). These operators have essentially the same properties as those
listed for Tm, and are therefore labelled by the same symbol "Tm" . The
following deep result is due to Drinfeld (Thm. 2 of [4], specialized to our
situation).

THEOREM 1.12. There is a canonical 2somorphisrrt between 
and H! (~’, Ql)r Q9 sp. The isomorphism is compatible with the actions of a)
the Hecke operators Tm and b) the local Galois group of
Koo.

Here sp is the two-dimensional special £-adic (.~ ~ p) representation
of ([2] 3.1). It acts on since Mr is defined
over H. We will not go into details of (1.12) and its interpretation as a
reciprocity law ([4], [3], [10]), but will just use the principle that the splitting
of Hl(Mr, Qe) and thus of Jr under the action of the Hecke algebra X is
encoded in = which is effectively computable.

(1.13) Now let Q) r C Q) r be the new part, i.e., the orthogo-
nal complement of the different embeddings of Bj (0’, into H. (0’, Q)  ,
where m runs through the strict divisors of n. Correspondingly, let 
be the new part of Je(n) = Jr, which is well-defined up to isogeny. Then
also Qt) Q~)~ 0 sp.
We will consider elliptic curves E/K with conductor and with split

multiplicative reduction at oo. By combining results of Grothendieck and
Jacquet-Langlands, E gives rise to an automorphic representation, whose
new vector cp = pE appears in Brew(’J, By the above, E appears
as an isogeny factor of conversely, every factor of dimension one
of is an elliptic curve defined over K with the properties stated
above. For a detailed discussion, see [10], Section 8. Applying well-known
facts from the theory of automorphic forms (notably "multiplicity one"),
there result canonical bijections between the sets of

a) normalized Hecke eigenforms ’P in Q) r with rational eigen-
values ;

b) one-dimensional isogeny factors of 
c) isogeny classes of elliptic curves E/K with cond(E) = n ’ oo, and

with split multiplicative reduction at oo.
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It is this statement which we label as the analogue of STW over the func-
tion field .K. The relation between an eigenform cp and an associated elliptic
curve E is as follows: If p is a prime not dividing n, then the eigenvalue Ap
of Tp on cp satisfies

where Fp := A/p has qp elements and E(JFp) is the group of Fp-valued
points of the reduction. But note that, so far, STW /K is a sheer existence
statement. Whereas c) ~ a) is easy to obtain (by Grothendieck, the
L-functions associated to E are polynomials in q-S, so one catches cpE by
computing a finite number of reductions of E) and b) ~ c) is more or
less tautological, a) ~ b) is the difficult part. In the next section I will
show how to construct E as quotient of Jo(n), ’P being given. Note that
the condition "split multiplicative reduction" is equivalent to being a Tate
curve; so E will be described through its Tate period at infinity.

2. Theta functions and the Jacobian

(2.1) Let f be a nowhere vanishing holomorphic function on Q, e = (v, w)
an edge of ~’, and .

where 11 . liu is the spectral norm on the admissible subset U of S2. Intu-
itively, r( f )(e) measures the growth of f along e. Then r( f ){e~ E Z and
r( f ): e ~ r( f )(e) defines an element of as results from the rigid
residue formula [5]. More precisely, r: f H r( f ) yields a G(K~)-equivariant
exact sequence ( loc. cit.)

which is basic for what follows. Next, for each differential form w on Q and
e = (v, w), we let e) be the residue of w w.r.t. the oriented annulus
,X-’(e). Again from the residue theorem, res(w): e F-+ res(w, e) is in C),
and the diagram
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is commutative, where d log: f I-t 1f and red is reduction modp.f

(2.3) A hotomorphic theta fonction for r C r(l) is an invertible holomor-
phic function u: Q -+ C such that for each y E r there exists cu(q) E C*
with u(-yz) = cu(,)u(z), and which is holomorphic and non-zero at the
cusps of r (see [10] Sec. 5; this makes sense in view of the functional

equations of u). Let 8h(r) C On(Q)* be the group of holomorphic theta
functions. For u E eh(r), d log u = dz is r-invariant, which means
that u’(z) /u(z) lies in M2,I(r), and in fact, in m22,1 (r). Next, we construct
holomorphic theta functions for r = Let a E an arbitrary
base point, and put

/ _...v

Products of this type have been introduced and studied in a different con-
text by Manin-Drinfeld and by Gerritzen-van der Put. The following the-
orem is largely due to Radtke ~18~ .

