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Higher order relations for a numerical semigroup.

par A. CAMPILLO AND C. MARIJUAN

Introduction. Numerical semigroups are useful in the study of curve
singularities and Weierstrass points of smooth projective curves. The arit-
metical classification of numerical semigroups is not an easy question be-
cause of the complexity of their inner structure (see [6]). Our aim is to

measure this complexity by looking at the (higher order) relations and
showing how the complexity increases when one considers more general
families of semigroups.

Let ,S‘ be a numerical semigroup, i.e. an additive subsemigroup ofN with
Card(N - S)  oo. Let be the minimal set of generators of S,
i.e. is the least element in ,S’ - &#x26;jN and g being determined by the

jx
condition ,S’ = §£ bjN. One wants to study the relations for an element

&#x3E;g
m E ,S’, namely the set of expressions m = with io, ..., i EN.
Assume that for such an expression one 0 for j in a certain subset
J of A = ~0, 1, ..., g~, then m - ,S where 6y = L bj. Conversely, if

° ° 

jE .7
m - 6j E ,S’ then a relation with ii 0 0 for j e J does exist.

Let us denote by Am the set of subsets J of A such that m - b.l E S.
Since J E and J’ C J implies J’ E Am, is an abstract simplicial
complex on the vertex set A. Thus, this arithmetical question can be stud-
ied by means of combinatorial tools such as these simplicial complexes. The
natural invariants to be considered are the Betti numbers hi(åm,), i.e. the
ranks of the augmented homology for the simplicial complex Am, . Thus,
asociated to a semigroup one has a square of integer 

It is obvious that = 0 for i &#x3E; g and every m and it is also

clear that h~ (0~., ~ = 0 for m large enough and every i. In fact, if c is the
conductor of ,S’, i.e. the least element such that n E ,5’ for any n &#x3E; c, then

is the full sirriplex on the g + 1 vertices for 
= 0 for such values of m. Thus, the square can be assumed to be

bounded. We will also include in the square the values h-1 (0~.,,) which take
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a sense as one deals with the augmented simplicial chain complex. Thus
one has = 0 if m e S, m &#x3E; 0 and h_~ (~~ ) = 1 as Ao = 

In this paper we will describe the properties of the square corresponding
to symmetric, complete intersection and plane curve semigroups. Moreover,
we prove that the integer is exactly the number of degree m lineary
independent syzygies of order i for the ideal of the monomial curve in 
given by = tho.

1. Minimal resolution for the monomial curve

Consider a field K and let R = denote the semigroup algebra of
S’ over 7~ i.e. R = I m E ,S’~ C an indeterminate. If A is
the polynomial ring Ii ~X~, ..., Xg] the embedding in Ag+1 of the monomial
curve is given by the K-algebra homomorphism 16 : A - R, this, i =

0, ..., g. In fact R and A are graded rings with significative degrees only on
,S‘ C N in the following way

with Am, the vector space spanned by the monomials

the mapping cI&#x3E; being a degree zero homomorphism. This graded situation
corresponds to the ri *-action on the curve which extends to the affine space.

Now, let us consider the minimal resolution for R as a graded A-module.
By the Auslander-Buchbaum theorem it is a. finite (free) graded resolution
of length dim A - depth R = g

the integers Ii being the maximum number of lineary independent syzygies
of order i .

Thus, 11 is the cardina.lity of a minimal set of homogeneous generators
of I = Ker 16 and, according to the graded Nakayama lemma, one has

MA being the irrelevant maximal ideal of A, i.e. MA = 

For a minimal set of homogeneous generators of I one has the mapping
All - A, with Im 1&#x3E;, = I, sending the standard set of generators of
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A 11 to that given one of I. The mapping is also graded if on All one
considers the grading given by . 

’

m~ , ..., ml, being the degrees of the elements in the set of generators of I.
Now, setting No = I , by recurrence one constructs successive homogeneous
submodules N~ C minimal sets of homogeneous generators of Ni (with
li+l = elements) and degree zero graded mappings 

- Ali with = Ni, = 

Now if E9mES(Ni)m, is the graded structure of the submodule N;
of the dimensionality of the vector space

equals to the number of degree m homogeneous elements in a minimal
set , of homogeneous generators for In other words, according to the
minimal resolution, dimT(Vi(m) is the number of lineary independant order
i homogeneous syzygies of degree m.

In order to compute the above dimensionalities, let us consider the
Koszul complex for the elements tho, ..., tho in the ring R.

If eo , ..., e, is the standard basisgJf the R-module R9+ , and for J C A, J =
Ui  ...  j~~, one writes e.T = ejl Â ...1B ejq’ then dp is given by

for those J such that card(J) = p.
p 

If on one considers the grading (a.s R-module) such that deg(e./) =
b,J, then it is clear that each dp is graded of degree zero, so the Koszul com-
plex is a graded one and therefore it give rise to the family of complexes of
vector spaces

where = Rm-h.l and the differential mappings are given
as above. The following result relates the Koszul complexes (K.m) to the
combinatorial objects Am, .
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1.1 LEMMA. With notations as above one has

being the augmented simplicial homology vector space of with

values in K.

