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Substitution invariant cutting sequences

by D. CRISP, W. MORAN, A. POLLINGTON AND P. SHIUE

1. Introduction

This work arose from a problem discussed in an article by Tom Brown,
[1]. He considers the sequences

n &#x3E; 1, where a is a positive irrational and [x] is the greatest integer not
exceeding x . It is clear that f a = and so without loss of generality we
assume 0  a  1, in which case,

There is a large literature on these sequences (see for.example [3] and [6]).
Each sequence fa consists of 0’s and 1’s only and we can, without ambiguity,
omit the commas. A substitution W for such a sequence is a pair of maps

where Wo and WI are finite strings of 0’s and l’s. The result of applying
this substitution to fa is the sequence of 0’s and 1’s obtained by replacing
each 0 in fa by Wo and each 1 by Wi , we denote it by W (f,,,). Brown shows
that if 1/a has a purely periodic continued fraction expansion, then there
is a non-trivial substitution, W , leaving fa invariant, that is, W (fa) = fa,
and he describes W. He also demonstrates an a (for which I/a does not
have a purely periodic continued fraction expansion) with the property that
fa is fixed only by the trivial substitution.

We show that the obvious conjecture is not entirely true. We do this
by giving a complete characterisation of those a for which fa is invariant
under some non-trivial substitution. We also give a full description of the
substitutions concerned.

Manuscrit reçu le 20 janvier 1992, derniere version le 1er février 1993.
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Ito and Yasutomi, [4], have also considered substitution invariance for
the sequences f a but with n &#x3E; 0 instead of n &#x3E; 1. They obtain a result
similar to Brown’s. Because they include the extra term f a (o) = 0, the
substitutions which arise in their work are different to both Brown’s and
our’s. Ito and Yasutomi point out that their substitutions may be viewed
as automorphisms of the free group generated by 0 and 1. (The same is
true of Brown’s and of our’s.) In this context we also mention the work of
H. Cohn, ~2~, where, automorphisms of the free group of rank two and the
invariance of certain sequences under substitutions are discussed.

Our approach is to reformulate the problem in terms of the cutting se-
quences of lines in the plane. A precise definition of cutting sequences and
some of their properties will be given in the next section, §2. Their connec-
tion with the sequences f a is described in the theorem at the end of that
section. Our main theorem for substitution invariant cutting sequences is
proved in section §3. The translation of that theorem into a corresponding
one for sequences of the form f a together with a discussion of the relation-
ship between our work and that of Brown and also of Ito and Yasutomi is
provided in the final section, §4.

2. Cutting Sequences
The cutting sequence of a general line in the plane is described by Series,
[5]. Here however, we only consider lines of the form y = ¡3x with ~3 a
positive irrational and we restrict our attention to the positive quadrant.
The cutting sequences of such lines are defined by the following procedure.
Construct, in the first quadrant of the plane, the square grid consisting of all
vertical and horizontal lines through integer points. Label the intersections
of y = /3x with the grid using 0 if the grid line crossed is vertical and 1 if
it is horizontal. The sequence of labels, read from the origin out, is called
the cutting sequence of y = 3x and is denoted here by In describing
these sequences we shall use the standard abbreviation 0~ for a block of
1~ consecutive 0’s. The expression 1 ~ will be interpreted similarly. When
I~ = 0 the empty block is meant.

We will consider the effect of certain substitutions on the sequences S{3
and hence establish some of their properties. First, however, we note that
# is uniquely determined by that is, if q is another positive irrational
and Sq = S{3 then q = /3. To see this, observe that if y ~ # then there are
points of self-intersection of the grid lying between the lines y _ -ix and
y = ,~x and hence Sq # 

Let R denote the substitution
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Since reflection in y = ~ interchanges the (3x and y = and

also the horizontal and vertical lines of the grid, it can be seen that

If 0  #  1 then 1/p &#x3E; 1 and it follows that we can, if desired, use R to
deduce the properties of the cutting sequences of lines with slope less than
1 from those of lines with slope greater than 1.

