JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

MARTIN HELM

A generalization of a theorem of Erdös on asymptotic basis of order 2

Journal de Théorie des Nombres de Bordeaux, tome 6, n° 1 (1994), p. 9-19 http://www.numdam.org/item?id=JTNB 1994 6 1 9 0>

© Université Bordeaux 1, 1994, tous droits réservés.

L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

A generalization of a theorem of Erdös on asymptotic basis of order 2

par Martin Helm

ABSTRACT – Let T be a system of disjoint subsets of \mathbb{N}^* . In this paper we examine the existence of an increasing sequence of natural numbers, A, that is an asymptotic basis of all infinite elements T_j of T simultaneously, satisfying certain conditions on the rate of growth of the number of representations $r_n(A); r_n(A) := |\{(a_i, a_j) : a_i < a_j; a_i, a_j \in A; n = a_i + a_j\}|$, for all sufficiently large $n \in T_j$ and $j \in \mathbb{N}^*$. A theorem of P. Erdös is generalized.

1. Notation

In this paper, \mathbb{N}^* will always denote the set of integers $\{1, 2, \ldots, n, \ldots\}$. An increasing sequence of natural numbers, A, is called an asymptotic basis of order 2 of a given set T of natural numbers if every sufficiently large $n \in T$ has at least one representation in the form $n = a_i + a_j; a_i < a_j; a_i, a_j \in A$. Let $r_n(A)$ be the number of such representations of $n \in T$ by elements of A.

DEFINITION. A system $T = (T)_{j \in \mathbb{N}^*}$ of disjoints subsets of \mathbb{N}^* satisfying $\mathbb{N}^* = \bigcup_{j=1}^{\infty} T_j$ is called a disjoint covering system.

DEFINITION. If for an increasing sequence A of natural numbers there exists a disjoint covering system T such that

- (1) $\exists j_0 : T_j = \emptyset \ \forall j \geq j_0 \ or \ |T_j| = \infty \ for \ infinitively \ many \ j \in \mathbb{N}^*$ and
- (2) A is an asymptotic basis of order 2 of all infinite elements T_i of T,

then A is called an asymptotic pseudo-basis of \mathbb{N}^* .

Remark. Let A be an asymptotic pseudo-basis in regard to a disjoint covering system \mathcal{T} . For any infinite element T_i of \mathcal{T} let

$$n_i := \min\{m \in T_i : r_n(A) > 0 \quad \forall n \in T_i, \ n \ge m\}.$$

Obviously any asymptotic basis A of order 2 of \mathbb{N}^* is an asymptotic pseudobasis (e.g. for $\mathcal{T} := \mathbb{N}^*, \emptyset, \emptyset, ...$). But unfortunately the converse in general is not true since for any asymptotic pseudo-bases A of \mathbb{N}^* together with a corresponding disjoint covering system \mathcal{T} the set of all n_j that are defined in the above sense is not necessarily bounded.

2. Introduction

More than fifty years ago S. Sidon [5] asked if there exists an asymptotic basis of order 2 of N* that is economic in the sense that for every $\varepsilon > 0$ the assumption $\lim_{n \to \infty} \frac{r_n(A)}{n^{\varepsilon}} = 0$ holds.

In 1953 P. Erdös [1] solved this problem ingeniously. In fact he proved the much sharper:

THEOREM. There exists an asymptotic basis A of order 2 of \mathbb{N}^* , satisfying:

(3)
$$A(n) \sim \alpha \ n^{\frac{1}{2}} (\log n)^{\frac{1}{2}} , \alpha \in \mathbb{R},$$

with
$$A(n) := \sum_{a \in A, 1 \le a \le n} 1$$

and

(4)
$$\log n \ll r_n(A) \ll \log n.$$

An attractive and still open problem is to decide whether there exists a basis A of \mathbb{N}^* for which there exists $c := \lim_{n \to \infty} \frac{r_n(A)}{\log n}$.

Moreover in [4] I. Rusza asks for a basis for which $r_n(A) \ll \frac{\log n}{\log_2 n}$ holds.

