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Study of rational cubic forms
via the circle method.

[after D.R. Heath-Brown, C. Hooley, and R.C. Vaughan]*
par JEAN-MARC DESHOUILLERS

The circle method due to Hardy, Littlewood and Ramanujan, is a pow-
erful tool in the study of Diophantine problems of the type P(x, ..., x,q = 0,
when the number of variables is large compared with the degree of the
polynomial P. The last incarnations of this method in particular enabled
Heath-Brown to show that every non-singular rational cubic form in 10
variables represents 0, Hooley to shew that 9 variables suffice when there
is no local obstruction and Vaughan to give an asymptotic expression for
the number of representations of an integer as a sum of 8 cubes, as well as
a good lower bound for the number of representations as a sum of 7 cubes.
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Introduction

The problem whether every positive integer is a sum of four squares,
which may already have been considered by the ancient Greeks, has been
studied by many a 111athematician in the seventeenth and eighteenth cen-
turies, and was finally solved by Lagrange in 1770. The interest in and the
difficulty of this question come from the interplay between the additive and
multiplicative structures of the integers.

Similar conjectures can be easily formulated ; most of the time they
are intractable, but raise new mathematical developements. Historically
important are Goldbach’s problem (1742), every even integer is a sum
of two primes (at that time, 1 was considered a prime), and Waring’s
problem (1770), every integer is a sum of at most 4 squares, 9

cubes or 19 biquadrates, extended to higher powers in 1782.

Additive number theory deals with those questions ; we aim here to
present the so-called circle method which has been introduced by Hardy
and Ramanujan in 1917, and improved upon by Hardy and Littlewood a
few years later. This septuagenary tool has lost none of its vigour ; it is
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still used with benefit, as well for getting asymptotic evaluations, as we
shall see here, as for effective and efficient numerical estimates. Through
the -limited- study of diagonal forms (and essentially of diagonal cubic
forms) we perform this exhibition, suggesting some steps in the proofs of
the following results

THEOREM 1.- (D.R.Heath-Brown, 1982). Let F(x) := F(xi, ...x,g) be a non
singular rational cubic form. For s larger than or equal to 10, there exists
x in Q’ B {0} such that F(x) = 0.

THEOREM 2.- (C. Hooley, 19$7).Let F(x) be a non singular rational cubic
form in 9 variables. The equation F(x) = 0 has a rational non trivial

solution if and only if it has a non singular solution in each p-adic field
Theorem 3.- (R.C. Vaughan, 1985).Let rs(N) denote the number of

representations of the integer N has the sum of the cubes of eight positive
rational integers. As N tends to infinity, one has

where

One conjectures that the non-singularity condition may be raised in the
statement of Theorem ~. Davenport showed in ~963 that every rational
cubic form in at least ~6 variables represents 0 ; even in the case of non
singular forms this was the best known result before Heath-.Brown’s. In the
case of nonary forms, the Iocal condition can’t be dispensed with, as Mordell
showed in ~936. Theorem 3 was one of Davenport’s favorite conjectures and
I was told that he suggested its study to aII of his research students.

To end this introduction, let us mention the work of CoIIiot-Thélène,
Sansuc and Sir Swinnerton-Dyer, 1986 (a survey of their work is presented
in CoIIiot-Thélène, 1986). Attacking the problem through the algebraic
geometry, they get among other the presently best known results concerning
systems of quadratic forms. As far as cubic forms are concerned, this

approach leads to the proof of the following, which can usefully be compared
with Theorem 2 (less variables, but more subtle geometric conditions).
THEOREM 4.- (J.-L.Colliot-Thélène et P. Salberger, ~988). be a

number field and X C f ~~ a cubic hypersurface defined over K, with n &#x3E; 3.
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If X conta,ins a set of 3 conjugate singular points, and if X admits rational
points over aII the completions then X admits a rational point over
K.

1 Heuristic approach : the singular integral

1.1 Some computed data

Let us look at a table which gives, for every integer N up to 40,000
the minimal number of summands needed to writer N as a sum of positive
integral cubes : the numbers 23 and 239 are the only ones for which 9 cubes
are needed ; fifteen other integers, the largest of which is 8,402, require 8
cubes, and for all the other integers 7 cubes suffices. Would this table be
extended to 1015, , we would get the feeling that, from some point onward, 4
cubes suoEce... Thus, it seems easier to represent large integers than small
ones.

