
JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

MARTIN HELM
A generalization of a theorem of Erdös on
asymptotic basis of order 2

Journal de Théorie des Nombres de Bordeaux, tome 6, no 1 (1994), p. 9-19
<http://www.numdam.org/item?id=JTNB_1994__6_1_9_0>

© Université Bordeaux 1, 1994, tous droits réservés.

L’accès aux archives de la revue « Journal de Théorie des Nombres
de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=JTNB_1994__6_1_9_0
http://jtnb.cedram.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


9-1

A generalization of a theorem of
Erdös on asymptotic basis of order 2

par MARTIN HELM

ABSTRACT - Let T be a system of disjoint subsets of N*. In this paper
we examine the existence of an increasing sequence of natural numbers, A,
that is an asymptotic basis of all infinite elements Tj of T simultaneously,
satisfying certain conditions on the rate of growth of the number of repre-
sentations 03C4n(A);03C4n(A) :=|{(ai,aj): ai  aj; ai, aj ~ A; n = ai +aj}l, 
for all sufficiently large n ~ Tj and j ~ N*. A theorem of P. Erdös is
generalized.

1. Notation

. 

In this paper, N* will always denote the set of integers { 1, 2, ... , ~...}.
An increasing sequence of natural numbers, A, is called an asymptotic basis
of order 2 of a given set T of natural numbers if every sufficiently large nET
has at least one representation in the form n = ai + a j ; ai  ai, a j E A.
Let be the number of such representations of n E T by elements of
A.

DEFINITION. A system T = of dijoints subsets of N* satis##ing

is called a disjoint covering system.

DEFINITION. If for an increasing sequence A of natural numbers there
exists a disjoint covering system T such that

for infinitively Tnany j E N*

and

(2) l4 is an asymptotic basis of order 2 of all infinite elements Tj of T,
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then A is called an asymptotic pseudo-basis of N* .

Remark. Let A be an asymptotic pseudo-basis in regard to a disjoint co-
vering system T . For any infinite element T’~ of T let

Obviously any asymptotic basis A of order 2 of N* is an asymptotic pseudo-
basis (e.g. for T :=1~*, 0,0,...). But unfortunately the converse in general
is not true since for any asymptotic pseudo-bases A of N* together with a
corresponding disjoint covering system 7" the set of all r that are defined
in the above sense is not necessarily bounded.

2. Introduction

More than fifty years ago S. Sidon [5] asked if there exists an asymptotic
basis of order 2 of N* that is economic in the sense that for every s &#x3E; 0 the

assumption lim = 0 holds.
n-oo 

"

In 1953 P. Erd6s [1] solved this problem ingeniously. In fact he proved
the much sharper:

THEOREM. There exists an asymptotic basis A of order 2 of N*, 

and

An attractive and still open problem is to decide whether there exists a
basis A of N* for which there exists i

Moreover in [4j I. Rusza asks for a basis for which rn(A)

3. On asymptotic pseudo-bases

In this paper we prove the following:



11

THEOREM. For any k E ~1* there exists a disjoint covering system T(k) =

~?’i k~ , T’2 k~ , ... } 

is an infinite elements of T (k) :

and an asymptotic pseudo-basis A satisfying:

and

where a, ci and c2 are global real constants not dewending on j.

Remark. The above theorem generalizes (3,4), which is just the special
case k = 1 (e.g. with T := I~ * , 0, ~, ... ) .

The proof of the above theorem is based on a slight modification of
Erd6s’ proof of (3,4). Therefore like the proof of (3,4), it is based on a
probabilistic method and not constructive.

3.1 Inductive construction of suitable disjoint covering systems
First of all, for any k E N*, we are going to construct a special disjoint

covering system T’~k~ satisfying (1) and (5).
The case k = 1.

For k = 1 let := N* , 0, 0, ....
Obviously is a disjoint covering system and (1) and (5) hold.
The case k = 2.

For k = 2 we define r(2) inductively as follows:
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Now, if Ti 2~ , · · · , T ~2~ are already defined let:

and we define

Now we consider the following equivalence relation on N* :

T(2) just consists of all equivalence classes concerning the above equivalence -
relation. Thus T(2) is a disjoint covering system and obviously (1) holds.
For T¡(2) e 7(2) B {1} there exists s E N* such that

For any sufficiently large m E N* there exists t E N* such that

Thus T~2~ (m.) = t implies that:

and consequently

Therefore also (5) holds.

