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On a Theorem of Legendre in
the theory of continued fractions

by DOMINIQUE BARBOLOSI and HENDRIK JAGER

1. Introduction

Let r be a rational number, r = with A, B E Z, B ~ 0. We shall
always assume that (A, B) = 1 and that B &#x3E; 0. A rational number A/ B
has two representations as a continued fraction:

- if B ~ 1, then

and

If the continued fraction expansion of A/.B is determined by the Eu-
clidean algorithm, the outcome is the expansion ( 1.1 ), i.e. the shortest one.
In this note we consider the shortest expansion as the most natural one, we
call it the regular continued fraction expansion of A/B. The regular con-
tinued fraction expansion of an irrational number ~ is infinite and unique.
We shall denote it by

Let
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be the sequence of corresponding convergents, also denoted by RCF(~).
Hence E RCF(~) means that there exists an integer n, n &#x3E;- -1, such
that

A 1 -1

(1.3) DEFINITION. The appro2zrnation coefficients of a rational number
A/B a4th respect to a real irrational number ~, notation 0(~, A/B), is de-
fined by 

- - - --- m - m - - m

In his "Essai sur la théorie des nombres", [13], pp. 27-29, Legendre
gives a necessary and sufficient condition for a rational number A/B to
be a convergent of the irrational number C. This necessary and sufficient
condition is expressed, in modern notation, by (2.4) and (2.6) of the next
section of this note. Legendre concludes the paragraph on the criterion by
remarking that in particular it follows that:

In the theory of continued fractions, (1.4) is often called Legendre’s Theo-
rem.

The following implication is almost trivial

The constants -1 and 1 are both best possible. For the constant 2 in (1.4)
this means that for every e &#x3E; 0 there exist a ~ and an A such that 0(~, ~) 
2 + E and -A 0 RCF(~). Similarly for the 1 in ~1.5).
In this note we shall add some refinements to Legendre’s reasoning and
thus find a more detailed version of (1.4). We shall also show that one
can prove in the same way a result announced by Fatou in 1904, as well
as the analogues of Legendre’s Theorem for two other types of continued
fractions.
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2. Legendre’s criterion

We shall from now on assume that ~ and A/B are contained in the unit
interval, this being no restriction. Hence the ao in (1.1) and the ao(ç) in
(1.2) are both zero. Let n E N and (ai, a2,... , an) E Nn . Then we denote
the set of irrational numbers C with the property that

by

Such a set is called a fundamental interval of order n, see [2] p. 42.

(2.1 ) DEFINITIONS. The signature e(A/B) of a rational nurriber A/B, is
defined as 

AA

urith the n taken from the regular expansion (1.1). This n is sometimes
called the depth of the rational numbers A/B.

F’urther we define

Finally, the signature of a mtional number A/B with respect to an irrational
notatiort b(~, A/B), is defined by

Hence b(~, A/B) is determined by the depth of A/B and the order of ~
and A/B. We shall now formulate a more detailed version of Legendre’s
Theorem (1.4), in which a distinction is made between 6(C, A/B) _ +1 and
b(C, AIB) = -1.

(2.2) THEOREM. Let AlE be a rational number, (A, B) = 1, B &#x3E; 0 and

let ~ be an irrational number.



84

and

If on the other hand 6(~,~) = -1, then

and

All constants are best possible.

(2.3) Proof
Let the regular expansion of A/B be given by (1.1) and suppose that n

is even. Denote by A’/B’ the last but one convergent of (1.1). The set of
all ~ with ~ &#x3E; A/B, i.e. with 6(ç,AIB) = 1, and with AIB E RCF(ç) is
just the fundamental interval.

of order n, i.e. the set

Hence

Now

and thus

and
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Since

the assertions are now evident.

