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A REVIEW OF GENERALIZED 
LINEAR MIXED MODELS 

Geert MOLENBERGHS*, Didier RENARD*, 
Geert VERBEKE** 

ABSTRACT 

A gênerai framework for modeling repeated categorical data is pictured, with three 
main model families : marginal, conditional, and subject-specific. The primary focus 
is on subject-specific or random-effects model, with some emphasis on the general-
ized linear mixed model. Estimation and optimization algorithms are discussed, to-
gether with available software. Advantages and disadvantages are pointed out. Thèse 
tools hâve been exemplified using a simple but illustrâtive analysis. Similarities and 
différences between linear mixed models and generalized linear mixed models are 
discussed in détail. 

Keywords : Conditional Model, Longitudinal data, Linear Mixed Models, Marginal 
Model, Random Effects, Repeated Measures, Subject-specific Parameter. 

RÉSUMÉ 

Un cadre général pour la modélisation de données catégorielles répétées est présenté. 
Trois familles principales de modèles sont introduites : les modèles marginaux, con
ditionnels et spécifiques au sujet. On traite principalement des modèles spécifiques 
au sujet, ou à effets aléatoires, en insistant notamment sur le modèle mixte linéaire 
généralisé. On discute l'estimation et les algorithmes d'optimisation, ainsi que les 
logiciels disponibles. Les avantages et désavantages sont également indiqués. On 
utilise ces outils pour présenter une analyse simple mais illustrative. Les similarités 
et les différences entre les modèles mixtes linéaires et les modèles mixtes linéaires 
généralisés sont discutées en détail. 

Mots clés : 

1. Introduction 

In applied sciences, one is often confronted with the collection of correlated 
data or otherwise hierarchical data. This generic term embraces a multitude 
of data structures, such as multivariate observations, clustered data, repeated 
measurements, longitudinal data, and spatially correlated data. In particular, 
studies are often designed to investigate changes in a spécifie parameter which 
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is measured repeatedly over time in the participating subjects. This is in 
contrast to cross-sectional studies where the response of interest is measured 
only once for each individual. Longitudinal studies are most appropriate for 
the investigation of such changes, together with the évolution of relevant 
covariates. 

A very important characteristic of data to be analyzed is the type of outcome. 
Methods for continuous longitudinal data form no doubt the best developed 
and most advanced body of research (Verbeke and Molenberghs, 2000) ; the 
same is true for software implementation. This is natural, since the spécial 
status and the élégant properties of the normal distribution simplify model 
building and ease software development. A number of software tools, such 
as the SAS procédure MIXED, the S-PLUS function lme and MLwiN hâve 
been developed in this area. However, also categorical (nominal, ordinal, and 
binary) and discrète outcomes are very prominent in statistical practice. For 
example, quality-of-life outcomes are often scored on binary or ordinal scales. 
In many surveys, ail or part of the information is recorded on a categorical 
scale. 

Two fairly différent views can be adopted. The first one, supported by 
large-sample results, states that normal theory should be applied as much 
as possible, even to non-normal data such as ordinal scores and counts. 
A différent view is that each type of outcome should be analyzed using 
instruments that exploit the nature of the data. Extensions of generalized 
linear models to the longitudinal case are discussed in Diggle, Liang, and 
Zeger (1994), where the main emphasis is on generalized estimating équations 
(Liang and Zeger, 1986). Generalized linear mixed models hâve been proposed 
and/or studied by, for example, Stiratelli, Laird, and Ware (1984), Wolfinger 
and O'Connell (1993), and Breslow and Clayton (1993). Fahrmeir and Tutz 
(1994) dévote an entire book to generalized linear models for multivariate 
settings. Subscribing to the second point of view, this review will présent, 
discuss, and illustrate methodology spécifie to the case of non-continuous data. 

In longitudinal settings, each unit typically has a vector Y of responses. This 
leads to several, generally nonequivalent, extensions of univariate models. In 
a marginal model, marginal distributions are used to describe the outcome 
vector y , given a set X of predictor variables. The corrélation among the 
components of Y can then be captured either by adopting a fully parametric 
approach or by means of working assumptions, such as in the semiparametric 
approach of Liang and Zeger (1986). Alternatively, in a random-effects model, 
the predictor variables X are supplemented with a vector b of random (or ran-
dom effects) effects, conditional upon which the components of Y are usually 
assumed to be independent. This does not preclude that more elaborate mod
els are possible if residual dependence is detected (Longford 1993). Finally, a 
conditional model describes the distribution of the components of Y, condi
tional on X but also conditional on (a subset of) the other components of Y. 
Well-known members of this class of models are log-linear models (Gilula and 
Haberman 1994). 
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A more elaborate sketch of the différent model families is provided in Section 2. 
Random-effects models, and in particular the generalized linear mixed model, 
are discussed in Section 3. Spécifie attention is dévoted to fitting algorithms 
(Section 4), as well as to software tools, illustrated by a case study (Section 5). 

2. Model Families 

Among the clustered data settings, longitudinal data perhaps require the most 
elaborate modeling of the random variability. Diggle, Liang, and Zeger (1994) 
and Verbeke and Molenberghs (2000) distinguish among three components of 
variability. The first one groups traditional random effects (as in a random-
effects ANOVA model) and random coefficients (Longford 1993). It stems from 
interindividual variability (ie. , heterogeneity between individual profiles). 
The second component, sériai association, is présent when residuals close to 
each other in space or time are more similar than residuals further apart. This 
notion is well known in the spatial and time-series literatures (Ripley 1981, 
Diggle 1983, Cressie 1991 ; Diggle 1990). Finally, in addition to the other two 
components, there is potentially also measurement error. This results from the 
fact that, for délicate measurements (e.g., laboratory assays), even immédiate 
replication will not be able to avoid a certain level of variation. In longitudinal 
data, thèse three components of variability can be distinguished by virtue of 
both replication as well as a clear distance concept (time), one of which is 
lacking in classical spatial and time-series analysis and in clustered data. 