For k &#x3E; 0 let Gk denote the substitution

We claim that

In order to prove this, we allow the vertical grid lines to partition y = /~x
into segments. Specifically, set Pn = (n, n(3) and for n &#x3E; 0 denote the

segment of y = ~~ from Pn up to including Pn+i but excluding P~,,
by Evidently the block of S/3 corresponding to the segment L~, is 1Z0
where i = [(n + 1)/~~ - [no]. Set (~’ _ /~ + k and similarly partition the line
y = into segments Ln, so that, the block of So, corresponding to L’n is
1jO where j = [(n + 1)/?] - [n,8’]. Since (3’ = # + k, we know j = i -t- k and
thus 1~0 = Gk (li0). The truth of the claim is now clear. We remark that
the linear transformation (x, y) r-~ (x, y + kx) transforms Ln into Li and

°

We have just seen that So can be partitioned into blocks of the form li0
where i = [(n + 1),8] - [no]. Since the only possible values for i are b and

b-f-1 where b = [,8], the only possible blocks occurring in such a partitioning
are 1b0 and 1 (b+1)0. Because,8 is irrational both must occur. Further, if
n = 0 then i = b and so So starts with 1 bOo

For k &#x3E; 0 let the substitution Hk be defined by Hk = Gk o R, so that,

The sequence can also be partitioned into the blocks 1 and 1b0 and
therefore is the result of applying ~b to some other sequence of 0’s and l’s.
By using Hb = Gb and the properties of Gb and R described above, it
is not hard to verify that in fact
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where ~3’ = 1/(/3 " b). We can now repeat the argument starting with SO,
and so on. The resulting algorithm is best understood by expanding (3 as
a continued fraction, say .

where bo - b &#x3E; 0 and bl, b2, b3, ... are positive integers. If for i &#x3E; 0 we

define

then bi = [pi] and (3i+l = l/((3i - bi) and so S,; = Hb; (S¡3i+l). By
induction we obtain

As i increases the strings defining the composition Hbo o o ... o Hb=
lengthen and our description of S¡3 improves. While it is not necessary for
the purposes of this paper, we point out that this expansion leads to an
expression for So as the limit as i increases to infinity of the strings

-- -- -- I- 1

The following theorem describes the connection between the sequences
So and the sequences fa. In its proof (and that of the lemma in section
§3) we will use a cancellative property of the substitutions R, Gk and H.
Specifically, if S and S’ are any sequences of 0’s and 1’s and W one of R,
Gk or Hk then W (S) = W (S’) if and only if S = S’.

THEOREM 1. Let a and {3 be irrationals with 0  a  1 and 0 &#x3E; 0 then

fa = S{3 if and only if 
-t

Proof. Consider the line y = cxx and its cutting sequence Sa. As before,
let the vertical grid lines partition y = ax into segments. That is, set

(n, na) and for n &#x3E; 0 let Ln denote the segment from Pn up to 
including but excluding Pn. The block in Sa corresponding to Ln is
1 ~ 0 where

This block is 0 if fa(n) = 0 and 10 if fa(n) = 1. Clearly, applying the
substitution
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to fa yields the cutting sequence Sa of y = ax except for the block due to
the segment Lo . The missing block is 0 and thus applying the substitution

yields the entire cutting sequence, that is, V = S a . We can now

deduce that, fa = S{3 if and only if Sa = V (S~). The substitution V is
equal to l~ o Hi and so

where q = 1 / ( 1 / ~ -~- 1). It follows that f a = S¡3 if and only if S a = Sq but
S a = 5, if and only if a = 7 and the proof is complete.

3. Substitution Invariant Cutting Sequences
Theorem 1 shows that Brown’s problem is solve’d if we can characterise

those # for which there is a substitution leaving S3 invariant. In order to
do that we require the lemma immediately below. Following the lemma we
state and prove our main theorem. It contains the characterisation sought.