THEOREM 2.4. (i) The above product converges locally uniformly to an
invertible function Uo on S~ that does not depend on -the choice of w E Q.

(ii) ua is a holomorphic theta function, whose multiplier c, : ’Y ~-4

cu, (q) is a homomorphism r -~ C* that only depends on the class of a
in r := rab jtor(rab).

(iii) The association ~ is symmetric and defines a sym-
metric bilinear map f rom r x r to K~ ~ C* .

The relationship between theta functions and automorphic forms is de-

scribed by the following results, whose proofs are given in [10]. Let j and
r be the maps introduced in ~ 1.8~ and (2.1).

THEOREM 2.5. For a E r, r(u,) = j (a) .

In other words, the diagram
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whose arrows are induced from a Ua and r: 90(0)* 2013~ is well-

defined and commutative. Here we wrote j(a) for j (class of a in F).
Similar notation will be used in what follows.

Since ker(r) = C* and j is bijective, we have

COROLLARY 2.6. u and r are bijective.

Let M2,1(r, be the Fp-subspace of M2,1(r) of forms f such that
f (z)dz has its residues in Fp. Dimension considerations show the properties
indicated in the commutative diagram

Here the upper vertical arrows are u(z) H u’(z)/u(z) and reduction modp
(both surjective), and the lower vertical arrows come from base extension
Fp ~ C.

THEOREM 2.8. For a, (3 E r, we have

(Petersson scalar product in H! (, Z)T ).
COROLLARY 2.9. The symmetric bilinear form on
is positive definite, and 

-

is injective.

We now proceed to construct the Jacobian Jr = Jo (n) of Mr (r =
ro(n)). Let Tr /Ooo be the split torus with character group P, i.e., Tr =

We may regard r via c as a subgroup of 
Hom(P, K~). Now the assertion of the last corollary implies that the quo-
tient Tr/c(r) (which always exists as an analytic group variety) is in fact
an abelian variety (see [16], [11]).
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THEOREM 2.10. The Jacobian Jr of Mr is canonically isomorphic with
Tr/c(f). I. e., f or each complete extension L of Koo in C, there is an exact

sequence o f L-analytic groups 0 -i Hom(r, L*) -+ 0.

A proof of the theorem is given in [10] in a more general context, along
with a precise description of the Abel-Jacobi map. In the next section,
we shall use our description to construct strong Weil curves as quotients
of Jr. Presently, we derive a consequence about the group of connected
components of the N6ron model of Jr . Let 9 be the N6ron model of Jr at
oo, go C 0 the connected component of the identity, and §(r) = ~ ( Jr ) : :=
8/ao the group of connected components (see [1]). The Petersson product
( . , . ) on H := is integral, which yields a canonical injection

’

COROLLARY 2.11. The group o(r) of connected components of the Neron
model of Jr is canonically isomorphic with Hom(Uj (’1, Z) r, Z) ji(1Jr (7, 

Proo f . Consider the commutative diagram

where v is derived from the valuation Since r is free, the middle column
is exact. Identifying r with H = Hi (T, Z)  by means of j, v o c becomes the
map i, and the snake lemma yields the exact sequence

Recall that Hom(r, O§~) = It follows from the construction given
in [16] that = §(Jr) =
~(T), thus the right hand term of the above sequence equals 4&#x3E;(f). D
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The meaning of Corollary 2.11 is that 0(r) (or rather its size) is the

"regulator" of the lattice H! (7, in the space at of automorphic
forms, equipped with the Petersson product. A similar assertion on mod-
ular symbols occurs in [23], Thm. 14.