This structure form the basis for the construction of the three modeling 
families referred to earlier : conditionally specified models, marginal models, 
and random effects models. The distinction between thèse is much less 
important for normally distributed outcomes than it is in this context. Indeed, 
for normally distributed data, marginal models can easily be fitted, for 
example, with the SAS procédure MIXED, the S-PLUS function lme, or within 
the MLwiN package. For such data, integrating a mixed-effects model over the 
random effects produces a marginal model, in which the régression parameters 
retain their meaning and the random effects contribute in a simple way to the 
variance-covariance structure. For example, the marginal model corresponding 
to a random-intercepts model is a compound symmetry model that can be 
fitted without explicitly acknowledging the random-intercepts structure. A 
compound symmetry model is defined by a covariance matrix with common 
variance a2 and common covariance pa2. In the same vein, certain types of 
transition models induce simple marginal covariance structures. For example, 
some first-order stationary autoregressive models imply an exponential or 
AR(1) covariance structure. As a conséquence, many marginal models derived 
from random-effects and transition models can be fitted with mixed-models 
software. For more détails, see Verbeke and Molenberghs (2000) ; see also 
Section 3.2. 

The above élégant properties of normal models do not extend to the gên
erai case of non-normally distributed repeated measures. For example, opting 
for a marginal model for repeated binary data precludes the researcher from 
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answering conditional and transitional questions in terms of simple model 
parameters. This implies that each model family requires its own spécifie 
analysis and, conséquently, software tools. In many cases, standard maximum 
likelihood analyses are prohibitive in terms of computational requirements. 
Therefore, spécifie methods such as generalized estimating équations (Liang 
and Zeger 1986) and pseudo-likelihood (Aerts et al. 2002) hâve been devel
oped. Both apply to marginal models, whereas pseudo-likelihood methodology 
can be used in the context of conditional models as well. In case random-
effects models are used, the likelihood function involves intégration over the 
random-effects distribution for which generally no closed forms are available. 
Estimation methods then either employ approximations to the likelihood or 
score functions, or resort to numerical intégration techniques (see Section 4). 

Thèse considérations imply it is important to reflect on which model fam
ily is going to be selected for analysis. In conditionally-specified models the 
probability of a positive response for one member of the cluster is modeled 
conditionally upon other outcomes for the same subject, while marginal mod
els relate the covariates directly to the marginal probabilities. Random effects 
models differ from the two previous models by the inclusion of parameters 
which are spécifie to the cluster. What method is used to fit the model, should 
not only dépend on the assumptions the investigator is willing to make, but 
also (to some extent) on the availability of computational algorithms. In the 
remainder of this chapter, we will briefly describe the marginal and conditional 
families. Subséquent chapters are dévoted to random effects models. 

2.1. Marginal Models 

In marginal models, the parameters characterize the marginal probabilities 
of a subset of the outcomes, without conditioning on the other outcomes. 
Advantages and disadvantages of conditional and marginal modeling hâve 
been discussed in Diggle, Liang and Zeger (1994), and Fahrmeir and Tutz 
(1994). 

Bahadur (1961) proposed a marginal model, accounting for the association 
via marginal corrélations. This model has also been studied by Cox (1972), 
Kupper and Haseman (1978) and Altham (1978). The gênerai form of the Ba
hadur model requires the spécification of a number of parameters, exponential 
in the number of measurements per subject, often prohibiting its use. 

Let us specify the Bahadur model in some détail. Assume the binary response 
Yij indicate if member j of unit i has the response under investigation. The 
marginal distribution of Y^ is Bernoulli with E{Yij) = P(Yij = 1) = 7¾. Next, 
to describe the association between binary outcomes, the pairwise probability 
P(Y{j = 1 , ¾ = 1) = E(YijYik) = TTijk has to be characterized. This joint 
probability of two members of the same unit can be modeled in terms of 
the two marginal probabilities 7¾ and 7 ¾ as well as a marginal corrélation 
coefficient : 

Covr{YihYik)^pijk- *«*-*«** 
[7Tij(l - 1Tij)-ïïik{l ~ 7Tifc)]1/2 
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In terms of this association parameter, the joint probability 7¾¾ can then be 
written as 

Kijk = ^ij^ik + Pijk[Xij{l - 7Tij)7Tik(l - 'ïïik))1' • 

Hence, given the marginal corrélation coefficient pijk and the univariate 
probabilities 7¾ and ^ ^ , the pairwise probability 7¾^ can easily be calculated. 

The first and second moments of the distribution hâve been specified. However, 
a likelihood-based approach requires the complète représentation of the joint 
probabilities of the vector of binary responses in each litter. The full joint 
distribution f(y) of Yi = (Yu,..., Yirii )l is multinomial with a 2n* probability 
vector. Let 

yJ'Kij ( 1 - ITij) yJlTijil- 7¾) 

where yij is an actual value of the binary response variable Yy. Further, 
let pijk = E(eij£ik), Pijke = E(sij6ik£ie), . . . , Pn2...ni = ^ 1 ^ 2 - - - ^ ) -
Then, the gênerai Bahadur model can be represented by the expression 
f(Ui) = fi(yi)c(yi), where 

/1(̂ ) = 1 1 ^ ( 1 - ^ ) 1 ^ 
3 = 1 

and 

c(Vi) = ! + 22pijk£ijeik + 22 Pijkeeijeikeie + . . . + Pii2...n4eiiCi2 - - - eini. 
j<k j<k<e 

Thus, the probability mass function is the product of the independence model 
fi(Vi) and the correction factor c(yi). The factor c(yi) can be viewed as a 
model for overdispersion. 

A drawback of the Bahadur approach is the existence of severe constraints 
on the corrélation parameter space. A gênerai study of this phenomenon is 
given in Declerck, Aerts and Molenberghs (1998). Molenberghs and Lesaffre 
(1994) and Lang and Agresti (1994) hâve proposed models which parameterize 
the association in terms of marginal odds ratios. Dale (1986) defined the 
bivariate global odds ratio model, based on a bivariate Plackett distribution 
(Plackett 1965). Molenberghs and Lesaffre (1994, 1999) extended this model 
to multivariate ordinal outcomes. They generalize the bivariate Plackett 
distribution in order to establish the multivariate cell probabilities. Their 
1994 method involves solving polynomials of high degree and Computing the 
derivatives thereof, while in 1999 generalized linear models theory is exploited, 
together with the use of an adaption of the itérative proportional fitting 
algorithm. Lang and Agresti (1994) exploit the équivalence between direct 
modeling and imposing restrictions on the multinomial probabilities, using 
undetermined Lagrange multipliers. Alternatively, the cell probabilities can be 
fitted using a Newton itération scheme, as suggested by Glonek and McCullagh 
(1995). 