LEMMA. Let ~3 &#x3E; 1 and y &#x3E; 1 be irrationals, = [bo, bl, b2,... ] and
7 = [co,Ci,C2?...]. If there is a substitution W such that W = 5.~,
then, either,

(1) co &#x3E; bo, W = Cco-bo and ~3 - bo = y - co, or,
(2) there exists a substitution W’ such that W = and further,
W = where II = [Cj ~2, c3, ... ~.

Proof. Let ~31 = [bi, b2, b3, ...] &#x3E; 1, qi = &#x3E; 1 and 12 =

IC21 C37 c4, ... ~ &#x3E; 1, so that, S¡3 = Hbo (SO,)7 5, = H Co (5,1) and 8’1 =
HC1 (S12) and suppose W where W is the substitution

The two possible outcomes in the lemma depend on the two possible forms
of WI.

Case ( 1 ) : The string WI does not contain a 0. In this case we will show
that co &#x3E; bo and W = G Co -bo. It will then follow that

and hence ^/ = # + co - bo implying that statement (1) of the lemma is true.
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If WI does not contain a 0 then it is of the form 12 for some i &#x3E; 1 (the
case i = 0 clearly does not arise). By counting the number of l’s between
0’s in S,~ we will show that, in fact, i = 1. First note that Wo contains a

zero, so that we can write Wo = where j and k are non-negative
integers and Xo is some block of 0’s and l ’s which is either empty or ends
with a 0. We know So starts with 1 boO and contains the block 

thus, S starts with and contains On substituting
the expressions for Wo and WI we find that Sq starts with and

contains Thus ibo -~ j = co = 

which can only happen if i = = 0 and i = co - bo, so that,

To see that W = Gco-bo it remains to show that Xo is empty. We suppose
not and obtain a contradiction. Since Xo occurs immediately after a 0 in
Sq every 0 in it is preceded by 1 Co at least. It follows that Xo = Hco 
for some string Let V be the substitution

and note that H Co o V = W o Hbo and thus

It follows that V (S{31).=:= We use this last equality to examine the
form of Xi. By counting the number of l’s between 0’s in S,y1, we see
that Xi contains a 0 (by assumption Xo is non-empty) and we can write
Xo = I’OYoli where i and j are non-negative integers and Yo is some block
which is either empty or ends with a 0. We know Sol starts with a 1 and
that 110 occurs: Therefore, starts with 1Xo and IXO’LXO’O occurs. On
substituting Xo- = 1iOYo1j we find that starts with and that

and 01jO both occur. It follows that i + 1 = Cl and j + 1 -f- i
and j are either el or el + 1. The only possibility is that ci = 1, i = 0 and
j - 1. Thus Xo = OYo 1 and

Since ci = 1 and Yo occurs immediately after a 0 in there is some (pos-
sibly empty) string Yo such that Yo = Let U be the substitution
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and observe that ~I1 o U = ~ o G1 and hence

It follows that U (5,61-1) == S,y2 . We can now examine Y¿. The sequence
S,-i contains 10’1 and for some i &#x3E; 0 and therefore 8’2 con-
tains O(IYÖl)i1Y¿0 and Again, by counting 1’s in these
expressions, it is clear that Yo is not empty and in fact contains a zero.

Further, since Yo is followed by a 0 in 8’2 it must end with 1~2. But YO,
is also followed by 12 implying that 1(12+2) occurs. This contradicts the

properties of and our assumption about Xo was not correct. It follows

that Xo is the empty string and W = G Co -bo as initially indicated.

Case (2): The string Wl contains a 0. In this case we will show that

H~o (Wó) for some string Wo . We already know that WI = ( W1 )
for some string W1 (since W1 is the initial segment of S~ and thus every 0
in it is preceded by at least). It will follow then, that W = o W’
where W’ is the substitution

and in this event, since

we know W’ (S{3) == and statement (2) of the lemma is true.
We will show that Wo = H,,, (Wó) by supposing otherwise and obtaining

a contradiction. If Wo is not of the stated form then it must begin with li0
where i  co . We write Wo = l i 0Xo where 0  i  co and Xo is possibly
empty. We are assuming WI contains a 0 and since it is the initial segment
of S~ we can write W1 = where j is a non-negative integer and
X, is either empty or ends with a 0. The blocks W1 Wo and W1 W1 both
occur in S~ and thus and do also. This implies i = co - l,
j == 1 and .