Proof. According to the above description one has

since = 0 when J ~ Taking into account that for J E Am, one
has K as K-vector space, it follows that is isomorphic to
the order p chain vector space for the simplicial complex Am, . Moreover,
it is obvious than the differential maps for correspond by the above
isomorphism to the differential maps for the simplicial complex, so the
results follows from these facts.

1.2 THEOREM. With notations as above one has

Proof. Both R and K are A-modules with structure homomorphisms
A - R, A -~ K, and respective kernels I and MA . Consider the minimal
resolution for R and take tensor product by Because of the minimality
of the resolution, the obtained complex

has differential mappings equals to zero for i &#x3E; 1. This shows that

On the other hand, the Koszul complex for the regular sequence x~, ..., X9
of A gives a resolution for K = A/MA as follows
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Taking tensor product by R one gets exactly the complex K., so the Koszul
homology is nothing but Tor’ A (I~, R)n1,’ By the lemma one has

Thus the theorem follows from the fact that Tor" A (K, R)

2. The square for symmetric semigroups

A numerical semigroup ,S’ is said to be symmetric if for any couple of
integers m, n with m + n = c -1 one has either m C S’ or n E ,5’. Symmetric
semigroups are exactly those for which the Ii-plgebra R is Gorenstein (If
any field). To see it, we will compute the Cohen Macaulay type r(R) =
dimf(Ext1 (K, R) and express the Gorenstein condition as r(R) = 1. If

q = q’ = (m R : q) R, m R being the irrelevant ideal for R, then
one has r(R) = as R) = HomR( R/m R, R/q) (takes into
account the exactness of the sequence

and the fact that tho .Ext1 (K, R) = 0. Now, both q and q’ are homogeneous
ideals so q’ = E9m,EA q = where A = {m E E

01 and B = {m ES I m - bo Thus r(R) = Card(T)
with T = A - B. Note that the element c - 1 + bo is always in T, so R is
Gorenstein -iff 

If R is Gorenstein and m + n = c - 1 with n 0 ,S’ then n + lbo E S and
n + (1-1)b~ ~ ,5‘ for some I. One has two possibilities, either n + (1- I)bo =
c -1 or  c -1. In the first case m = belongs to S ; in
the second one n + Ibo ft T so for some s E ,S‘, s &#x3E; 0 one has ni = n -- (1 -
1)bo + s 0 S. Now apply to n, the same argument and continue until the
first possibility occurs ; then m is the sum of differences n~ - ni-l (no = n)
which belongs to ,5’ by contruction, so m E S, which completes the proof
that ,5‘ is symmetric. Conversely, assume ,5’ is symmetric and take m E T ;
if then and therefore E ,S’ and
s &#x3E; 0, hence m -E- s - which is contradictory with m E T, so
T has only one element.

The Cohen Macaulay type is expressed in the square in terms of the last
. column, i.e. the (g - l)-th column, as follows

2.1 LEMMA. With notations as above one has m E T if and only if
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Proof. For m’ E ,S one has h~,_~ (~~"~~ = 1 iff is homeomorphic
to the sphere i.e. if ðm.’ is the complete simplex except the face A.
Thus hg-1 (11,." ~ ~ = 1 is equivalent to the conditions

Setting m = m’ - (bi -+- ... -f- above conditions are written as

m E S, i = 1,2,...,g
which are equivalent to m E ,5’, m - 6n % S and m ~- s - bo E ,5’ for any

Thus the Cohen Macaulay type is the sum of ones in the (g -1 )th column .
Gorenstein means that the only one in that column is that corresponding
to (c - 1 + bo) + 61 + ... -~ bq = d. In fact, the symmetry of the semigroup
implies a more strong property.

2.2 THEOREM. S is a symmetric semigroup if and only if the square is
symmetric relative to its center, i.e. for -1  i  g - 1 and m’, m" E S
such that m’ + m" = d one has

We will indicate two proofs ; one algebraic and other combinatorial.

Algebraic proof : Take a minimal graded resolution for the A-module R

and dualize by taking HomA (-, A) ; then one has a resolution of the canon-
ical module KR = Coker for R

This resolution is also graded and minimal (hence note that is M = gi M~., ,
N = E9N m, are finitely generated graded modules then lIon1 A ( M, N) is also
a graded module with H07-hA(M, N)n,, being the set of A-linear homomor-
phism from M to N which are graded of degree rn). Now, in the Gorenstein
case KR is isomorphic to R as graded module, so one has two minimal res-
olutions for R and hence, by comparing the degrees, one concludes
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Combinatorial proof : If m’+ m" = d one has the following relationship
between 0~"~ and åm,fI

as in fact, m’ - b,j E ,S’ implies c -- 1 - m’ + S which can be written as
d - m’ - bA-.1 rt. ,5‘. In the case that the semigroup is symmetric then the
converse is also true, i.e. one has