3. On asymptotic pseudo-bases

In this paper we prove the following:

THEOREM. For any $k \in \mathbb{N}^*$ there exists a disjoint covering system $\mathcal{T}^{(k)} = \{T_1^{(k)}, T_2^{(k)}, ...\}$ satisfying:

 $\forall j \in \mathbb{N}^* : T_j^{(k)}$ is an infinite element of $T^{(k)}$:

(5)
$$\log_{k-1} n \gg T_j^{(k)}(n) \gg \log_{k-1} n \ (n \to \infty)$$

$$(where \log_0 n := id(n) = n),$$

and an asymptotic pseudo-basis A satisfying:

(6)
$$A(n) \sim 2\alpha (\log_k n)^{\frac{1}{2}} n^{\frac{1}{2}}$$

and

$$c_1 \log_k n \le r_n(A) \le c_2 \log_k n,$$

(7) $\forall n \in T_j^{(k)}$ that are sufficiently large, and $\forall j \in \mathbb{N}^*$ where $T_j^{(k)}$ is an infinite element of $\mathcal{T}^{(k)}$,

where α, c_1 and c_2 are global real constants not depending on j.

Remark. The above theorem generalizes (3,4), which is just the special case k=1 (e.g. with $\mathcal{T}:=\mathbb{N}^*,\emptyset,\emptyset,\ldots$).

The proof of the above theorem is based on a slight modification of Erdös' proof of (3,4). Therefore like the proof of (3,4), it is based on a probabilistic method and not constructive.

3.1 Inductive construction of suitable disjoint covering systems

First of all, for any $k \in \mathbb{N}^*$, we are going to construct a special disjoint covering system $\mathcal{T}^{(k)}$ satisfying (1) and (5).

The case k = 1.

For
$$k = 1$$
 let $\mathcal{T}^{(1)} := \mathbb{N}^*, \emptyset, \emptyset, \cdots$.

Obviously $\mathcal{T}^{(1)}$ is a disjoint covering system and (1) and (5) hold.

The case k=2.

For k=2 we define $\mathcal{T}^{(2)}$ inductively as follows:

$$T_1^{(2)} := \{1\},$$

$$T_2^{(2)} := \{2^j : j \in \mathbb{N}^*\}.$$

Now, if $T_1^{(2)}, \dots, T_r^{(2)}$ are already defined, let:

$$s:=\min\{n\in\mathbb{N}^*\ :\ n\notin\bigcup_{i=1}^r T_i^{(2)}\}$$

and we define

$$T_{r+1}^{(2)} := \{ s^j : j \in \mathbb{N}^* \}.$$

Now we consider the following equivalence relation on \mathbb{N}^* :

$$a \sim b : \iff \exists s, u, v \in \mathbb{N}^* : a = s^u, b = s^v.$$

 $\mathcal{T}^{(2)}$ just consists of all equivalence classes concerning the above equivalence relation. Thus $\mathcal{T}^{(2)}$ is a disjoint covering system and obviously (1) holds. For $\mathcal{T}_i^{(2)} \in \mathcal{T}^{(2)} \setminus \{1\}$ there exists $s \in \mathbb{N}^*$ such that

$$T_i^{(2)} = \{ s^j : j \in \mathbb{N}^*, s \in \mathbb{N}^* \setminus \{1\} \}.$$

For any sufficiently large $m \in \mathbb{N}^*$ there exists $t \in \mathbb{N}^*$ such that

$$s^t \le m < s^{t+1}.$$

Thus $T_i^{(2)}(m) = t$ implies that:

$$T_i^{(2)}(m) \le \frac{1}{\log s} \log m \le T_i^{(2)}(m) + 1,$$

and consequently

$$\log m \ll T_i^{(2)}(m) \ll \log m.$$

Therefore also (5) holds.

The case k = 3.

DEFINITION. For $s \in \mathbb{N}^*$ and any non-empty subset M of \mathbb{N}^* we define

$$s^M := \{s^m : m \in M\}.$$

We construct $\mathcal{T}^{(3)}$ by dividing every element $\mathcal{T}_i^{(2)}$ of $\mathcal{T}^{(2)}$ except $\{1\}$ into disjoint infinite subsets of \mathbb{N}^* .

