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par MARTIN HELM

ABSTRACT - Let 7 be a system of disjoint subsets of N*. In this paper
we examine the existence of an increasing sequence of natural numbers, A,
that is an asymptotic basis of all infinite elements T; of 7 simultaneously,
satisfying certain conditions on the rate of growth of the number of repre-
sentations rn(A4); rn(A) = |{(ai,a;) : ai < aj;a4,a; € A;n = a; +a;},
for all sufficiently large n € T; and j € N*. A theorem of P. Erdés is
generalized.

1. Notation

In this paper, N* will always denote the set of integers {1,2,...,n,...}.
An increasing sequence of natural numbers, A, is called an asymptotic basis
of order 2 of a given set T of natural numbers if every sufficiently largen € T
has at least one representation in the form n = a; + a;;a:; < a;;a4,a; € A.
Let r»(A) be the number of such representations of n € T by elements of
A.

DEFINITION. A system T = (T)jen+ of disjoints subsets of N* satisfying

oo
N* = |J Tj is called a disjoint covering system.
=1

DEFINITION. If for an increasing sequence A of natural numbers there
ezists a disjoint covering system T such that

(1)  Fjo : Tj=0 Vj > jo or|T;| = oo for infinitively many j € N*
and
(2) A is an asymptotic basis of order 2 of all infinite elements T; of T,
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then A is called an asymptotic pseudo-basis of N*.

Remark. Let A be an asymptotic pseudo-basis in regard to a disjoint co-
vering system 7. For any infinite element T} of 7 let

nj:=min{m €Tj : r(A)>0 VneT;, n>m}.

Obviously any asymptotic basis A of order 2 of N* is an asymptotic pseudo-
basis (e.g. for 7 := N*, 0,0, ...). But unfortunately the converse in general
is not true since for any asymptotic pseudo-bases A of N* together with a
corresponding disjoint covering system 7 the set of all n; that are defined
in the above sense is not necessarily bounded.

2. Introduction

More than fifty years ago S. Sidon [5] asked if there exists an asymptotic
basis of order 2 of N* that is economic in the sense that for every € > 0 the
assumption lim z2(4) — 0 holds.

In 1953 P. Erdos [1] solved this problem ingeniously. In fact he proved
the much sharper:
THEOREM. There exists an asymptotic basis A of order 2 of N*, satisfying:

(3) A(n) ~a ni(logn)? ,a R,

with A(n) == > 1

a€A,1<aln

and
(4) logn < ra(A) < logn.

An attractive and still open problem is to decide whether there exists a
basis A of N* for which there exists ¢ := lim {4

n—oo 07
Moreover in [4] I. Rusza asks for a basis for which r,(A4) < 252 holds.

logzn

3. On asymptotic pseudo-bases
In this paper we prove the following:
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THEOREM. For any k € N* there ezists a disjoint covering system TF) =
{Tl(k) , Tz(k) ,..-} satisfying:

VjeN* : T;k) is an infinite element of T

() logi—1 7> T3 7 (n) > loge_; n (n — 00)

(where logyn := id(n) = n),

and an asymptotic pseudo-basis A satisfying:
(6) A(n) ~ 2a(log, n)in?

and
crlogen < ra(A) < czlogem,
) Vne 7}“) that are sufficiently large,
and V j € N* where T}k) is an infinite element of T,
where a, c; and c2 are global real constants not depending on j.
Remark. The above theorem generalizes (3,4), which is just the special
case k =1 (e.g. with 7 :=N*,0,0,...).

The proof of the above theorem is based on a slight modification of
Erdos’ proof of (3,4). Therefore like the proof of (3,4), it is based on a
probabilistic method and not constructive.

3.1 Inductive construction of suitable disjoint covering systems

First of all, for any k € N*, we are going to construct a special disjoint
covering system 7 %) satisfying (1) and (5).

The case k= 1.

Fork=11let TW :=N*,0,0,--- .
Obviously 7 is a disjoint covering system and (1) and (5) hold.

The case k = 2.
For k = 2 we define 7@ inductively as follows:

T = {1},
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Téz) ={27 : jeN*}.
Now, if Tl(z) ) e, T2 are already defined, let:
s:=min{fneN* : n¢ UTi(z)}
i=1
and we define _
T2 ={s : jeN'}.
Now we consider the following equivalence relation on N* :
a~b :<=>3s,u,veEN* : a=3s% b=s".

T @ just consists of all equivalence classes concerning the above equivalence -
relation. Thus 7@ is a disjoint covering system and obviously (1) holds.

For T,® € T® \ {1} there exists s € N* such that
TP ={s : jeN, seN"\{1}}.
For any sufficiently large m € N* there exists t € N* such that
st <m < sttl,

Thus T,-(z) (m) = t implies that:
7@ < 1 <T@ +1
;(m) < logs logm < T;%(m) ’

and consequently
logm <« Ti(z)(m) < logm.

Therefore also (5) holds.

The case k£ = 3.

DEFINITION. For s € N* and any non-empty subset M of N* we define
sMi={s™ : meM}.

We construct 7®) by dividing every element 7, of 7(® except {1} into
disjoint infinite subsets of N*.
For any T;®) of 7(® there exists s € N*:

T ={s : jeN}.
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Consequently
T (2) - U STJ_(Z)
1
7;(2) €T ()

and we define 7 as the system of all those sets sT0 = {spj : jeN*}
where p is a natural constant. Since 7(? is a disjoint covering system, 7 )
is a disjoint covering system, too; and as (1) holds for 73, T satisfies
(1), too.

For any infinite element 7,;®) for 7 and any sufficiently large number
m € N* there exist s,p,t € N* such that

T® = {s" : jeN},

and T t41
P <m<sP .