Let ~  A (and n still be even). Then the set of all ~ with A E RCF(C)
is the fundamental interval of order n + 1 :

- ....

which has length B-1(2B - B’)-l. Instead of (2.4) we now have

and the assertions follow in this case, using again (2.5), from
- . ’1 ’1 - -

respectively.
The proof for the case where n is odd is almost the same; therefore we omit
it here. We see that the constant 1/2 in Legendre’s Theorem is due to ra-
tional numbers A/B with b(~, A/B) _ -1 and with a very large last partial
quotient an - +

3. A metrical observation

(3.1 ) DEFINITION. The sequence of regular continued fraction approxima-
tion coefficients of a real irrational number ~ is defined by

For almost all-in the sense of Lebesgue, the sequence is dis-
tributed in the unit interval according to the function F, where

( 1 - 1

see [3]. The irregular behaviour of F at A = 1/2 can be explained by the
constant 1/2 in Legendre’s Theorem (1.4), see [6]. In view of Theorem

(2.2) one may ask why F does not have an irregularity at A = 2/3. The
answer is given by the next theorem which shows that there are in fact two
irregularities at A = 2/3, canceling each other.
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(3.3) THEOREM. For almost all ~ one has

with

and

with

(3.4) Proof
From the alternating way in which the sequence converges to

~ and from the fact that in the definition of e(~, 9. (t) ) the n is taken from
the shortest expansion of ~~ as a continued fraction, it follows that

and that

After this remark the proof can be given using the same techniques with
which (3.2) is proved in [3]. Details are left to the reader. +
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4. Extreme mediants and the Theorems of Fatou-Grace and
Koksma

DEFINITION. Ttae sequence of mediants of a real irrational number ~ is the
sequences of irreducible fractions of the from

ordered in such a way that the denominators form an ascending sequence,
compare f9J p. 26. The fractions in (4.~) formed with b = 1 are called the
first mediants of ~, those with b = o~-i(~) 2013 1 the last mediants of £. The
first and the last mediants are called extreme or nearest mediants. A first
mediant is also a last one if and only if the corresponding partial quotient
equals 2.

In 1904, P. Fatou stated that if 6(~,A/J5)  1, then A/B is either a
convergent or an extreme mediant of ~, [4]. The first one to publish a proof
of this was J. H. Grace [5], see also Koksma [10] and [11]. We will therefore
,refer to this result as the Theorem of Fatou-Grace. Koksma [11] showed
that B(~, A/B)  2/3 implies that is either a convergent or a first
mediant of ~. We will now prove more detailed versions of these results by
the method from section 2.

(4.3) THEOREM. Let be a rational (A, B) = 1, B &#x3E; 0 and

let ~ be an irrational number.
- ~) =1, then B is not a first mediant off..

8(~, B)  1 a convergent or a first mediant ofç,
and

B(~, B ) &#x3E; 2 ~ neither a convergerit nor a first mediant 
Both constants 1 and 2 are best possible.

Theorems (2.2) and (4.3) yield at once the following result of Koksma
([10] p. 102):

(4.4) THEOREM (KoxsntA). If A/B is a rational, and ~ an irrational
number and if 8(f., A/B)  2/3, then A/B is either a convergent or a first
mediant of ~. The constant 2/3 is best possible.
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(4.5) Remark. The constant 2/3 is due to the constant 2/3 in Theorem
(2.2) i.e. from rational numbers A/B with b(~, A/B) = 1 and with last
partial quotient 2.

(4.6) Proof of Theorem (4.3)
Let A/B have the expansion (1.1) and suppose that n is even. The set

of irrational numbers C such that A/B is of the form p‘‘t +p’‘_’ for some’+’qk-1
k, is the fundamental interval An+ I (a,, a2, , c - 1,1).

Hence, when b(C, A/B) = 1, A /B is not a first mediant of C, whereas when
~(~,~4/B) = 20131, the set of ~’s such that A/B is either a convergent or a
first mediant of C is just the fundamental interval

which has length B’)-1. Therefore, if 6(~, A/B) _ -1, A/B is a
convergent or a first mediant if and only if

Using (2.5) we then find that

F is a convergent or a first mediant of ~

is neither a convergent nor a first mediant of ~.

The statements now follow from

The proof for the case where n is odd is almost the same. +

(4.7) THEOREM. Let A/B be a rational number, (A, B) = 1, B &#x3E; 0 and

let ~ be an irrational number.

is a convergent or a last mediants of ~’,

is neither a convergent nor an extreme mediant
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A is a last mediants of is a first mediant of ç,

is a convergent or a last mediants of ~,

9(~, B) &#x3E; 1 is neither a convergent nor a last mediants of ~.
All constants are best possible.