However, even though a variety of flexible models exist, maximum likelihood 
can be unattractive due to excessive computational requirements, especially 
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when high dimensional vectors of correlated data arise. As a conséquence, al
ternative methods hâve been in demand. Liang and Zeger (1986) proposed so-
called generalized estimating équations (GEE) which require only the correct 
spécification of the univariate marginal distributions provided one is willing 
to adopt "working" assumptions about the association structure. Le Cessie 
and Van Houwelingen (1994) suggested to approximate the true likelihood by 
means of a pseudo-likelihood (PL) function that is easier to evaluate and to 
maximize. Both GEE and PL yield consistent and asymptotically normal esti-
mators, provided an empirically corrected variance estimator, often referred to 
as the sandwich estimator, is used. However, GEE is typically geared towards 
marginal models, whereas PL can be used with both marginal (Le Cessie and 
Van Houwelingen 1994, Geys, Molenberghs and Lipsitz 1998) and conditional 
models (Geys, Molenberghs and Ryan 1997, 1999). Alternative marginal mod
els include the correlated binomial models of Altham (1978) and the double 
binomial model of Efron (1986). 

2.2. Conditional Models 

In a conditional model, the parameters describe a feature (probability, odds, 
logit, . . . ) of (a set of) outcomes, given values for the other outcomes 
(Cox 1972). The best known example is undoubtedly the log-linear model. 
Rosner (1984) described a conditional logistic model. Due to the popularity 
of marginal (especially generalized estimating équations) and random-effects 
models for correlated binary data, conditional models hâve received relatively 
little attention, especially in the context of multivariate clustered data. Diggle, 
Liang and Zeger (1994, pp. 147-148) criticized the conditional approach 
because the interprétation of the dose effect on the risk of one outcome 
is conditional on the responses of other outcomes for the same individual, 
outcomes of other individuals and the litter size. Molenberghs, Declerck and 
Aerts (1998) and Aerts, Declerck and Molenberghs (1997) hâve compared 
marginal, conditional and random-effects models for univariate clustered 
data. Their results are encouraging for the conditional model, since they are 
compétitive for the dose effect testing and for benchmark dose estimation, 
and because they are computationally fast and stable. Molenberghs and 
Ryan (1999) discuss, in the spécifie context of exchangeable binary data, 
the advantages of conditional models and show how, with appropriate care, 
the disadvantages can be overcome. An advantage of such a likelihood-
based approach is that, under correct model spécification, efficiency can be 
gained over other procédures such as generalized estimating équations (GEE) 
methods. 

3. Random-Effects Models 

Models with subject-specific parameters are differentiated from population-
averaged models by the inclusion of parameters which are spécifie to the 
cluster. Unlike for correlated Gaussian outcomes, the parameters of the 
random effects and population-averaged models for correlated binary data 
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describe différent types of effects of the covariates on the response probabilities 
(Neuhaus 1992). 

The choice between population-averaged and random effects stratégies may 
heavily dépend on the scientific goals. Population-averaged models evaluate 
the overall risk as a function of covariates. With a subject-specific approach, 
the response rates are modeled as a function of covariates and parameters, 
spécifie to a subject. In such models, interprétation of fixed-effect parameters 
is conditional on a constant level of the random-effects parameter. Population-
averaged comparisons, on the other hand, make no use of within cluster 
comparisons for cluster varying covariates and are therefore not useful to 
assess within-subject effects (Neuhaus, Kalbfleisch, and Hauck 1991). 

Subject-specific parameters can be dealt with in essentially three ways : (1) as 
fixed effects, (2) as random-effects, and (3) by conditioning upon them. The 
first approach is seemingly simplest but in many cases flawed since the number 
of parameters then increases with a rate proportional to the sample size, 
thereby invalidating most standard inferential results. The second approach 
is very popular. There are two routes to introduce randomness into the model 
parameters. Stiratelli, Laird, and Ware (1984) assume the parameter vector 
to be normally distributed. This idea has been carried further in the work 
on so-called generalized linear mixed models (Breslow and Clayton 1993) 
which is closely related to linear and non-linear mixed models. Alternatively, 
Skellam (1948) introduced the beta-binomial model, in which the adverse 
event probability of any response of a particular subject cornes from a beta 
distribution. Hence, this model can also be viewed as a random effects 
model. The third approach is well known in epidemiology, more precisely 
in the context of matched case-control studies. In particular, conditional 
logistic régression is then often considered (Breslow and Day 1987). In 
gênerai, with so-called conditional likelihood methods, one conditions on the 
sufficient statistics for the random effects (Ten Hâve, Landis, and Weaver 1995, 
Conaway 1989). Note that the conditioning considered hère is différent from 
the one considered in Section 2.2, since hère we condition on random effects, 
rather than on outcomes. In the remainder of this section we will consider the 
beta-binomial model and classical mixed-effects models. 

3.1. The Beta-binomial Model 

Rather than modeling marginal functions directly, a popular approach is to 
assume a random effects model in which each litter has a random parameter 
(vector). Skellam (1948) and Kleinman (1973) assume the malformation 
probability Pi of any fétus in litter i to corne from a beta distribution with 
parameters a* and /¾ : 

p " i - i ( l _ p ) f t - i 

B(au0i) 
0<p< 1, 

where J5(.,.) dénotes the beta function. Conditional on Pi, the number of 
malformations Zi in the ith cluster follows a binomial distribution. This leads 
to the well-known beta-binomial model. 
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The mean of this distribution is 

jli = Ui-Ki = Ui (1) 
oci + A 

and the variance is a2 = n»7Ti(l -71-¾) | V f l wu^n 0* = 1/(^ + /¾). It can be 

shown that the intra-litter corrélation can be expressed as 

Pi = ] - — . (2) 
cti + /¾ + 1 

In a litter of size rii, the probability mass function of Zi can be expressed 
directly in terms of the mean and corrélation parameters (1) and (2) : 

~r| *i,Pi,rii)=[ 
m\ B{-Ki{pi

 1 - 1) + zu (1 - 7rQ(pi * - 1) + rij - Zj) 