1.2 Study of the number of representations
This aspect was not taken into account in the studies performed during

the second half of the nineteeth century, from Liouville who showed in 1859
that every integer is a sum of at most 53 biquadrates, to Hilbert who proved
in 1909 that every integer is a sum of a finite number of k-th powers, and
hempner who concluded a work by Wieferich, establishing in 1912 that
every integer is a sum of at most 9 cubes.

The circle method, introduced in the context of Waring’s problem by
Hardy and Littlewood, takes into account this ability of large integers to be
more easily represented ; to know whether the integer N can be represented
as a sum of s integral k-th powers, they tried to determine the asymptotic
behaviour of the number of representations of N as a sum of k-th
powers.Thus, they concentrated on large integers, hence the success of their
method.

1.3 Integral expression for the number of representations
Let us first fix some notation. k represents an integer which is at least

2. We can restrict ourselves to the value 3.

N denotes an integer, which is assumed to tend to infinity.
For a given positive integer s, we denote by the number of repre-

sentations of N as a sum of s k-th powers

e~~~ denotes the complex exponential 
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The reader will easily give a proof of relation

by appealing, either to the orthogonality of characters e(h.), or to 
integral formula. We give here a probabilistic proof, leaving aside its inter-
est for a given explicit computation (Deshouillers, 1985).
we consider s independent random variables ~~ , ... , X,q wi th common

law 6(n), where b(a~ denotes the Dirac measure at the point
a, and the normalizing factor A is equal to + IJ -1. Each random

variable ~~ follows the law A The law of the variable

X := xf + ... + X q is the s-th convolution power of that of each it

is thus equal to ~’9 ~~ r,:(m)8(m), where r~ (m~ is the number of ways to
write m as a sum of s integral k-th powers, each of which is at most N ;
the coefficient is readily obtained from the characteristic function
(Fourier series) of X, which is the s-th power of that Formula 1.3.a.
follows from th at fac t an d th e trivial, eq u aIi ty and 

1.4 Heuristic order of magnitude of 

We give a continuous approximation to the problem under consideration :
let ...Z,q be s independent random variables each of which is uniformly
distributed on [0, N~ ~k~, and let us denote by Z the sum Z~ + ... + ZR . The
characteristic function (alias Fourier transform) of Z is the s-th power of
that by inverse Fourier transform, we get the density ps (t) of Z at
t:

The right-hand side is called the singular integral. When t = N, we
get

since one has
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Thus, the mean-value of r,,(N) is up to an Eulerian factor. It

is worth noticing that the singular integral does occur in the asymptotic
formula for the number of representations as a sum of 8 cubes (cf Theorem
3).

2 A p-adic approach : the singular series

Having explained the occuring of the singular integral in Theorem 3, we
turn to the interpretation of the singular series C~(N), according to Hardy
and Littlewood’s terminology.

2.1 Number of solutions of the congruence m~ +...~mq - N(mod q)

Let us denote by M(q) the number of solutions of the congruence under
consideration. The equality

follows easily from the orthogonality relations

and is the counterpart, in ZlqZ, to the integral formula 1.3.a. By rear-
ranging the right hand side of 2.1.a according to the value of (r, q, we
get 

- 

-

or

where

Now we start to enjoy the fragrance of Theorem 3 !
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2.2 Interpretation of the singular series

As it can be seen either directly from the Chinese remainder theorem, or
indirectly through 2.~.b, the function G is multiplicative, and this enables
one to write the singular series

as an Euler produet

By 2.1.b, we thus get

Noticing that p~~ R-~ ~ is the cardinality of a hyperplane in (l/pIZ)", we may
interpret each factor in 6(N) as a density for the solutions of

To the reader who might be tempted to go further in this direction we
recommand the paper of Lachaud, 1982, for an adelic formulation of the
circle method.