3. The Weil Uniformization

In the present section, we construct the strong Weil curve associated to
a primitive Hecke eigenform p E Z)r with rational eigenvalues. (cp
primitive: Z)r for n &#x3E; l.) We identify r with H = Z)r by
means of j, writing both groups additively. Let A C K~ be the subgroup
fcw(a) a E r}. As is shown in [10], Prop. 9.5.1, A has a subgroup tZ of
finite index, where &#x3E; 0. Choosing v~ (t) minimal, we have

where d is a divisor of q -1 and jjd C K£ the group of d-th roots of unity.
In our case A = Fq [T] however, we can show:

THEOREM 3.2. In the above situation d = 1. In other words, the group A
itself has the form t71 with some uniquely determined’t E Kg,,, &#x3E; o.

Forget the theorem for the moment, and consider the commutative dia-
gram

where ev: f ~--. is evaluation on cp E LI! (7, Z) = r. Note that rais-
ing to d-th powers gives Tate(td)(C). By GAGA,
the right hand arrow pr, is a morphism of abelian varieties, so the el-
liptic curve Tate(td) is an isogeny factor of Jr. For each prime 13 f n,
the p-th Hecke operator Tp acts on Tate(td) as multiplication by Ap =
eigenvalue of cp under Tp (details being worked out in [10] Section 9). It
follows (loc. cit.) that pr, and its target Ecp := Tate(td) are defined over
K. From (1.14) we see that Ecp belongs to the isogeny class determined
by cp. In fact, Ecp is the strong Weil curve, as is immediate from the con-
struction. Now let Po be a fixed K-rational point on Mr = ro (n) B S2, say,
the cusp oo, and P H divisor class of P - Po the corresponding embedding
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i: Mr - Jr . Then the strong Weil uniformization of Eep is p_ := prep o i,
described by

If w is a coordinate on C* and w = dw the associated invariant differentialw

on E, we have

where f (z) E is the modular form f (z) = (see (1.4)). But, Uli z
note that, unlike the classical case, knowledge of f (z) does not suffice to
determine E~, due to the loss of information caused by reduction mod p
(compare (2.7), and Ex. (4.4)!).

(3.6) We are left to prove Theorem 3.2. In what follows, H := H~ (T, Z) =
and {c~ E H ~ I (cp, a) = 0}. Consider the following numbers:

d as given by (3.1), i.e., d = #(tor(A));
n := degree of the strong Weil uniformization p,~;
m := a) &#x3E; 0 a E H};

congruence number of cp.

The theorem will come out by comparing these numbers. Some of our

arguments are inspired by [19] and [25).
Let p§ : E, = Jac(E,) - Jac(Mr) = Jr be induced by Picard functo-

riality. Then p* is injective because p is a strong Weil uniformization,
and

is multiplication by n.
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PROPOSITION 3.8. n = d . r.

Proof. In what follows, working with tori and abelian varieties, we write
down the C-valued points only. Let E° = im(p*) C Jr. It is the subva-

riety of Jr that corresponds to the integrable subtorus Hom(r/cpl, C*) of
C*) = Tr(C). Hence EW(C) = C*)/A, where

The map pr~ E‘~ -&#x3E; E~ is therefore given by

where as usual, ev( f ) = Now ev I A is injective. For let ca be in
the kernel. Then ca = 1 on cp-1-, so ca has values in the group of
r-th roots of unity. But this means the theta function ua is bounded and
hence constant (i.e., ca = 1), since Q is a Stein domain. Furthermore,
ev(A) _ 1} = = t,dz has index d2 . r in A =

x tz. For any natural number i, let i* be its p-free part. We then obtain
r* for the order of ker(ev) = Hom(P/ZV + and n - n* for the
order of ker(pr, I = ker(mult. by n). Chasing diagrams in (*) yields
n - n* = d2 ~ r . r*, which implies n = d - r as stated. 0

Let 5l be the Hecke algebra on H = as defined in (1.10).
Note that it does not agree with the Hecke algebra considered in (10~, for
two reasons:

a) 5l acts on the whole of H, not only on its new part;
b) it also contains operators Tp with p n.