Zi) B(7n(p-1 - 1 ) , ( 1 - ^ ) ( , 7 1 - 1 ) ) 
/ ( ^ " | ^ t , P i , n i ) = ( _ — — , (3) 

where B(.,.) dénotes the beta function. The only association parameter of this 
model is pi, which is the corrélation between two binary responses of litter i. 
The higher order corrélations of the beta-binomial model can be expressed as 
a function of the mean malformation probability -¾ and pi. The association 
in both the beta-binomial and the Bahadur model is expressed by means 
of the intraclass corrélation. It turns out that both models hâve the same 
first and second moments. As a conséquence, the parameter pi of the beta-
binomial model equals p^2) of the Bahadur model. The parameters -¾ and 
Pi of the beta-binomial model hâve a marginal interprétation and therefore, 
they are the parameters in the derived marginal model as well. This results 
in similarities between the beta-binomial and marginal models, such as the 
Bahadur model. 

It can be shown (Williams 1975) that the contribution of the iih cluster to 
the log-likelihood, h\f{zi\-Ki,pi,ni) = £i, can be written as 

U = X> L + -TEL.) +"gfln (i - * + -IBL.) 

-2>(i + -2ï-), (4) 

with i = 1,..., N. It follows from (4) that if the association parameter pi equals 
zéro, then the beta-binomial model reduces to the logistic régression model. 
Generalized linear model ideas can be applied to model the mean parameter 7^ 
(e.g., using a logit link) and the corrélation parameter pi (e.g., using Fisher's 
z transform). Kupper and Haseman (1978) compare the Bahadur model to 
the beta-binomial model. They conclude that the models perform similarly in 
three clustered data experiments, whereas they both outperform the (naive) 
binomial model. 

60 



A REVIEW OF GENERALIZED LINEAR MIXED MODELS 

3.2. Mixed Models 

Perhaps the most commonly encountered subject-specific (or random effects 
model) is the generalized linear mixed model. It is best to first introduce linear 
mixed models and non-linear mixed models as a basis for the introduction of 
generalized linear mixed models. To emphasize they fit within a single common 
framework, we first give a gênerai formulation. 

3.2.1. General Formulation 

Let yij dénote the jth measurement available for the ith unit, i = 1 , . . . , N, 
j = 1 , . . . ,71¾, and let yi dénote the vector of ail measurements for the ith 
unit, i.e., yiT = (yn,... ,yiUl). Our gênerai model assumes that yi (possibly 
appropriately transformed) satisfies 

yùbi-FiidM), (5) 

i.e., conditional on bi, yi follows a pre-specified distribution Fi, possibly 
depending on covariates, and parameterized through a vector 0 of unknown 
parameters, common to ail subject s. Purther, bi is a ç-dimensional vector of 
subject-specific parameters, called random effects, assumed to follow a so-
called mixing distribution G which may dépend on a vector I/J of unknown 
parameters, i.e., bi ~ G(xp). The bi reflect the between-unit heterogeneity in 
the population with respect to the distribution of yi. Différent spécifications 
of Fi will lead to différent models. For example, considering the factors made 
up of the outcomes y^ given its predecessors (yn,... , y 2 J _ i ) T leads to a so-
called transitional model. A model without any random effects bi is called a 
marginal model for the response vector yi. In the présence of random effects, 
conditional independence is often assumed, under which the components y^ 
in yi are independent, conditional on bi. The distribution function F2 in (5) 
then becomes a product over the n2 independent éléments in yi. 

In gênerai, unless a fully Bayesian approach is followed, inference is based 
on the marginalized model for yi which is obtained from integrating out the 
random effects, over their distribution G(xj>). Let fi(yi\bi) and g(bi) dénote 
the density functions corresponding to the distributions Fi and G, respectively, 
we hâve that the marginal density function of yi equals 

fiivi) = Jfi(yi\bi)g(bi)dbi, (6) 

which dépends on the unknown parameters 0 and xp. Assuming independence 
of the units, estimâtes of 0 and tp can be obtained from maximizing the 
likelihood function built from (6), and inferences immediately follow from 
classical maximum likelihood theory. 

Obviously, the random-effects distribution G is crucial in the calculation of 
the marginal model (6). One approach is to leave G completely unspecified 
and to use non-parametrie maximum likelihood (NPML) estimation, which 
maximizes the likelihood over ail possible distributions G. The resulting 
estimate G is then always discrète with finite support. Depending on the 
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context, this may or may not be a realistic reflection of the true heterogeneity 
between units. One therefore often assumes G to be of a spécifie parametric 
form, such as a (multivariate) normal. Depending on Fi and G, the intégration 
in (6) may or may not be possible analytically. Proposed solutions are based 
on Taylor séries expansions of fi(yi\bi), or on numerical approximations of 
the intégral, such as (adaptive) Gaussian quadrature, or on the EM algorithm 
(Dempster, Laird, and Rubin 1997). 

Although in practice one is usually primarily interested in estimating the 
parameters in the marginal model, it is often useful to calculate estimâtes for 
the random effects bi as well. They reflect between-subject variability, which 
makes them helpful for detecting spécial profiles (i.e., outlying individuals) 
or groups of individuals evolving differently in time. Also, estimâtes for the 
random effects are needed whenever interest is in prédiction of subject-specific 
évolutions. Inference for the random effects is often based on their so-called 
posterior distribution fi(bi\yi), given by 

f(h\„\ fi(yi\bi) 9(bi) m 

fi{Oi\yi) = -j , (7) / fi(yi\bi) g(bi) db{ 

in which the unknown parameters 0 and tft are replaced by their estimâtes 
obtained earlier from maximizing the marginal likelihood. The mean or mode 
corresponding to (7) can be used as point estimâtes for bi, yielding empirical 
Bayes (EB) estimâtes. 