For any $T_i^{(2)}$ of $T^{(2)}$ there exists $s \in \mathbb{N}^*$:

$$\mathcal{T}_i^{(2)} = \{s^j : j \in \mathbb{N}^*\}.$$

Consequently

$$\mathcal{T}_i^{(2)} = \bigcup_{\mathcal{T}_j^{(2)} \in \mathcal{T}^{(2)}} s^{\mathcal{T}_j^{(2)}}$$

and we define $\mathcal{T}^{(3)}$ as the system of all those sets $s^{\mathcal{T}_j^{(2)}} = \{s^{p^j}: j \in \mathbb{N}^*\}$ where p is a natural constant. Since $\mathcal{T}^{(2)}$ is a disjoint covering system, $\mathcal{T}^{(3)}$ is a disjoint covering system, too; and as (1) holds for $\mathcal{T}^{(2)}$, $\mathcal{T}^{(3)}$ satisfies (1), too.

For any infinite element $\mathcal{T}_i^{(3)}$ for $\mathcal{T}^{(3)}$ and any sufficiently large number $m \in \mathbb{N}^*$ there exist $s, p, t \in \mathbb{N}^*$ such that

$$\mathcal{T}_i^{(3)} = \{ s^{p^j} : j \in \mathbb{N}^* \},$$

and

$$s^{p^t} \le m < s^{p^{t+1}}.$$

Then $\mathcal{T}_i^{(3)}(m) = t$ implies $\log_2 m \ll \mathcal{T}_i^{(3)}(m) \ll \log_2 m$. Consequently $\mathcal{T}^{(3)}$ satisfies also (5).

The general case $k \geq 4$.

Let $\mathcal{T}^{(1)}, \mathcal{T}^{(2)}, \mathcal{T}^{(3)}, \cdots \mathcal{T}^{(k)}$ be already constructed by the above procedure. Thus for every infinite element $\mathcal{T}_i^{(k)}$ of $\mathcal{T}^{(k)}$ there exist $s_1, \cdots, s_{k-1} \in \mathbb{N}^*$ so that

$$\mathcal{T}_i^{(k)} = \{s_1^{\left(\cdot \cdot \cdot \binom{s_{k-1}^j}{k-1} \right)} : j \in \mathbb{N}^* \},$$

and according to the above procedure $\mathcal{T}^{(k+1)}$ will be constructed out of $\mathcal{T}^{(k)}$ by dividing every infinite $\mathcal{T}_i^{(k)}$ of $\mathcal{T}^{(k)}$ into disjoint subsets

$$s_1^{\left(inom{s_{i-1}^{T^{(2)}}}{s_i^{s_{i-1}}}
ight)},\ T_i^{(2)}\in \mathcal{T}^{(2)}.$$

It is easy to see that also $\mathcal{T}^{(k+1)}$ is a disjoint covering system satisfying (1) and (5).

3.2 Proof of the existence of an asymptotic pseudo-basis A satisfying (6) and (7) in regard to $\mathcal{T}^{(k)}$ for any fixed $k \in \mathbb{N}^*$.

This part of the proof of the above theorem uses the probabilistic method of Erdös and Rényi [2]. Since [3] contains an excellent exposition of it, we only give a short survey of those of Erdös' and Rényi's ideas our next steps are based on without proof.

Remark. Since, as we mentioned above, the case k = 1 is already solved we restrict ourselves to the case $k \ge 2$.

By the method of Erdös and Rényi ([2] and [3]) for any sequence of real numbers $(\alpha_j)_{j\in\mathbb{N}^*}$, $0 \le \alpha_j \le 1$, there exists a probability space with probability measure μ on the space Ω of all strictly increasing sequences of natural numbers, satisfying:

- (8) the event $B^{(n)} := \{ \omega \in \Omega : n \in \Omega \}$ is measurable, $\mu(B^{(n)}) = \alpha_n$,
- (9) and the events $B^{(1)}$, $B^{(2)}$, \cdots are independent.

We denote by ρ_n the characteristic function of the event $B^{(n)}$. From now on we consider only those sequences of probabilities $(\alpha_j)_{j\in\mathbb{N}^*}$, satisfying:

$$(10) 0 < \alpha_j < 1,$$

(11)
$$\lim_{j \to \infty} \alpha_j = 0,$$

$$\exists j_0 : \alpha_{j+1} < \alpha_j \ \forall j \geq j_0,$$

(13)
$$\sum_{j=1}^{\infty} \alpha_j = \infty.$$

Then by a particular variant of the strong law of large numbers, with probability 1,