3. Classical Farey dissection : major arcs, singular series and
integral

We are now concerned with the computation of r,(N) from the integral
formula 1.3.a. The main expression in the integrand is the exponential sum

Its modulus is clearly maximal when a is an integer ; we start by studying
the contribution to r,,(N) of those a’s close to 0 in R/Z, or, what is the
same under the identification of RIZ to a neighbourhood of 0 in R, of those
a’s close to 0.
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3.1 Contribution of the first major arc (a close to 0)

Since S(a) is a continuous function of a, and S(0) = P (this equality
justifies the clumsy definition of P), analysis allows us to evaluate S(a) for
a close to zero.

Let us suppose that fN-1, wheree is any function of N tending to
zero at infinity. By Taylor’s formula, we get

One should notice that the contribution to r.,(N) of such an interval
around 0 has the same order of magnitude as the heuristic value.

Indeed, we used Taylor’s formula, which is somewhat weak (don’t we
teach it to our first year students ?). The Poisson’s summation formula

(when do we teach it to our students ?) is a much more efhcient tool. Let

and let f denote its Fourier transform ( f (t) := f(z)e(zt)dz) ; one has

hence

When lai ] is small enough 1/2), the function e(axk + vx~
does oscillate on [0, P] for 0, and the integral f P e(axk -~- vx)dx is
small, as can be seen by integrating by parts ; it is not difficult to show
that one has
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and it is then a routine computation to check that, + 1, the
con tri b u tion of th e in terval

is equivalent to p, (N) , the mean number of representations (cf 1.4.a and

1. 4. b) !

3.2 Contribution of the major arcs : distribution of powers in

arithmetic progressions

In section 2.2, we rewrote the singular series in terms of the number
of solutions of the congruences ~~ + ... + N( mod q). We wish to
explain here how the mean value G(q) of Gauss sums occurs when studying
the contribution to r.,.(N) of small intervals centered at rational points with
q as their denominator.

Let us start by estimating S(a/q) ; we have

There is no reason why the Gauss sum ~~_~ should vanish,
and indeed it usually does not ; for example, in the case when k = 3
and a/q = 1/4, it is equal to 2. This corresponds to irregularities in the
distribution of the k-th powers in arithmetic progressions. Hence, 
may have an order of magnitude comparable with that of We study
therefore the local behaviour of S around a/q as we did around 0 : we

introduce the major arcs
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where 0  a  q, (a, q) = 1 and q  Q. We should mention that the

choice is at that stage somewhat irrelevant ; generally Q is to be taken
as a power of P, e.g. P itself. important to notice that choosing Q
greater than P is possible, but very delicate : it is equivalent to studying
the distribution of a set of P integers in classes modulo an integer larger
than P.

The Poisson’s summation formula allows us to approximate

Collecting the contributions of the different major arcs, the union of which
is denoted by 9R, we get

PROPOSITION. For s &#x3E; 4k (and s &#x3E; 4 in the case of cubes), there exists an
A &#x3E; 0 such that, when N tends to infinity, one has

We recall that

4 Classical Farey dissection : minor arcs

Although it is the "core" in a traditional use of the circle method, we
treat this part briefly which depends in a fundamental way on the diagonal
nature of the forms implied in iVaring’s problem.
The union of the major arcs does not cover R/Z ; a simple way to see

this is to compute the total length of the major arcs. In the case of cubes,
we have 

a - -(J _

and so the total length of the major arcs tends to 0 when ~1ï tends to

infinity i We call minor arcs the complementary set of the major arcs,
the minor arcs and denote it by m.

4.1 Weyl upper bound : 13 cubes

The sum S(a~, for a irrational, has been considered under a "dual" look
by Weyl in 1916 : for given cx, and P tending to infinity, he showed that
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S(a~/P tends to 0. From this point of view, that we do not develop here,
the result corresponds to the uniform distribution of the sequence (ank~ in
R/Z. Weyl’s method for majorizing leads, in the case of cubes, to
the upper bound valid for every E &#x3E; 0.

(For k-th powers, the exponent is 1 - 2~ ~).
From the upper bound 4.1.a, one easily deduces

Combining this result with 3.2.b (contribution of major arcs), we get an
asymptotic formula for the number of representations as sums of s cubes
as soon as

i.e. as soon as s is strictly larger than 12. In the same way, we get an
asymptotic formula for the number or representations as sums of k 2k-l + 1
integral k-th powers.