3.2.2. Linear Mixed Models 

When continuous (normally distributed) hierarchical data are considered 
(repeated measures, clustered data, geographical data, longitudinal data,. . . ), 
a gênerai, and very flexible, class of parametric covariance models is obtained 
from introducing random effects 6¾ in the multivariate linear régression model. 
Linear mixed models assume the outcome vector yi follows a multivariate 
normal distribution, with mean vector Xif3+Zibi and some covariance matrix 
T,i, and assume that the random effects bi also follow a (multivariate) normal 
distribution, i.e., it is assumed that the r^-dimensional vector yi satisfies 

yi\bi^N(Xif3+Zibi,^i), (8) 

bi~N(0,D), (9) 

where Xi and Zi are (rii x p) and (rii x q) dimensional matrices of known 
covariates, /3 is a p-dimensional vector of régression parameters, called the 
fixed effects, D is a gênerai (q x q) covariance matrix, and E^ is a (rii x n>i) 
covariance matrix which dépends on i only through its dimension rii, i-e., the 
set of unknown parameters in E^ will not dépend upon i. This formulation 
corresponds to making Gaussian assumptions about Fi and G, introduced in 
Section 3.2.1, and a linear mean model. 

The above model can be interpreted as a linear régression model for the vector 
yi of repeated measurements for each unit separately, where some of the 
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régression parameters are spécifie (random effects, bi), while others are not 
(fixed effects, /3). The distributional assumptions in (9) with respect to the 
random effects can be motivated as follows. First, E(bi) = 0 implies that the 
mean of yi still equals Xi/3, such that the fixed effects in the random-effects 
model (8) can also be interpreted marginally. Not only do they reflect the effect 
of changing covariates within spécifie units, they also measure the marginal 
effect in the population of changing the same covariates. As will be discussed 
further, this important property only holds for very spécifie random-effects 
models, one of which is the linear mixed model considered hère. Second, the 
normality assumption immediately implies that, marginally, yi also follows 
a normal distribution with mean vector Xi(3 and with covariance matrix 
Vi = ZiDZj' + £*. Hence, no numerical approximation to the intégral in (6) is 
needed. Apart from this mathematical convenience, the normality assumption 
for the bi is further supported by noticing that the bi express how unit-specific 
trends deviate from the population-averaged trends, which suggests that they 
can be interpreted as residuals. 

Note that the random effects in (8) implicitly imply the marginal covariance 
matrix Vi of yi to be of the very spécifie form Vi = ZiDZj + £ j . Let us con-
sider two examples under the assumption of conditional independence, i.e., 
assuming £« = o2IUi. First, consider the case where the random effects are 
univariate and represent unit-specific intercepts. This corresponds to covari
ates Zi which are n^-dimensional vectors containing only ones. The implied 
covariance matrix can then easily be shown to hâve the compound symme
try structure which makes the strong assumption that the variance remains 
constant over ail repeated measures and that the corrélation between any two 
measures within a spécifie unit is also constant. Second, for longitudinal data, 
suppose that the bi represent unit-specific intercepts as well as linear time 
effects. The corresponding Zi are then of the form 

Zi = 
<\ ^ 

\1 UnJ 

where Uj is the time point at which the jth measurement was taken for the ith 
subject. Denoting the (k,l) élément in D as dki, we hâve that the covariance 
between two repeated measures within a single unit is given by 

Cov(yik,yii) = (1 Uk)D(^) + a2 

= d>22 Uk tu + di2(Uk + tu) + du + a . 

Note how the model now implies the variance function of the response to be 
quadratic over time, with positive curvature ^22-

The marginal model implied by expressions (8) and (9) is 

Vi ~ N(Xif3,Vi), Vi^ZiDZj + Vi 
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which can be viewed as another multivariate linear régression model, with 
a very particular parameterization of the covariance matrix Vi. Hence, our 
earlier remarks with respect to the fitting of the marginal model remain 
valid. The vector a of variance components then consists of the variances 
and covariances in D as well as ail unknown parameters in £$. 

With respect to the estimation of unit-specific parameters bi, the posterior 
distribution of bi given the observed data yi can be shown to be (multivariate) 
normal with mean vector equal to DZjV~1(a)(yi — Xi/3). Replacing (3 and 
a by their maximum likelihood estimâtes, we obtain the EB estimâtes bi for 
the bi (Verbeke and Molenberghs 2000). 

3.2.3. Non-linear Mixed Models 

An extension of model (8) which allows for non-linear relationships between 
the responses in yi and the covariates in Xi and/or Zi is 

yi\bi ~ N{h{Xi,Zu^bi)^i) (10) 

for some known inverse link function h. The définition of Xi, Zi, /3, and 6¾ 
remains unchanged, the random effects bi are again assumed to be normally 
distributed with mean vector 0 and covariance matrix D and inference can 
proceed as explained for the gênerai model. 

There are at least two major différences in comparison to the linear mixed 
model discussed in the previous section. First, the marginal distribution of yi 
can no longer be calculated analytically, such that numerical approximations 
to the marginal density (6) corne into play, seriously complicating the compu-
tation of the maximum likelihood estimâtes of the parameters in the marginal 
model, i.e., (3, D, and the parameters in ail £$. A conséquence is that the 
marginal covariance structure does not immediately follow from the model 
formulation, such that it is not always clear in practice what assumptions a 
spécifie model implies with respect to the underlying variance function and 
the underlying corrélation structure in the data. 

A second important différence is with respect to the interprétation of the 
fixed effects /3. Under the linear model (8), we hâve that E ( ^ ) equals Xi/3, 
such that the fixed effects hâve a subject-specific as well as a population-
averaged interprétation. Indeed, the éléments in (3 reflect the effect of spécifie 
covariates, conditionally on the random effects bi, as well as marginalized over 
thèse random effects. Under non-linear mixed models, however, this does no 
longer hold in gênerai. The fixed effects now only reflect the conditional effect 
of covariates, and the marginal effect is not easily obtained anymore as E(jft) 
is given by 

E(îfc) = Vi fi(yi\bi)g(bi)dbidyi, 

which, in gênerai, is not of the form h(Xi, Zi,f3,0), but rather intégrâtes the 
random effects from h(Xi, Zi,f3,bi). 

Only for very particular models, (some of) the fixed effects can still be 
interpreted as marginal covariate effects. For example, consider the model 
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where, apart from an exponential link function, the mean is linear in the 
covariates, and the only random effects in the model are intercepts. More 
specifically, this corresponds to the model with h(Xi,Zi,(3, bi) = exp(Xi/3 + 
Zibi), in which Zi is now a vector containing only ones. The expectation of 
yi is now given by 

E(yi) = E[exv(Xi(3 + Zibi)} 

= exp(X i/3)Z iB[exp(6 i)], (11) 

which shows that, except for the intercept, ail parameters in (3 hâve a marginal 
interprétation. 