In particular, 1C Q9 Q is in general not semisimple. We also regard 5l as an
operator algebra on Jr = Jo(n), which yields inclusions

Let e E M 0 Q be the idempotent that corresponds to ’P E H. Then

r = denominator of e in End H (i.e., r = least

(3.9) natural number such that re E EndH)
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and

(3.10) n = denominator of e in End .Ir.

Here (3.9) is trivial, and the (easy) proof of (3.10) may be found in [25],
proof of Thm. 3. Let s be the denominator of e in 9t. From the above

inclusions, we have

Next, consider the Fourier coefficients c(1) = for 0 E 
as introduced in [24] Ch. III. The arguments D are divisors on K, i.e.,
D = f . ooi, where f is a finite divisor (= fractional ideal of A), and c(1)
vanishes if a fails to be non-negative. The "constant" Fourier coefficient co
of o vanishes by virtue of the cusp condition (1.7)(iv). The c(a) describe
the restriction of 0 (regarded as a function on GL(2, to the subgroup
of matrices ( § § ) in GL(2, For the convenience of the reader, we give
(without proof) the relevant formulas for c(a). These may be derived from
the adelic formulas of [24] p. 20 by tedious but standard calculations.

Let 7r = T-1 be the uniformizer at oo, and write D = f . ooi, where f is
generated by the monic element f of A. Let further q: C* be the
character

where Tr: Fq - Fp is the trace and go is any nontrivial character of IFp . *
Then

where

Note that by (i), the c(9) determine 1/J since the matrices ( 71": : ~) represent
modulo orientation all the edges = Condition
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(ii) reflects the flow condition (ii) of (1.7). Hecke operators and Fourier
coefficients are related as follows: If 1/;’ = Tip then

The fact that 1b is an eigenform for Tp with eigenvalue Asp yields (p, f
coprime, d := deg p)

where the qj are given by the power series identity

In the last case, Asp = if p 11 n and Ap = 0 if P2 n. The sum in (3.12)(i)
may be simplified to

with v (y) = - 1 if y has a term of order 7r in its -7r-expansion, and v(y) = q-1
if it has no term of order 7r. Similarly, the sum in (3.12)(iii) splits (besides
the term corresponding to u = 0) into partial sums of type

But the double class of ( does not change if u is replaced by
cu. Hence the value of that partial sum is simply

and c(f) is a linear combination with coefficients in of values of 0.

COROLLARY 3.15. The Fourier coefficients of1/; E Lii(7,Z)r lie in

Z[p-1] - Conversely, if o E 8!(T,C)r has its Fourier coefficients in 
then o also takes its values in 

Another trivial consequence of the above is
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E Uj CJ, (C)r.
Now consider the bilinear pairing (H = H~ (71 Z) r)

(Fourier coefficients of T1jJ w.r.t. the trivial divisor (1)).

THEOREM 3.17. The Pairing is non-degenerate and becomes a perfect pair-
ing after tensoring with 

In other words, the determinant of ( . , . ) with respect to any Z-bases of
X and H is a power of p.

Proof.

1) Let 1/1 E H be in the right kernel. Then 0 = = qdeg for
all positive finite divisors m, which gives o = 0 by (3.12)(i’).

2) Let T E x be in the left kernel. Then for all q0 E H and all positive
finite divisors m, 0 = = cTmT1b((l)) = qdeg i.e., To = 0
and therefore T = 0.

3) Let p be a prime number and 1b E H such that (T, ~) - 0
(mod t) for all T E J4l. Then for all m, (Tm, ~) = = "‘c~(m),
and all the cw(m) are congruent to 0 (mod ~). By (3.12)(i’) this implies
that 9 is divisible by t.

The theorem follows from 1, 2 and 3. D

LEMMA 3.18. Then number slr (see (3.11)) divides the determinant of the
pairing ( . , . ) of (3.17).

Proof. se E 5l is primitive and E (s/r)H for all 9 E H, so (se, V)) E
(s /r)Z. ~

Proof of Theorem 3.2. The number d equals by (3.8), so divides the
p-power s/r ((3.17) + (3.18)). On the other hand, d is a divisor of q - 1.
0

We state separately what has been proven along with Theorem 3.2. Let
cp be a primitive Hecke newform with rational eigenvalues, and let 
m and r = (cp, be the numbers defined in (3.6).
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COROLLARY 3.19. The number m is the pole order of the j-
invariant jE of the strong Weil curve E associated with cp.