(4.8) Proof 
’

The set of all irrational numbers £ such that A/B is a last mediant of C
consists of the union of the two fundamental intervals

i.e. the ç’s in the first interval of (4.9) are those for which A/B is a first
and a last mediant. After these remarks the proof runs almost the same as
the proofs of Theorems (2.2) and (4.3) and may therefore be omitted. +

The location of the various intervals occurring in this section and in section
2, is depicted, for even n, in the figure below. For odd n, the order is

reversed.

5. Legendre’s Theorem for two other types of continued fractions

The above method can be used to obtain similar results for other types
of continued fraction expansions. We will illustrate this with two examples:

(1) the continued fractions with odd partial quotients,
(2) the nearest integer continued fractions.
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(5.1) The continued fraction expansion with odd partial quotients: every
irrational number ~ in the unit interval has a unique expansion of the form

with

(5.3) bn an odd positive integer, s

We will denote the sequence of convergents associated with the expansion
(5.2) by OCF(~). A rational number A/B always has a finite expansion

with the same conditions as in (5.3). If in (5.4) one has bn = 1 
-1, then admits two expansions of this type, viz.

and

otherwise such an expansion of a rational number is unique. We consider
the expansion (5.5) as the most natural one since it is obtained when one
repeatedly applies the shift operator for this continued fraction, just as in
the case of (1.1). For a description of this operator the reader is referred
to [14].

(5.7) THEOREM. Let A/B be a rational numbers, (A, B) = 1, B &#x3E; 0 and

let ~ be an irrational number.
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Here g := ~(ý’5 + 1), hence g2 = 0,3819... , and G := g-1 = 1, 6180 ~ ~ - ;
the four constants are best possible.

It was already known that B(~, A/B) &#x3E; G implies OCF(~), i.e.
the analogue of (1.5). We now also have the analogue of (1.4), that is

Legendre’s Theorem for the continued fractions with odd partial quotients:

(5.8) COROLLARY. Let A/B be a rational number, (A, B) = 1, B &#x3E; 0 and

let ~ be an irrational If

then AIB is a convergent of the expansion of into its continued fraction
with odd partial quotients. The constant 0, 3819 ... is best possible.

(5.9) Proof of Theorem (5-7)
The proof differs only in technical details from that of Theorem (2.2).

Therefore it may suffice to indicate the main differences. First note that

for the E(AIB) from definition (2.1) one has
A

where n and el, E2, ~ ~ ~ , are given by the expansion (5.4) and, in case
we have the two expansions (5.5) and (5.6), by (5.5). This can easily be
shown with the techniques II 7.

Next, denote by I(A/B) the set of irrational numbers ~ such that A/B E
OCF(~). If A/B has the expansion (5.4) with bn &#x3E; 3, the end points of
I(A/B) are

and

from which it follows that

and with the end points reversed when e(A/ B) = -1. Here A’/B’ denotes
the last but one convergent of (5.4).
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If has the expansion (5.5), then the end points are

and

from which it follows that

with A’/B’ the last but one convergent of (5.5) and again with the end
points reversed when ~(~4/J3) = 20131.
The analogue of (2.5) is

which follows from the structure of the two-dimensional ergodic system
underlying this continued fraction, see [1] and [14]. The rest of the proof is
exactly the same as the corresponding part of the proof of Theorem (2.2). +

(5.10) Remark. The constant g2 from Corollary (5.8) corresponds to an
irregularity of the distribution function, for almost all ~, of the sequence of
approximation coefficients connected with this continued fraction, see [1J,
IV, Théorème 1. One could give here results similar to those in section 3.

Recently, the analogue of Legendre’s Theorem for the nearest integer con-
tinued fraction expansion was found in three different ways, see [7], [8] and
[12]. The constant turns out to be the same as in the case of the contin-
ued fraction with odd partial quotients: g2. The method from the previous
sections applies to the nearest integer continued fraction as well. The se-
quence of convergents of this expansion is denoted here by NICF(C). We
will state the result without giving the proof, which is very similar to the
previous ones.

(5.11) THEOREM. Let A/B be a rational numbers, (A, B) = 1, B &#x3E; 0 and
let £ be an irrational number.

then
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and

and

All constants are best possible.
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