3.2.4- The Generalized Linear Mixed Model 

The generalized linear mixed model is the most frequently used random-effects 
model for discrète outcomes. A gênerai formulation is as follows. Conditionally 
on random effects bi, it assumes that the éléments yij of yi are independent, 
with density function of the form 

fi(Vij\bi) = exp [(yijrjij - a ( ^ ) ) / ^ + c(2/^ 0)], 

with mean E(yij\bi) = a'(r)ij) = fiij(bi) and variance Vax(yij\bi) = 4>a"(r)ij), 
and where, apart from a link function h, a linear régression model with 
parameters /3 and bi is used for the mean, i.e., h(^i(bi)) = Xi(3-\- Zibi. Note 
that the linear mixed model is a spécial case, with identity link function. The 
random effects bi are again assumed to be sampled from a (multivariate) 
normal distribution with mean 0 and covariance matrix D. Usually, the 
canonical link function is used, i.e., h = a'~ , such that r/j = Xi(3 + Zibi. 

The non-linear nature of the model again implies that the marginal distribu
tion of yi is, in gênerai, not easily obtained, such that model fitting requires 
approximation of the marginal density function. An exception to this occurs 
when the probit link is used (Liang, Zeger, and Qaqish 1992). Further, as was 
also the case for non-linear mixed models, the parameters /3 hâve no marginal 
interprétation, except for some very particular models. An example where the 
marginal interprétation does hold is the Poisson model for count data, for 
which the logarithm is the canonical link function. In case the model only 
includes random intercepts, it immediately follows from the calculations in 
(11) that the only élément in f3 which has no marginal interprétation is the 
intercept. 

As another example, consider the binomial model for binary data, with the 
logit canonical link function, and where the only random effects are intercepts 
bi. It can then be shown that the marginal mean /x̂  = E(yij) satisfies 
ft(/0 « Xi(3* with /3* = [c2Var(fc?:) + l ]" 1 / 2 /3 , in which c equals 16v^3/15?r. 
Hence, although the parameters (3 in the generalized linear mixed model hâve 
no marginal interprétation, they do show a strong relation to their marginal 
counterparts. Note that, as a conséquence of this relation, larger covariate 
effects are obtained under the random-effects model in comparison to the 
marginal model. 
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4. Fitting Generalized Linear Mixed Models 

As indicated earlier, likelihood inference for generalized linear mixed models 
requires évaluation of intégrais (Breslow and Clayton 1993), where the inte-
gral's dimension is equal to the number of random effects. In this section, we 
will discuss ways to handle this issue. Broadly, we can distinguish between 
approximations to the marginal likelihood, thereby avoiding the intégration 
ail together, and methods based upon numerical intégration. We will discuss 
each of thèse approaches in turn. A useful référence on estimation methods is 
Lavergne and Trottier (2000). 

4.1. Approximate Methods 

Zeger and Karim (1991) avoid the need for numerical intégration by casting 
the generalized linear random-effects model in a Bayesian framework and 
by resorting to the Gibbs sampler. Breslow and Clayton (1993) exploit the 
penalized quasi-likelihood (PQL) estimator by applying Laplace's method for 
intégral approximation. They also consider marginal quasi-likelihood (MQL), 
a name they give to a procédure previously proposed by Goldstein (1991). 
Thèse two approaches entail itérative fitting of linear models based on first-
order Taylor expansions of the mean function about the current estimated 
fixed part predictor (MQL) or the current predicted value (PQL). EM-type 
methods hâve been reviewed in Santner and Duffy (1989) and Fahrmeir 
and Tutz (1994). The method proposed by Gilmour, Anderson, and Rae 
(1985) has seen some use as well. Wolfinger and O'Connell (1993) circumvent 
numerical intégration by using pseudo-likelihood (and restricted pseudo-
likelihood) procédures. 

The approach proposed by Wolfinger and O'Connell (1993), is based on an 
extension of the method of Nelder and Wedderburn (1972) (see also McCullagh 
and Nelder 1989) to fit fixed-effects generalized linear models. Let us briefly 
recall this procédure. Dropping the subject-specific index i, the basic form of 
a generalized linear model is r] = X/3, where rj = g(fi), /x = E(Y) and g 
is an appropriate link function. Nelder and Wedderburn (1972) showed that 
maximum likelihood estimâtes for (3 can be obtained by iteratively solving 

XTWXp = XTWy*, (12) 

where W = QX^Q, y* = f)+(y-fl)Q-1, Q = (dfi/drj), and E = E^AX]/2. 
Hère, EM is a diagonal matrix of variances and A is a corrélation matrix. 
McCullagh and Nelder (1989) note that the "working" dépendent variable in 
thèse estimating équations is not y but y*, a linearized version of y. 

Wolfinger and O'Connell's method (see also Schall 1991 and Breslow and 
Clayton 1993), implemented in the SAS macro GLIMMIX, is essentially a 
random-effects extension of (12). The GLIMMIX macro is known to hâve 
some drawbacks such as, for example, downward biases in fixed-effects and 
covariance parameters. This issue will be taken up in the next section. 
The estimation procédure is based on iterating between the computation of 
working dépendent variables on the one hand and fitting a linear mixed model 
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to it on the other hand. The explicit steps of the algorithm can be found in, 
for example, Aerts et al (2002). 

4.2. Numerical Intégration 

An obvious way to deal with the intégral in (6) is to apply numerical 
intégration. Of course, a wide toolkit of numerical intégration tools, available 
from the optimization literature, can be applied. Several of those hâve been 
used in such software tools and the NLMIXED procédure in SAS and the 
MIXOR program. We refer to the next section for explicit software-related 
détails. 

A gênerai class of quadrature rules sélects a set of abscissas and constructs a 
weighted sum of function évaluations over those. In the particular context of 
random-effects distributions, so-called adaptive quadrature rules can be used 
(Pinheiro and Bâtes 2000), were the numerical intégration is centered around 
the EB estimâtes of the random effects, and the number of quadrature points 
is then selected in terms of the desired accuracy. 