4.2 Parseval relation : 9 cubes

Though relation 4.1.a presents some weakness in that its exponent is

probably not the best possible one (considering the random walk with step
one would expect 1/2 to be right exponent), the real strength of that

formula is its uniformity over m. In applying 4.1.a to 4.1.b we waste this
uniformity since we look only for an É°’ norm. Parseval’s relation provides us
with an exponent sl2 in 4.1.b for s = 2, which is common, and also for s =
4, which is a little rnore subtle : the identity x‘~ + y~ _ (x+ y~(x2 - xy+y2)
permits one to majorize r2(n) by twice the number of divisors of n, hence
the upper bound

For s &#x3E; 4, we may thus write :
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wich leads to an asymptotic formula for the number of reprentations of an
integer as a sum of s cubes as soon as

that is to say as soon as s is strictly larger than 8, and, since s is an integer,
it means only that s should be as least 9.

In the ca.se of k-th powers, Hua could suitably generalize Parseval’s re-
lation and obtained the upper bound

which leads to an asymptotic formula for r,(N) when s &#x3E; 2k + 1.

We just briefly mention here the works by Vinogradov (improvement on
M7eyl’s lemma for k  12), Heath-Brown (improvement on Hua’s lemma
for k &#x3E; 6), Vinogradov, Davenport, Vaughan and others (solubility of ~~ +
... + zf = N when s has the order k log k, without estimating 

4.3 Number of representations as a sum of 8 cubes, after Vaughan

Let us go back to Hua’s inequality 4.2.b for cubes. It implies

whereas the contribution of the major arcs has order P~’~. As was noticed
by Hooley, using mean value results for divisor functions permits one to
replace Pf by a power of log P ; a result by Hall and Tenenbaum even leads
to

a,nd therefore to

Theorem 3 directly comes from the existence of a real C &#x3E; 0 such that
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We can see how narrow is the margin between 4.3.a and 4.3.b. To cover it,
Vaughan introduces several dissections : on m, according to the diophan-
tine properties of a, and on the integers between 0 and P (on which the
summation for S(a) is performed), according to their aritmetical proper-
ties. He can reinterpret the new diophantine equations and save a logarithm
through the estimation of the number of their solutions. Upper bounds of
type 4.3.b are then suffisant, and one can thus take as a suitable C in 4.3.c
any integer strictly less than 1.

4.4 Number of representations as a sum of 7 cubes

This iterative method is the root of the lower bound

obtained by Vaughan in 1987 for some c &#x3E; 0 and any sufficiently large N.
R. C. Baker and J. Brüdern recently entended this result to diagonal forms
in 7 variables.

In 1942, Linnik could prove the positivity for sufficiently large N,
by different considerations (ternary quadratic forms, distribution of prime
numbers in arithmetical progressions).
An asymptotic expression for r7 (N) has been conditionally given by Hoo-

ley, 1984, under the validity of the Riemann hypothesis for some global
Hasse-Weil L-functions.

5 - Non diagonal cubic forms

5.1 A non typical situation : the case of norm forms

As we have just seen, proving through the circle method that every suf-
ficiently large integer is a sum of seven cubes, is fairly recent. The above-
mentionned result by Davenport concerning cubic forms in 16 variables, as
well as Theorem 1 and 2 suggest that general forms are harder to handle.
Theorem 4 illustrate a possible use of certain geometrical considerations. It
is also possible to rriake use of some algebraic features, as in the following
results, the first of which deals with cubic forms in 7 variables (and more
generally with forms of degree k in 2k + 1 variables).

THEOREM 5. - (B.J. Birch, H. Davenport, D.J. Lewis, 1962). Let (resp.
K-2) be a cubic number field and (resp. N2(X2,Y2,Z2)) the
norm form expressed with respect to a given integral bases. If the equation
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has a non-singular solution modulo p for every prime p which divides
(the product of the discriminants of !1 and K2), then it has

infiiitely many solutions with rational integral arguments.