COROLLARY 3.20. The congruence number r equals the degree n of the
strong Weil uniformization of E.

Note that the last result is stronger than the corresponding result over
Q, which seems to be established for prime conductors only (~25~ Thm. 3).

4. Examples

In the following examples we always take q = 2, thus r = ro(n) =

{ GL(2, A) with some n E A = F2 [T] , n = (n). The Peters-cd I
son product on will be derived from the L2-norm on Y(r B T),
where each pair of inverse edges contributes the volume 1 (compare (1.10)).

Remark 4.1. Under our hypotheses, two isogeneous elliptic curves E, E’
over K = F2(T), which are Tate curves over and whose j-invariants
j, j’ satisfy = Voo (j’) are in fact isomorphic.

The number 9 = genus(Mr) = rank Hi (77 is calculated in (6], see
also [8]. If deg n  27 g = 0, so there are no elliptic curves E/K with
conductor n. oo and E x = Tate curve. Up to coordinate changes in
T, there are precisely two conductors n such that g = 1, given by n = T3

EXAMPLE 4.2. Let n = T3. The graph r B T looks

where - - - indicates a cusp

= infinite half-line (see [7] Sec. 5).

If ’P is a basis vector of H = Uj (T, then m = (cp, cp) = 4. Now the curve



46

with discriminant A = T8 and invariant j = T4 has split multiplicative
reduction at oo and conductor T3, as a routine application of Tate’s algo-
rithm [22] shows. Hence E is the strong Weil curve associated with p, i.e.,
E = Mr in this case.

EXAMPLE 4.3. Let n = T2(T - 1). The graph r B T is (loc. cit.)

If H = Zp then m = (p, cp) = 6. The strong Weil curve is

EXAMPLE 4.4. Let now n = T(T2 -f-T + 1). The graph r B T looks (loc.
cit.)

Let 11 and 12 be the cycles of length 4, oriented counterclockwise, and
wl, w2 the involutions attached to the prime divisors PI = (T) and p2 =
(T2 + T + 1) of n. The Hecke eigenforms cpl := ’1’1 + "/2? W2 := + "/2 in
H satisfy
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The Jacobian Jr is isogeneous to Ei x E2, where Ei is the elliptic curve
The numbers mi are = 3 and m2 = ( c~2 , ~y2 ~ = 5,

the congruence numbers ri equal 2 for ~p1 and W2. Equations are given by

.El and E2 intersect in Jr in their common subgroup scheme of two-division
points. Since p = 2 itself is a congruence prime, the two weight two modular
forms (Ui = i = 1, 2) agree.

EXAMPLE 4.5. Put n = T4 + T 3+1 , which is prime inF2 [T] . Here r B T is

The canonical involution w acts as the reflexion at the middle axis, and
it is easy to see that the +-space of w in Bj (T, R)’ has dimension one with
basis vector cp := /1 - 12, which is primitive for H! (7, Now (’P, cp) = 16
and m = = 8, so r = deg p~ = 2 Mr/w = E is the
projection). The curve E is given by

The Birch-Swinnerton-Dyer conjecture predicts the rank 1 for E(K); in
fact, P = (0, 0) E E(K) has infinite order.
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A complete list of strong Weil curves over F2(T) for conductors n of de-
gree  4, along with the calculation of their relevant arithmetic invariants,
has been given by A. Schweizer [20]. That list can be extended without

difficulty to higher degrees of n and larger constant fields Fq .
The philosophy behind these examples is as follows: Calculations on H

not only yield the numbers m = and r = deg PE for the strong
Weil curve E in a class, but also provide insight into the position of E
"on the modular curve Mr,". This means that e.g. the image of cusps,
elliptic points, Heegner points... of Mr in E can be determined, and also
the action of Atkin-Lehner involutions and any other geometric data that
exist on Mr. Obviously, this enhances the toolbox of methods available for
a deeper study of elliptic curves over function fields.
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