In general, for a simplicial subcomplex A of the complete simplex P(A) =
L, the dual simplicial subcomplex A* of L is defined to be the set of
subsets H such that A - H ~ A. Thus the theorem will follows from the
following result

2.3 LEMMA. With notations as above one has

Proof of the lemma. One has an exact sequence of complexes of aug-
mented simplicial homology as follows 

"

Taking into account that C* (~) is acyclic (as E is contractible) it follows
that

- -

(H*(E, A) denotes the relative homology, i.e. the homology of the simplex
C.(F-)IC..(A)). Now, one has

meaning the face defined by J, and by considering the cohomology of
~*, with dual basis notation one writes
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so it is clear that the bijective correspondence A*

establishes an isomorphism between the j{-vector spaces Ci+1 (A)
and C~’-2-~(0*). Moreover, it is elementary to realize that, up to a sign, the
boundary operators for the relative chain complex and for the cohomology
of A* are the same, so one concludes

Hence, from the fact that the homology and cohomology in the same
order have the same rank, one has

as required.

Remark. The converse of the theorem is obvious true, as if for i = -1

one has

J .  ...., .".... , , 
-

then h_ (0"., = 1 iff m’ = d, so R will be Gorenstein.

3. The square for complete intersection semigroups

A numerical semigroup S’ is said to be complete intersection when the
graded ring R = be a complete intersection ring, i.e. when the ideal
I = Ker V, V : A -~ l~ as in 1, can be generated by g homogeneous ele-
ments.

Assume ,5‘ is complete intersection and let /1, ..., f~, a homogeneous set of
generators for I. Let us denote by m1, ..., mo the degrees of the respective
elements f1, ..., fg. We will also assume mj  m2  ...  Then one
has the following result

3.1 THEOREM. Let S be a complete intersection semigroup and keep the
notations as above. Then for has

Nm, being the number of ways in which m can be written as a sum

We only give an algebraic proof.
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The elements /1 , ..., /g are a regular sequence for I , so the Koszul com-
plex of fl,..., f~, augmerited with the mapping 16 : A -~ .R gives a graded
resolution for R.

In terms of the standard basis E1, ...Eg of A9 the differentials are given by

so it is clear that the differential operators are zero modulo MA and there-
fore this augmented Koszul complex is a minimal resolution for R.

Now it is clear that Ejo must be homogeneous of degree (mjo +
in order to have graded differential operators of degree zero. Thus

is generated by the Ejo A ... A Ej¡ such that m = mjo + ... + mji and
theorem 3 follows from theorem 1.

Remarks. 1. Note that in pa.rticular for i = 0 one has = 0 iff

m ~ m~ and is the number of m j equals to mi. On the other
hand, for i = g - 1 one obtains

since a complete intersection is Gorenstein, and so is the only possibility
for having = 1.

2. There is several characterizations of the complete intersection prop-
erty in the literature. In [3] Delorme gives one in terms of the minimal
set of generators and in [5] Herzog and Kunz another one in terms of the
sequence ...  ml, with the above meaning (for general semigroups
we have 11 integers) as follows: One has m, + ... + m~ &#x3E; d and equal-
ity is true’iff ,S‘ is complete intersection. This criterion gives an idea why
the complete intersection semigroups are the only with a table having the
structure indicated in theorem 3.

3. A nice class of semigroups which are complete intersection are those
for which one has nibi E b~, ..., bi-l &#x3E; for i = 1, ..., g and ni = ei-1 lei,
with e~ = g.c.d.(b~, ..., bi). By a result of the Herzog [4] one has in fact
mi = 1 C i  g and therefore



258

Moreover, Bertin and Carbonne [2] show that for general semigroups one
has n1 b1 + ... + d and equality holds if and only if the semigroup
satisfies E b~, ..., bi-l &#x3E;. Thus, in this particular case the square is
determined by the generator set.

4. A particular case of 3 are the so called "plane curve semigroups"
arising as semigroup of values of analitically irreducible plane curve singu-
larities. For them one has in addition n;b;  bi+1, i = 1, 2, ..., g - 1, so it
is not difficult to see that in this case the in the theorem are all equal
to 1 or 0. Thus, for plane curve semigroups the square has only zeroes and
ones.

5. All the results in the paper are true if one considers general set of
generators for the semigroups ; we have taken the minimal one for the sake
of simplicity in the exposition.

6. In [8] some combinatorial properties of numerical semigroups are
given in terms of the graphs G~, obtained by considering the vertex set 
and taking the one dimensional faces as arcs. The relationship between the
complex Am can be also graphically studied showing again the complexity
of the semigroup structure (see [7]).

Examples. In the following examples we show the non zero entries in the
square.

(i) Non symmetric semigroup ,S’ = 3, 4, 5 &#x3E;

(ii) Symmetric non complete intersection S‘ = c .5, 6, 7, 8 &#x3E;
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