The case k = 3.

We construct T(3) by dividing every element 7;,(2) ofT(2) except 1 into
disjoint infinite subsets of N*.
For any 7;,(2) of T(2) there exists s E I~* :
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Consequently

and we define T (3) as the system of all those sets s 7j (2) = E I~*
where p is a natural constant. Since T~2~ is a disjoint covering system, T(3)
is a disjoint covering system, too; and as (1) holds for T~2~, T~3~ satisfies
(1), too.
For any infinite element Ti (3) for ?’~3~ and any sufficiently large number
m E N* there exist s, p, t E N* such that

and

Then T ~3~ (m) = t implies
Consequently satisfies also (5).

The general case k &#x3E; 4.

Let 7~), T~), T~,’" T(,k) be already constructed by the above procedure.
Thus for every infinite element of there exist s 1, - - - , ~ N*
so that 

- ~ : I -

and according to the above procedure will be constructed out of

by dividing every infinite of T(k) into disjoint subsets
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It is easy to see that also is a disjoint covering system satisfying (1)
and (5).

3.2 Proof of the existence of an asymptotic pseudo-basis A satis-
fying (6) and (7) in regard to T (k) for any fixed k E N*.

This part of the proof of the above theorem uses the probabilistic method
of Erd6s and R6nyi [2~. Since [3] contains an excellent exposition of it, we
only give a short survey of those of Erd6s’ and Renyi’s ideas our next steps
are based on without proof.

Remark. Since, as we mentioned above, the case k =1 is already solved
we restrict ourselves to the case k &#x3E; 2.

By the method of Erd6s and R6nyi ([2] and [3]) for any sequence of
real numbers (OJ)jEN-, 0  ai :5 1, there exists a probability space with
probability measure JJ on the space Q of all strictly increasing sequences of
natural numbers, satisfying:
(8) the event B~n~ := (v E ü} is measurable, ¡.L(B(n) = an,
(9) and the events B(l), B~2~, ~ ~ ~ - are independent.

We denote by Pn the characteristic function of the event B~n~ .
EYom now on we consider only those sequences of probabilities 

satisfying :

Then by a particular variant of the strong law of large numbers, with pro-
bability 1,
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holds, where

Let

and

Then we have:

and

LEMMA 1. A sequence of positive real numbers is defined by

where jo, a, k, c and c’ are suitably chosen real constants, sati,s,fying

so that logk(j) &#x3E; 0, dj &#x3E; jo and (18) and (10 - 13) are compatible. The

precise value of a~ for small j is unimportant in case that their choice
ensures that (18) and (10 - 13) are compatible aj,,,. Then
as (n --&#x3E; oo)
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Remark. The above lemma is a slight generalization of Lemma 11 in [3],
p 144. Its proof corresponds essentially to that of the above-mentioned
Lemma 11 and is therefore left to the reader.

Now let k be a fixed natural number. To prove our theorem, correspond-
ing to Erd6s’ proof of (3,4), we first choose a number a with 0  a  1, so
that

holds, and we define the sequence (a; ) ;eN. by

where jo is a suitably chosen natural number so that logk j &#x3E; 0 Vj &#x3E; jo
and (a;) ;eN* satisfies (10 - 13).

Therefore by (14) and by Lemma 1 we have with probability 1

which because of (21) ensures the existence of a number 6 &#x3E; 0 such that

In view of (17) for any n E IY* , 

Let T¡(k) be an infinite non-empty element of 7"~.
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There exists s 1, - - - , E N* so that

Consequently :

Therefore the application of the Borel-Cantelli-Lemma proves the existence
of a positive real number c2, such that for any infinite 1i(k) E T(l)

(n sufficiently large)}) = 1.

On the other hand for any suitably chosen constant b  1 again in view
of (17) we have

Therefore because of (16) there exists cl , 0  ci  1 such that
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Thus for any fixed infinite e ?tk~, with

we have

Again we apply the Borel-Cantelli-Lemma to prove the existence of
ci &#x3E; 0 such that for any infinite T¡(k) E ~~k~

(n sufficiently large)}) = 1.

We have shown that w has each of the desired properties with probability
1 and thus the whole proof is complete.
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