(14)
$$\sum_{j=1}^{n} \alpha_{j} \sim \omega(n) \ (n \to \infty)$$

holds, where

(15)
$$\omega(n) := \sum_{j \in \omega; 1 \le j \le n} 1.$$

Let

$$\lambda_n := \sum_{1 \le j < \frac{n}{2}} \alpha_j \alpha_{n-j}, \ m_n := \sum_{j=1}^n \alpha_j,$$

and

$$\lambda_n' := \sum_{1 \le j < \frac{n}{2}} \alpha_j \alpha_{n-j} (1 - \alpha_j \alpha_{n-j})^{-1}.$$

Then we have:

(16)
$$\lambda_n' \sim \lambda_n \ (n \to \infty),$$

and

(17)
$$\mu(\{\omega: r_n(\omega) = d\}) \le \frac{\lambda_n'^d}{d!} e^{-\lambda_n}, \ d \in \mathbb{N}.$$

LEMMA 1. A sequence $(\alpha_j)_{j\in\mathbb{N}^*}$ of positive real numbers is defined by

(18)
$$\alpha_j := \alpha \frac{(\log_k j)^{c'}}{j^c} \quad \forall j > j_0,$$

where j_0, α, k, c and c' are suitably chosen real constants, satisfying

$$0 \le c', \qquad 0 < c < 1, \qquad 0 < \alpha, \qquad 1 \le k$$

so that $\log_k(j) > 0$, $\forall j > j_0$ and (18) and (10 - 13) are compatible. The precise value of α_j for small j is unimportant in case that their choice ensures that (18) and (10 - 13) are compatible also for $\alpha_1, \dots, \alpha_{j_0}$. Then as $(n \to \infty)$

(19)
$$\lambda_n \sim \frac{1}{2} \alpha^2 \frac{(\Gamma(1-c))^2}{\Gamma(2-2c)} (\log_k n)^{2c'} n^{1-2c}$$

$$(20) m_n \sim \frac{\alpha}{1-c} (\log_k n)^{c'} n^{1-c}.$$

Remark. The above lemma is a slight generalization of Lemma 11 in [3], p 144. Its proof corresponds essentially to that of the above-mentioned Lemma 11 and is therefore left to the reader.

Now let k be a fixed natural number. To prove our theorem, corresponding to Erdös' proof of (3,4), we first choose a number α with $0 < \alpha < 1$, so that

$$(21) \qquad \qquad \frac{1}{2}\alpha^2\pi > 1$$

holds, and we define the sequence $(\alpha_i)_{i\in\mathbb{N}^*}$ by

(22)
$$\alpha_{j} = \begin{cases} \frac{1}{2} & 1 \leq j \leq j_{0}, \\ \alpha \frac{(\log_{k} n)^{\frac{1}{2}}}{j^{\frac{1}{2}}} & j > j_{0}, \end{cases}$$

where j_0 is a suitably chosen natural number so that $\log_k j > 0 \quad \forall j > j_0$ and $(\alpha_j)_{j \in \mathbb{N}^*}$ satisfies (10 - 13).

Therefore by (14) and by Lemma 1 we have with probability 1

(23)
$$\omega(n) \sim 2\alpha \sqrt{\log_k n} \sqrt{n},$$

(24)
$$\lambda_n \sim \frac{\pi}{2} \alpha^2 \log_k n,$$

which because of (21) ensures the existence of a number $\delta > 0$ such that

$$(25) e^{-\lambda_n} \ll (\log_{k-1} n)^{-(1+\delta)}.$$

In view of (17) for any $n \in \mathbb{N}^*$, $d \in \mathbb{N}$:

$$\mu(\{\omega \ : \ r_n(\omega) > e\lambda_n'\}) \leq \sum_{d \geq e\lambda_n'} \mu(\{\omega \ : \ r_n(\omega) = d\}) \leq \sum_{d \geq e\lambda_n'} \frac{\lambda_n'^d}{d!} e^{-\lambda_n}$$

$$\leq \left(\frac{e\lambda'_n}{e\lambda'_n}\right)^{e\lambda'_n}e^{-\lambda_n} = e^{-\lambda_n} \ll \frac{1}{(\log_{k-1} n)^{1+\delta}}.$$

Let $T_i^{(k)}$ be an infinite non-empty element of $\mathcal{T}^{(k)}$.