The blocks and X, are preceded by 0’s in Sq and thus there exist
(possibly empty) Xo and X’ such that Xo = Hco (Xo ) and X, - 
Let V be the substitution
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so that H Co o V = W o G1 and therefore

It follows that V (So-,) = We use this last equality to examine X’ 0
and There are two possibilities for X1..

S ubcase ( 1 ) : The string X{,’contains a 0. Since 1X{ is the initial

segment of and X1 occurs in S’1 preceding both a 0 and a 1, we can
write .X1 = where Y1 is either empty or ends with a 0. Thus
the occurrence of X{ 1XÖ1 in implies that Xo is not empty and in fact
begins with 0. We write Xo = oYo where Yo is possibly empty. Hence

As usual, there exist (possibly empty) Yo’ and Yl’ such that ~ = H,, 
and Y1 = H,, (~7)’ The form of Y/ may be elicited using the fact that
~7 (S/3-l) = S’)’2 where

That this is true follows from the equalities H~1 o U = ~ a,nd V (8(3-1) =
S’l = (S’2). Since contains OFO and 01 (i+1)0 for some i &#x3E; 0,
the sequence SY2 contains and * As

before, by counting l’s between 0’s, it is clear that Y1 contains a 0. Further,
since Yl is followed by a 0 and by a 1 in it must end with 112. But Yi,
is also followed by 12 implying that lO2+2&#x3E; occurs. This is a contradiction
and our assumption about X1 was not correct.

Subcase (2): The string X1 does not contain 0. As before, we use the
fact that V (8(3-1) = where V : 0 - 1 X11 Xo , 1 - 1 X10 to determine
the form of X’ 0 and Clearly Xo is not empty and in fact contains a
0. We write X’ and X{ = 1’~ where i, j and k are non-negative
integers and Yo is either empty or ends with a 0. Note that Yo 
for some (possibly empty) Assume for the moment that {3 - 1 &#x3E; 1,
that is, bo &#x3E; 2. In this case, S’l starts with 1XiO and both 01Xi1X¿ and
Xo 1X10 occur. On substituting the expressions for Xo and X1 we find that
S’l starts with 1 (l+k)O and that both 01(k+2+i) 0 and occur. The

only possibility is that ~+l=ci,z==0 and j = 0 or 1. We have shown
that X’ = OYo lj and Xi = and so
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where j is 0 or 1. We now claim that the result of the substitution

in is 51’2. Again this can be verified by checking that H Cl o U = V.
The equation U (S/3-i) = S,y2 and the form of U satisfy the hypothesis
of case (1) and hence U = This is clearly impossible and our
assumption that ~3 - 1 &#x3E; 1 was wrong. Assume now that ;~ - 1  1,
so that, bo = 1 and f31 = 1/(~3 - 1). Since R (S~1 ) = we know
that V o R = 5,1. Clearly then, starts with l.LYi 1X¿ and both
Xo’lX’IXO’ and occur. On substituting the expressions for Xö and
X1 we find that starts with l~~+2+Z}0 and that both 01~~+~+2+i~o and
Ol~j+1+~~0 occur. The only possibility is that 1~ + 2 = cl, i = 0 and j = 1,
that is, Xo = OYo1 and X’ = 1(cl-2), so that,

Let U be the substitution

and note that and thus

It follows that U (5,~1 _1 ) = 8"’2. However, we have already shown in the
final argument of case (1) that this situtation leads to a contradiction.
Again, we conclude that our assumption about X’ was not valid.

There are no more possibilities and the proof of the lemma is complete.

THEOREM 2.