Then ‘1;(3) (m) =t implies log, m < 7',-(3) (m) < logy m.
Consequently 7 satisfies also (5).

The general case k > 4.

Let 7, 7@ 76, ... 7% be already constructed by the above procedure.
Thus for every infinite element 7;(") of T() there exist s1,--+ ,8k—1 € N*

so that _
™)

32

7® = {s, : jeN},

and according to the above procedure 7(**1) will be constructed out of
T by dividing every infinite T,.*) of 7% into disjoint subsets

G

31\ ), T,i(z) € T(Z).
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It is easy to see that also 7*+1) is a disjoint covering system satisfying (1)
and (5).

3.2 Proof of the existence of an asymptotic pseudo-basis A satis-
fying (6) and (7) in regard to 7 for any fixed k € N*.

This part of the proof of the above theorem uses the probabilistic method
of Erdds and Rényi [2]. Since [3] contains an excellent exposition of it, we
only give a short survey of those of Erdés’ and Rényi’s ideas our next steps
are based on without proof.

Remark. Since, as we mentioned above, the case & = 1 is already solved
we restrict ourselves to the case k > 2.

By the method of Erdés and Rényi ([2] and [3]) for any sequence of
real numbers (a;)jen+, 0 < a; < 1, there exists a probability space with
probability measure x on the space 2 of all strictly increasing sequences of
natural numbers, satisfying:

(8) the event B™ := {w e Q : n € Q} is measurable, u(B™) = an,
(9) and the events B, B@ ... are independent.

We denote by p,, the characteristic function of the event B(™.
From now on we consider only those sequences of probabilities (;);en-,
satisfying :

(10) 0<a; <1,

(1) lim a; =0,
j—oo

(12) Fjo : aj41 <o Y5> jo,
oo

(13) Zaj = 0.
j=1

Then by a particular variant of the strong law of large numbers, with pro-
bability 1,

n

(14) > aj ~w(n) (n— o)

i=1
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holds, where
(15) wn):= > 1
jEw;1<i<n
Let
Z QjQn—j, Mn : ZO‘J:

1_7<2

and
o= ) gen(l-ajom_j)7

1<5<2
Then we have:
(16) AL~ A (B — 00),
and

/\,f’

17) p{w:ra(w) =d}) < e >, deN.

LEMMA 1. A sequence (a;)jen- of positive real numbers is defined by

log; 7 ¢ L
(18) Q; = a(——;‘c—)— Yj > jo,

where jo,a, k,c and ¢ are suitably chosen real constants, satisfying
o<d, 0<c<l, 0<a, 1<k

so that logi(j) > 0, Vj > jo and (18) and (10 - 18) are compatible. The

precise value of a; for small j is unimportant in case that their choice

ensures that (18) and (10 - 13) are compatible also for ay,--- ,aj,. Then
as (n — o)

—0))2 ,
(19) Ap ~ %az%‘g—_;)cl)-(logk n)* nl-

(20) My ~ 1—-(-:t_—c(log,c n)¢nl=e
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Remark. The above lemma is a slight generalization of Lemma 11 in (3],
p 144. Its proof corresponds essentially to that of the above-mentioned
Lemma 11 and is therefore left to the reader.

Now let k be a fixed natural number. To prove our theorem, correspond-
ing to Erdds’ proof of (3,4), we first choose 2 number o with 0 < a < 1, so
that

1
(21) §a27r >1

holds, and we define the sequence (a;);jen- by

a];’ 1< .7 < jO:

#) %= fogem)?

oQ—
73

j>j0,

where jo is a suitably chosen natural number so that log,j > 0 Vj > jo
and (@;)jen- satisfies (10 - 13).
Therefore by (14) and by Lemma 1 we have with probability 1

(23) w(n) ~ 2a+/log, nv/n,
(24) An ~ %az log n,

which because of (21) ensures the existence of a number § > 0 such that
(25) e~ & (log_, n)~+9),

In view of (17) foranyn e N*, de N :

d
p{w : @ >eX )< S u{w : @) =dP < 3 %’—!‘-e”‘“

d>el, d>eM,

e
e\ —n 1
< — n —¢e D ———
= (exa) ¢ < Qlogp_ )i+

Let T*) be an infinite non-empty element of 7).



A generalization of a theorem of Erdés on asymptotic basis of order 2 17

There exists s;,--- ,5x—1 € N* so that
)
, :
TP = {s, ,JEN'}
Consequently :
D ou{w : ) >eA N D e
neT{® neT®

Loy
. £
< Z log;_; 5,

=1

—,1
< Z( ‘7)1+6 < oo.
=17
Therefore the application of the Borel-Cantelli-Lemma proves the existence
of a positive real number ¢z, such that for any infinite T*) € 7®)
(26) p({w : ra(w) <czloggn, ne T,-(k), (n sufficiently large)}) = 1.

On the other hand for any suitably chosen constant b < 1 again in view
of (17) we have

p{w : @) <D S Y p({w : ma(w) =d})

1<d<bA’,

< > %;;e"‘“

1<d<bA,

Therefore because of (16) there exists ¢;, 0 < ¢; < 1 such that

(27) [(S)]Pee™ < (logiy m) =0+,
1
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Thus for any fixed infinite TF) € T®, with

)

S2

Z’i(k)={51 ,]'GN*},

we have

/ (._,<=i;_1>) \ -(1+%)

S2

Z p{w @ (W) <ai}) < Z logi_; 5,
J=1

nGT.(k)

s N
<)) ()T <.

Again we apply the Borel-Cantelli-Lemma to prove the existence of
¢1 > 0 such that for any infinite T* € 7®

(28) p{w : ra(w)>cilogin, ne Ti(k), (n sufficiently large)}) = 1.

We have shown that w has each of the desired properties with probability
1 and thus the whole proof is complete.
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