An alternative to numerical intégration is based on Monte Carlo Markov Chain 
methods (MCMC; Gilks and Wild 1992). 

5. Case Study and Software 

To illustrate the fitting of random-effects models to longitudinal data, we 
will consider data from a single-arm trial with 530 patients recruited (491 
selected for analysis), given analgésie treatment for pain caused by chronic 
nonmalignant disease. Treatment was to be administered for 12 months and 
assessed by means of a Global Satisfaction Assessment (GSA), rated on a five-
point scale ranging from 1 (very good) to 5 (very bad). For our analysis, we 
will focus on a dichotomized version ( "success" if the original outcome is 3 or 
less, and "failure" otherwise). GSA was rated by each subject 4 times during 
the trial, at months 3, 6, 9, and 12. A number of subjects hâve incomplète 
measurements. Thèse will be taken into account for analysis. A thorough 
treatment of missingness is beyond the scope of this paper (Verbeke and 
Molenberghs 2000). 

To facilitate comparison, we will fit the same model using a variety of software 

t 0 ° 1 S : logitfGSABy) = /¾ + bi + Pitj + fhtj + AJBASE*. (13) 

Hère GSAB^ is the dichotomized version of GSA at time j for patient i and 
BASEi is a baseline évaluation of severity of the disease ; tj is the time of 
évaluation j (common to ail subjects and hence the subscript i is dropped). 
Finally, note that a random intercept bi has been included into the linear 
predictor. 

5.1. SAS macro GLIMMIX 

The GLIMMIX macro in SAS is based upon the algorithm proposed by 
Wolfinger and O'Connell (1993). Technically, it combines éléments from 
generalized linear mixed models (e.g., the spécification of a binomial error 
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structure) with a linear mixed models core, in Une with the algorithm outlined 
in Section 4.1. A sample program, used to specified the above model, is : 

°/oglimmix(data = gsa, 

procopt = °/0str (method=ml noc lpr in t covtes t ) , 

stmts=°/0str( 

c lass pa t id t imecls ; 

model gsab = timeItime base / so lu t ion ; 

random in te rcep t / subject=pat id type=un ; 

) , 
e r ro r = binomial) ; 

An advantage of the procédure is that it allows for the full flexibility of the 
MIXED procédure. Not only random effects, also sériai corrélation (by means 
of the REPEATED statement) is allowed. Empirically corrected standard 
errors, in addition to purely model-based standard errors, can be requested 
by means of the EMPIRICAL option. 

5.2. SAS procédure NLMIXED 

This procédure allows fitting a wide class of linear, generalized linear, and 
non-linear mixed models. It is available in SAS Version 7.0 and higher, and it 
relies on numerical intégration. Not only are différent intégral approximations 
available, the principal one being (adaptive) Gaussian quadrature, it also 
includes a number of optimization algorithms. The procédure can perform 
Gaussian quadrature by use of the options NOAD (requesting non-adaptive 
Gaussian quadrature, i.e., the quadrature points are centered at zéro for each 
of the random effects and the current random-effects covariance matrix is 
used as the scale matrix) and NOADSCALE (requesting non-adaptive scaling 
for adaptive Gaussian quadrature, i.e., the quadrature points are centered 
at the empirical Bayes estimâtes for the random effects, and the current 
random-effects covariance matrix is used as the scale matrix). The number 
of quadrature points can be specified with the option QPOINTS=m. The 
procédure can maximize the marginal likelihood using the Newton-Raphson 
algorithm by specifying the option TECHNIQUE=NEWRAP. Constraints are 
allowed in the optimization process. Importantly, the conditional distribution 
of the response, given the random effects, can be specified as normal, binomial, 
Poisson or, very importantly, as any distribution, in which case you can specify 
the likelihood by programming statements. EB estimâtes of the random effects 
can be obtained. The procédure allows to specify a single RANDOM statement 
(allowing for several random effects though, but ail within a 2-level hierarchy). 
Only a normal random-effects distribution is allowed. 

A program to fit model (13) is : 

proc nlmixed data=gsa npoints=20 noad noadscale tech=newrap ; 

parms beta0=3 betal=-0.8 beta2=0.2 beta3=-0.2 su=l ; 

eta = betaO + betal*time + beta2*time2 + beta3*base + u ; 
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expeta = exp(eta) ; 

p = expeta/(1+expeta) ; 

model gsab ~ binary(p) ; 

random u ~ normal(0,su**2) subject=pat id ; 

es t imate 'ICC* su**2/ (arcos( - l )**2/3 + su**2) ; 

run ; 

Clearly, there is a lot of flexibility in setting up a model thanks to the use 
of programming statements. For example, the distribution of the random 
intercept is specified through the standard déviation. Alternatively, one could 
choose to use the variance instead. The RANDOM statement of the above 
program is then changed to 

random u ~ normal(0,s2u) subject=pat id ; 

run ; 

The final statement has been added to calculate the intraclass corrélation : 

a2 

P ~ 7 r 2 / 3 + a 2 ' 

Hère, a2 dénotes the random-intercept variance and 7r2/3 is the logistic 
variance. 

In case one is interested in the mean (population-averaged profiles), then one 
needs to calculate 

/ + « exp(sgfl + fc) 1 ^ / r * ^ 

7-oo l + exp(a^/î + 6) \/27ra 

When there are covariates, it is customary to take mean values (or several 
important values) for the covariates. For our model, this is exemplified in 
Figures 1 and 2. In the first of thèse, a model without the BASE covariate 
was considered. Clearly, this resuit s in précision loss. Further, it follows from 
the second figure that the fitted Une somewhat "overestimates" the observed 
means. This is due to missingness. Indeed, the fitted line applies to ail subjects, 
also those with incomplète measurements, whereas the observed means plotted 
are based on the available observations only. Now, typically those with a 
favorable pain score stay in the study longer and vice versa. 

5.3. MIXOR 

The MIXOR program is in the public domain and can be downloaded from 

h t t p ://www.uic.edu/ hedeker/mixreg.html. 