(1) Let ~3 &#x3E; 1 be irrational. The cutting sequence So of the line y = /3x
is invariant under some non-trivial substitution W if and only 
has a continued fraction expansion of the form f3 = [bo, bl, ... , bn]
where bn &#x3E; bo &#x3E; 1. Further, if that is the case and n is minimal
then W must be a power of

and all such substitutions leave Sp invariant.

(2) Let 0  ,~  1 be irrational. The cutting sequence S~ of the
line y = ~3x is invariant under some non-trivial substitution W
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if and only has a continued fraction expansion of the form
(3 = where bn &#x3E; bo . Further, if that is the case
and n is minimal then W must be a power of

- - .. - .. -

and all such substitutions leave So invariant.

Proof. Because the substitution R interchanges the sequences So and Sl/o,
part (2) of the theorem is an easy consequence of part (1). We give our full
attention to part (1).
We start with the reverse implication, that is, given # _ [bo, bl, ... , bn]

where bn &#x3E; bo we will show that So is invariant under the non-trivial
substitution

By direct calculation, W ( S ~ ) = S,~ where q = [be , 
We are given that /1 = [bo, b1, ... , bn) and therefore /1 = and W fixes 
as required.

Next we prove the forward implication, that is, given that So is invariant
under some non-trivial substitution W we will show that # = (bo, b1, ... , bnl
where bn &#x3E; bo &#x3E; 1. We write # = ~bo, b1, b2, ... ) . Since W = S~, the
lemma applies and thus, either, W = Go, or, there exists a substitution W’
such that W = Hbo o W’ and W’ (8ø) = Sol where ~31 = [61,62~3~ ... , ) .
Because W is non-trivial, the latter must be true. A further application of
the lemma to W’ (S~) = S , implies that, either,

If condition (1) is true, we are finished since we have shown that bo ,
W = Hb,, o Gbl-bO and j3 = [bo, If condition (2) is true, the lemma can
be applied again to W" (S (3) = S02 and so on.

Repeated applications of the lemma must eventually lead to condition (1)
because each application strictly reduces the combined length of the strings
defining the relevant substitution. Let the total number of applications be
n + 1 &#x3E; 2. From the arguments above it is clear that bn &#x3E; bo and
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Again, direct calculation shows W (S,3) = S.~ where

By assumption W = S~ and so q = ~3 and # = [bo, bl, ..., 
The first statement in part (1) is now proven and we deal with the

second. Suppose 0 = (bo, bl, ... , b~) where bo &#x3E; 1 and that V is a

non-trivial substitution fixing Further suppose n is minimal. We will
show that 17 = Wk for some k &#x3E; 1 where

(By Wk we mean the composition copies of W). From the proof of the
first statement we know (bo, b1, ... , where bm &#x3E; bo and that

Since n is minimal there is some l~ &#x3E; 1 such that m = kn. Thus

But Hbn = o .Hbo and so V = W’, as claimed. That all such

substitutions fix S{3 is trivial and the proof is complete.

4. S ubst it ut ion invariance for t he sequences f a

Using Theorem 1, we can express our results for the sequences S{3 in
terms of the sequences f a . The mathematics is not complicated and we
obtain the following theorem.

THEOREM 3.

~ 1 ) Let 1/2  oe  1 be irrationals. The sequence f a is invariant un-
der some non-trivial substitution W if and only if a has a contin-
ued fraction expansion of the form c~ _ [0, 1, a2, a3, ... , an~ where
an &#x3E; c~2 . Further, if that is the case and n is minimal then W must
be a power of

and all such substitutions leave fa invariant.

(2) Let 0  a  1/2 be irrational. The sequence fa is invariant un-
der some non-trivial substitution W if and only if a has a con-
tinued fraction expansion o~’ the form cx = [0,ai,~2?...?c~] where
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an + 1 ~ 2. Further, if that is the case and n is minimal then
W must be a power of

and all such substitutions leave fa invariant.

Observe that if 0152 = (0~, l, a2, a3, ... , a~~ where an &#x3E; a2 then 1 - a =

(0, a2 + 1, a3, ..., an] where an + 1 &#x3E; a2 + 1 &#x3E; 2 and vice versa. This type of
relation is to be expected when it is noticed that applying R interchanges
fa and f, - .