By sieve methods, H. Iwaniec has even obtained results concerning the
number of representations by .some cubic forms in 6 variables. For the sake
of simplicity, we quote only a corollary of this result :

THEOREM 6. - (H. Iwaniec, 1977) Let lilo be a cubic Galois extension ; we
denote by the norm form with respect to a given integral basis. (There
exists an integer D and a family H of classes mod D such that a prime
number p totaly splits in K if and only if p is congruent to an element of
H module D).
Every sufficiently large even integer which is congruent modulo D to

the sum of two elements of H can be represented as Yl, +

y2 ~ z2 ~ wi th in tegral argumen ts.

5.2 Extension of the major arcs, after Vaughan

In the first four sections, we consider only diagonal forms. All that

concerns majors arcs can indeed be extended to non diagonal forms, thanks
to Fourier transform on 7L.4J. The first really curcial use of the diagonal
aspect occured in Weyl’s inequality (formula 4.1.a).
At the end of the 70’s, Vaughan noticed that the choice of the major

arc 931o,l we made in 3.1.c was only governed by a will to neglect as many
terms as possible in Poisson summation formula 3.1.a in order to get 3.1.b.
if a larger major arc is chosen, the function + vx does not necessar-
ily oscillate any longer, and the number of terms that can’t be neglected
increases with the size of the major arc. A decent extension still permits to
control the in which each term is taken
care of by the stationary phase method (expansion around the point where
kaxk-1 + v vanishes, leading to a Fresnel integral). Global out put : in
the case of cubes, one gets exactly the 3/4 exponant of Weyl upper bound,
and for higher powers an exponant which is at least 1, and this has little
value. However, one should notice that Vaughan’s idea has been used for
biquadrates, in a context where a certain numerical subtlety was looked
for. (Deshouillers, 1985). Vaughan’s method permits to write S(a~ as a
trigonometrical sum which, trivially treated, leads to Weyl upper ; but as a
further advantage, we have the possibility of keeping that sum explicit, for
subsequent cancellation. The reader, whom I thank for still being aboard,
should now be convinced that Theorem 1 for a non-singular cubic form



445

in 13 variables depends on a good knowledge of generalized Gauss sums
(Deligne’s Theorem) in the same way as "13 cubes" depends on the mere
Weyl’s upper bound.

Before explaining how one gains 3 extra variables, 1 mention the use of

Vaughan’s method by Cherly, 1989, who obtained a Weyl type extimate for
cubic trigonometrical sums on F2 ~X~, which is not possible to get by the
classical tools since, in F2, one has 3! = 0.

5.3 Intermezzo : Farey - Kloosterman dissection

Since we wish to keep explicit the above-mentionned trigonometrical
sums for any a E R/Z, we need a partition of R/Z consisting of major
arcs. When studying diagonal quadratic forms in four variables, Kloost-
erman met the same difficulty over sixty years ago. The solution he gave
turns out to be one of the keys to Theorems 1 and 2. it is worth men-

tionning that Kloosterman himself re-used it to obtain the first non trivial
upper bound for Fourier coefficients of holomorphic modular cusp forms ;
polished by Peterson, this idea was to be further developped by Selberg,
Kuznecov, Iwaniec et al. for studying Kloosterman sums on average (via
non holomorphic cusp forms), introducing what Hooley rediscover in a dif-
ferent context, and calls "double Kloosterman reffinement" .

To the Farey sequence of order Q, i.e. the set of rationals ~ in R/Z with
(a, q) = 1 and q  Q, Kloosterman connects the partition

5.3.a

where

5.3.b

the neighbours of § in the Farey sequence of order Q have been denoted
.

The challenge is to determine the endpoints of ~~~,~~ from the mere knowl-
edge of a and q ! In that aim, we use the fundamental property of Farey
sequences
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This implies

where nor a’ nor a" are explicity refered to.

It remains to express q’ (and similarly q") in terms of a and q only. We
first notice that q’ is well localised in an interval of lenght q ; we have indeed

(the lower bound comes from the fact that £ and 2013 are neighbours in the17 q

Farey sequence of order Q, so that ° °’, can’t belong to it).q q

Kloosterman then notices that relation 5.3.c permits to localise q’ modulo
q ; denoting by 7i the inverse of a modulo q, we have

Both relations 5.3.d and 5.3.e perfectly determine q’, thus the left endpoint
of ~,~~~~ in terms of a and q only. The right endpoint is treated in a similar
way.