There exists $s_1, \dots, s_{k-1} \in \mathbb{N}^*$ so that

$$T_i^{(k)} = \{s_1^{\left(\cdot \cdot \binom{(s_{k-1}^j)}{s_2} \right)}, j \in \mathbb{N}^* \}.$$

Consequently:

$$\sum_{n \in T_i^{(k)}} \mu(\{\omega : r_n(\omega) > e \ \lambda_n'\}) \le \sum_{n \in T_i^{(k)}} e^{-\lambda_n}$$

$$\le \sum_{j=1}^{\infty} \left(\log_{k-1} s_1^{\left(s_2^{(j-1)}\right)} \right)^{-(1+\delta)}$$

$$\ll \sum_{j=1}^{\infty} \left(\frac{1}{j} \right)^{1+\delta} < \infty.$$

Therefore the application of the Borel-Cantelli-Lemma proves the existence of a positive real number c_2 , such that for any infinite $T_i^{(k)} \in \mathcal{T}^{(k)}$

(26)
$$\mu(\{\omega : r_n(\omega) \le c_2 \log_k n, n \in T_i^{(k)}, (n \text{ sufficiently large})\}) = 1.$$

On the other hand for any suitably chosen constant b < 1 again in view of (17) we have

$$\mu(\{\omega : r_n(\omega) < b\lambda'_n\}) \leq \sum_{1 \leq d \leq b\lambda'_n} \mu(\{\omega : r_n(\omega) = d\})$$

$$\leq \sum_{1 \leq d \leq b\lambda'_n} \frac{\lambda'_n^d}{d!} e^{-\lambda_n}$$

$$\leq \left(\frac{e\lambda'_n}{b\lambda'_n}\right)^{b\lambda'_n} e^{-\lambda_n}$$

$$= \left[\left(\frac{e}{b}\right)^b\right]^{\lambda'_n} e^{-\lambda_n}.$$

Therefore because of (16) there exists c_1 , $0 < c_1 < 1$ such that

(27)
$$[(\frac{e}{c_1})^{c_1}]^{\lambda'_n} e^{-\lambda_n} \ll (\log_{k-1} n)^{-(1+\frac{\delta}{2})}.$$

Thus for any fixed infinite $T_i^{(k)} \in \mathcal{T}^{(k)}$, with

$$T_i^{(k)} = \{s_1^{\left(\cdot \cdot \cdot \cdot (s_{k-1}^j) \right)}, j \in \mathbb{N}^*\},$$

we have

$$\sum_{n \in T_i^{(k)}} \mu(\{\omega : r_n(\omega) < c_1 \lambda_n'\}) \ll \sum_{j=1}^{\infty} \left(\log_{k-1} s_1^{\binom{j}{s_2} \cdot \binom{j}{s_2} \cdot \binom{j}{s_2}} \right)$$

$$\ll \sum_{j=1}^{\infty} (\frac{1}{j})^{1 + \frac{\delta}{2}} < \infty.$$

Again we apply the Borel-Cantelli-Lemma to prove the existence of $c_1>0$ such that for any infinite $T_i^{(k)}\in\mathcal{T}^{(k)}$

(28)
$$\mu(\{\omega : r_n(\omega) \ge c_1 \log_k n, n \in T_i^{(k)}, (n \text{ sufficiently large})\}) = 1.$$

We have shown that ω has each of the desired properties with probability 1 and thus the whole proof is complete.

REFERENCES

- [1] P. Erdös, Problems and results in additive number theory, Colloque sur la Théorie des Nombres (CBRM), Bruxelles (1956), 127-137.
- [2] P. Erdös and A. Rényi, Additive properties of random sequences of positive integers, Acta Arith. 6 (1960), 83-110.
- [3] H. Halberstam and K. F. Roth, Sequences, Springer-Verlag, New-York Heidelberg Berlin (1983).
- [4] I. Z. Rusza, On a probabilistic method in additive number theory, Groupe de travail en théorie analytique et élémentaire des nombres, (1987-1988), Publications Mathématiques d'Orsay 89-01, Univ. Paris, Orsay (1989), 71-92.

[5] S. Sidon, Ein Satz über trigonometrische Polynome und seine Anwendung in der Theorie des Fourier-Reihen, Math. Ann. 106 (1932), 539–539.

Martin Helm Graduate School and University Center of the City University of New-York Department of Mathematics Graduate Center 33 West 42 Street New-York 10036-8099 USA

e-mail: hxm@cunyvms1.gc.cuny.edu