Next, we compare our results with those of Brown. We start with his
Theorem 1. It states that, if a = [0, a1, ... , am] then f a is invariant under
the substitution

where, for k &#x3E; 1, the substitution hk is defined by

An easy calculation shows hk = and since = Hk
we have

There are two possibilities for namely, a1 = 1 and 2. If al = 1
then a = [0, 1, a2, a3, ...,, am,1, a2 and by part (1) of our theorem, fex is

fixed by the substitution

Since Go "is trivial and ~so is R o Hal-1 when a, = 1, we find, as expected,
that V = W . If ai &#x3E; 2 then a = [0, a,, a2, ... , am, all and by part (2) of
our theorem, fex is ~fixed by the substitution

Again T~ = W, this time because I~1 = G1 0 .~. The theorems are clearly
consistent.

Brown also shows that when cx = ~0, 5, l,1,1, ... ~ there are no non-trivial
substitutions fixing fa. This is evident from part (2) of our theorem. The
remainder of Brown’s paper focuses on general quadratic irrationals and
substitutions of the form s - C1, t -~ C2 , where s and t are finite strings
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of 0’s and l’s and Cl and C2 are finite strings of s’s and t’s. While such
things are not dealt with here, we remark that our methods can also be
applied to them.

We conclude with a discussion of the relevant results in the paper by
Ito and Yasutomi. As mentioned Ito and Yasutomi consider substitution
invariance for the sequences where n = 0 is allowed. Since the initial
term is fa(O) = 0, we denote these sequences in the natural manner by 0 f a .
For 0  a  1 they define a sequence x(a) of O’s and 1’s and show that if a
is irrational with continued fraction expansion, say a = [0, aI, a2, a3, ...],
then

They also introduce the substitutions

and

Observe that 7~ = R o Hl but no such relation exists for 71. Their main
result on substitution invariance (for the sequences Of a) is contained in
Theorem 2.4. While a slightly weaker result is actually stated, it is apparent
from their work that if x(a) is periodic with minimal period, say

then 0 fa is fixed by the substitution

Again we are abbreviating the composition of i copies of a substitution 7
by ~y~. The connection between this result and ours may be found by noting
that if S and S’ are any, two sequences of 0’s and l’s then ,0 (OS) = OS’ if
and only if R o = S’ and 71 (OS) = 0 S’ if and only if = S’. It

follows that, if W = 0 ... o .y1 ~ then, W (0/~) = 
if and only if V = f a where

Given that 1 a2 oa3 ... la- 0~‘ is a period of 1r( a), there are three pos-
sibilities, namely,
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It is not hard to verify now that Ito and Yasutomi’s work agrees with ours.
We stress however, that, the index m is (by definition) even and therefore,
although the period of is minimal, the expressions for a just listed may
not be. When this occurs, V = U2 (where I~ is the minimal substitution
fixing fa) and v itself has no corresponding W.

Ito and Yasutomi have not discussed the question of whether there are
other solutions to the equation W (Ofa) = It appears that our re-
sults for the sequences fa cannot be used to answer this question directly.
However, we believe that our methods are applicable (with appropriate
modifications) and could be used to show that there are no other solutions.
Since W = 0 fa if and only if R o W o R (lf1-a) = 1 fl-a, an equiva-
lent problem is the solution of the equation W (1 fa) = 1 fa. Note that the
sequence 1 fa is an equally justified extension of fa when fa is viewed as
the cutting sequence of a line (the line y = /3~ where /3 = 1/(1/a - 1) to
be precise).

In the final section of their paper, Ito and Yasutomi also provide some
insight into the question of substitution invariance for inhomogeneous se-
quences, that is, sequences of the form

Such sequences are of course the cutting sequences of arbitrary lines in
the plane. One of the authors (Crisp) of this paper is currently preparing
for publication a complete solution to this more general problem. The

sequences 0 fa and 1 fa will appear as special cases.
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