An important and annoying aspect of the partition of R/Z considered in
5.3.a is that the arc ~~~,,~ related to the same q have different lengths. In

order to treat at the same time their contributions to the integral 1.3.a,
Kloosterman expands their characteristic functions in Fourier series, thus
introducing a term where ~~ is an additif character modulo q. The
simplest case leads to the so-called Kloosterman sums

for which he gives a nontrivial upper bound.

5.4 Cubic forms in 10 variables, after Heath-Brown

Actors are now on the stage ! Let F be a cubic form and P a positive
real number. The integral
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gives the number of solutions of the equation ~(x) = 0, under the condition
llxll,,  P. If we show that rF(P) &#x3E; 1 for a certa,in P (for example in
getting an asymptotic expression, or an asymptotic lower bound for rF(P)),
we deduce that the equation F(x) = 0 has non trivial solution.

We then use the Farey-Kloosterman partition 5.3.a, with the order Q =
p3/2 (one should keep in mind the remark formulated after definition 3.2.a):
on each major arc, the sum p e (,i5F(x» is transformed through the
use of the Poisson summation formula. The contributions of those major
arcs related to the same denominator are then gathered by Kloosterman’s
method. Output : we just ha,ve to evaluate the sums

On the map, the road is clear (Deligne with us !), but on the ground,
the situation is more rocky and bushy. Here are two main difficulties that
Heath-Brown ha.s to overcome :

- With the help of Katz, he gets the upper bound 0(p~’~+~)l2~ for the
modulus of the sum Su (p; b), which correspond to the maximal expected
cancellation. The difhculty comes from the term 7 in 5.4.b, which makes
more intricate the geometrical nature of the variety on which the sum is
performed (prism with hyperbolic base), and consequently majorizing 1 Su. 1
is harder, even in the best case when F is non-singular.

- In principle, it is easier to deal with sums b), for É &#x3E; 1 ; un-

fortunately, the maximal expected ca.ncellation in Su. (pf ; b) is not a.lways
observed. Heath-Brown shows that this cannot occur to often (one can also
consult S. Cohen, 1979) and proves that, on average, is an

admissible upper bound for 1 with arbitrary E.

Indeed, instead ofthe integral 5.4.a,, Heath-Brown uses the weighted one

where the smooth weight w lives in better harmony with the Fourier trans-
form than the characteristic function of the box llxll  ~?.

5.5 Cubic forms in 9 variables, after Hooley

This section has with the previous a relationship similar to that which
correct section 4.3 (sums of 8 cubes) with section 4.2 (sums of s cubes for
s &#x3E; 8).



448

A first effort consists in pursuing Heath-Brown method in order to treat
sums S1,. (k; b) with the same efficiency when k is the square of a squarefree
number, as when k is itself squarefree ; the case of higher powers can be
elementary treated in most cases. In this way, a factor of the order p2 may
be won. °

A few powers of log P are gained as well : some by choosing a compact
supported weight w, some others by smoothing the ends of the arcs ~nn,~~
defined in 5.3.b. 

The final thrust needs the complicity of Katz. A delicate estimate of four
power moments of trigonometrical sums allows to get, for a family of prime
numbers with positive density, upper bounds of the shape

with a constant strictly less tha,n 1! On average over the denominators of

Farey points (cf. the introduction to section 5.3), one saves a power of
log P, small, but crucial.

Let us last mention current works by Hooley, concerning nonary cubic
forms for which singular loci of dimension zero are only linearly independant
double points.

REFERENCES

R.C. BAKER, 1988, Diagonal cubic equations II, Acta Arith. 53 (1989), 217-250.

B.J. BIRCH, H. DAVENPORT, D.J. LEWIS, 1962, The addition of norm forms
Mathematika. 9 (1962), 75-82.

J. CHERLY, 1989, Sommes d’exponentielles cubiques dans l’anneau des polynômes
en une variable sur le corps à deux éléments, et application au problème de Waring,
Thèse de Doctorat d’Etat, Univ. Bordeaux I (1989).

S.D. COHEN, 1979, The distribution of Galois groups and Hilbert’s irreducibility
theorem, Proc. London Math. Soc (3) 43 (1981), 227-250.

J.-L. COLLIOT-THELENE, 1986, Arithmétique des variétés rationnelles et pro-
blèmes birationnels, Proc. Int. Congress Math. (1987), 641-653.

J.-L. COLLIOT-THELENE, J. SANSUC, Sir P. SWINNERTON-DYER, 1986, Inter-
section of two quadrics and Châtelet surfaces, II, J. reine ang. Math. 374 (1987),
72-168.

J.-L. COLLIOT-THELENE, P. SALBERGER, 1988, Arithmetic on some singular
cubic hypersurfaces, Proc. London Math. Soc. (3) 58 (1989), 519-549.



449

H. DAVENPORT, 1962, Analytic methods for Diophantine equations and Diophan-
tine inequalities, Univ. Michigan, (1962).

H. DAVENPORT, Cubic forms in sixteen variables, Proc. Roy. Soc. London ser. A,
272 (1963), 285-303.

P. DELIGNE, La conjoncture de Weil, I, Pub. Math. 43 (IHES, Paris, 1974),
273-307..

J.-M. DESHOUILLERS, 1985, Problème de Waring pour les bicarrés, Sém. Th. Nb.
Bordeaux (1984-1985), exposé 14, 47 p.

R.R. HALL, G. TENENBAUM, 1988, Divisors, Cambridge University Press.

G.H. HARDY, J.E. LITTLEWOOD, 1919-1928, cf. several papers on Partitio Nu-
merorum, in G.H. I-IARDY’s collected papers, Oxford, (1966).

G.H. HARDY, S. RAMANUJAN, 1917, Asymptotic formulae in combinatory anal-
ysis, Proc. London Math. Soc. (2), 17 (1918), 75-115.

D.R. HEATH-BROWN, 1982, Cubic forms in ten variables, Proc. London Math.

Soc. (3), 47 (1983), 225-257.

C. HOOLEY, 1977, On a new technique and its applications to the theory of numbers,
Proc. London Math. Soc. (3), 38 (1979), 115-151.

C. HOOLEY, 1984, On Waring’s problem, Acta Math. 157 (1986), 49-97.
C. HOOLEY, 1987, On nonary cubic forms, J. reine ang. Math. 386 (1988), 32-98.

H. IWANIEC, 1977, On sums of two norms from cubic field, in Journées de Théorie
additive des Nombres (Université Bordeaux I, 1977).

N.M. KATZ, Perversity and exponential sums. à paraître

H.D. KLOOSTERMAN, 1925, On the representation of numbers in the form
ax2 + by2 + cz2 + dt2, Acta Math. 49 (1926), 407-464.

H.D. KLOOSTERMAN, 1925, On the representation of numbers in the form
ax2 + by2 + cz2 + dt2, Proc. London Math. Soc. (2) 25 (1926), 143-173.

G. LACHAUD, 1982, Une présentation adélique de la série singulière et du problème
de Waring, Ens. Math. 28 (1982), 139-169.

Ju.V. LINNIK, On the represention of large numbers as sums of seven cubes, Doklady
Akad. Nauk SSSR 12 (1943), 218-224.

L.J. MORDELL 1936, A remark on indeterminate forms in several variables, J.

London Math. Soc. 12 (1937), 127-129.

H. RADEMACHER, 1969, Topics in Analytic Number Theory, Springer- Verlag.

R.C. VAUGHAN, 1981, Some remarks on Weyl sums, Coll. Math. Soc. Janos Bolyai
34 (Halasz ed.) Amsterdam (1984), 1585-1602.

R.C. VAUGHAN, 1981, The Hardy-Littlewood method, Cambridge (1981).
R.C. VAUGHAN, 1985, On Waring’s problem for cubes, J. reine ang. Math. 365

(1986), 122-170,
R.C. VAUGHAN, 1987, On Waring’s problem for cubes, II, J. London Math. Soc.
39 (1989), 205-218.



450

H. WEYL, 1914, Uber die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77

(1916), 313-352.

Centre de Recherche en Mathématiques de Bordeaux, C.N.R.S. U.A. 226
Université Bordeaux 1

351, cours de la Libération
33405 Talence Cedex, FRANCE.
dezou@ frbdxll. bitnet