It is developed for mixed-effects ordinal régression analysis, and hence in 
particular in the binary case, and has been documented extensively in Hedeker 
and Gibbons (1993, 1994, 1996). It performs numerical intégration (Gaussian 
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FlG. 1. - Fitted profiles for model without BASE covariate. Estimâtes hâve been 
obtained using PROC NLMIXED. 
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FlG. 2. - Fitted profiles for model with BASE covariate. Estimâtes hâve been 
obtained using PROC NLMIXED. 

quadrature) and uses Newton-Raphson algorithm to maximize the marginal 
likelihood. Technically, MIXOR is most directly comparable to NLMIXED. 
This is reflected in the parameter estimâtes (Table 1) but not entirely in 
standard errors, because MIXOR uses an approximation to the (empirical) 
information matrix, whereas NLMIXED uses numerical derivatives. 
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5.4. MLwiN 

MLwiN is the successor of an earlier DOS incarnation MLN, and is the imple-
mentation of the multilevel modeling approach, proposed in Bryk and Rau-
denbush (1992), Longford (1993) and Goldstein (1995). Kreft and de Leeuw 
(1998) provide a more informai and introductory approach to the subject. 
This modeling approach for hierarchical data (and hence in particular longi
tudinal data) is primarily used and known in the social sciences environment. 
While the "language" typically used to describe the model is somewhat différ
ent from the linear and generalized linear mixed model formalisms described 
above, it is very similar and a wide class of mixed models can be considered 
within the multilevel paradigm as well. 

Parameter estimation in multilevel linear régression models can be carried out 
by maximizing the likelihood function. To this end, direct maximization, using 
Newton-Raphson or the EM algorithm (Little and Rubin 1987) for instance, 
can be performed. An équivalent procédure, called itérative generalized least 
squares (IGLS), was proposed by Goldstein (1986). His algorithm simply 
itérâtes between the estimation of the fixed and random parameters obtained 
by standard generalized least squares formulae, hence its name. IGLS is an 
attractive procédure as it tends to be quite efficient with large data sets 
typically encountered in the multilevel modeling framework. Note that the 
IGLS algorithm can be slightly modified (RIGLS) to perform similarly to 
residual (or restricted) maximum likelihood estimation, which yields unbiased 
estimâtes for variance components in random-effects models (Verbeke and 
Molenberghs 2000). 

MLwiN also allows for non-normal (e.g., binary) outcomes. As before, to max-
imize the marginal likelihood function, random effects need to be integrated 
out. As Rodriguez and Goldman (1995) demonstrate, the approximate procé
dures PQL and MQL, proposed by Breslow and Clayton (1993), may be seri-
ously biased when applied to binary response data. Their simulations reveal 
that both fixed effects and variance components may suffer from substantial, 
if not severe, atténuation bias in certain situations. Goldstein and Rasbash 
(1996) show that including a second-order term in the PQL expansion greatly 
reduces the bias described by Rodriguez and Goldman. Other authors hâve 
advised the introduction of bias-correction terms (Lin and Breslow 1996) or 
the use of itérative bootstrap (Kuk 1995) among other things. 

We will illustrate the use of both PQL and PQL2, using MLwiN. The software 
is menu driven and a typical menu is displayed in Figure 3. 

5.5. Parameter Estimâtes 

Parameter estimâtes, obtained with ail software tools discussed are summa-
rized in Table 1. For the sake of comparison, logistic régression and generalized 
estimating équation based estimâtes hâve been added. The first one is model 
based (also called "naive"), the second one is empirically corrected (also called 
"robust"). Unstructured working assumptions hâve been used. 
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FlG 3. - Fitted profiles for model with BASE covariate. Estimâtes hâve been 
obtained using PROC NLMIXED. 

There is a clear distinction between the marginal model estimâtes (logistic 
and GEE) and the random-effects model estimâtes. This is in line with earlier 
observations that there is a fundamental interpretational différence between 
both. In the first case, parameters describe the average évolution of the 
population, in the second case, they describe the évolution of a population 
with a given level of the random effect. Thèse two hâve a différent form, 
except in spécial cases such as the linear mixed model. Using the logit link, 
the population averaged mean is 

P{YtJ = l\Xt,0) = 
exp(Xîi3) 

1 + exp(Xt0) 

while the mean, conditional on the random effects, is 

P(Y„ = l|Xf,Z„J3Â) = 
exppf.ff + ZÂ) 

1 + exppQ/3 + ZÂ) " 

Now, the average of the latter over the random effects is not of a logistic form 
any more. In gênerai, 

h-\xtfo ï E [h~\x%p + zA)], 

for an arbitrary link function h(-), unless one chooses a linear (linear mixed 
model), probit, or log link, as stated in Section 3.2. As discussed by Neuhaus, 
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TABLE 1. - Overview of parameter estimâtes for Model (13), using software tools 
for generalized linear mixed models discussed in this section. In addition, logistic 
régression and GEE parameters hâve been added. The first Une of each entry is the 
parameter estimate. (The second line of each entry is the standard error.) For GEE 
two standard errors are reported : (model based; empirically corrected). 

Parameter logistic GEE 

GLIM

MIX 

NL

MIXED 

MLWIN 

MIXOR (PQL1) (PQL2) 

Interc. /% 2.802 

(0.490) 

Time /¾ -0.786 

(0.387) 

Time2 /¾ 0.177 

(0.079) 

Base /¾ -0.206 

(0.086) 

R.L var. a2 

R.L std. a 

resid.var. 

ICC 

2.873 

(0.484 ;0.459) 

-0.778 
(0.328 ;0.323) 

0.167 

(0.067 ;0.066) 

-0.228 
(0.103 ;0.096) 

4.029 4.047 4.047 
(0.548) (0.710) (0.713) 

-1.279 -1.160 -1.160 

(0.334) (0.466) (0.475) 

0.259 0.245 0.244 

(0.068) (0.095) (0.097) 

-0.292 -0.300 -0.300 

(0.130) (0.143) (0.154) 

3.165 
(0.391) 

0.495 
(0.025) 

2.533 
(0.676) 

1.591 
(0.213) 

0.435 
(0.066) 

1.591 
(0.206) 

0.435 

3.021 

(0.547) 

-0.868 

(0.405) 

0.189 

(0.083) 

-0.223 

(0.108) 

1.019 
(0.248) 

4.067 
(0.703) 

-1.172 

(0.477) 

0.245 

(0.098) 

-0.309 

(0.150) 

2.594 
(0.473) 

Abbreviations : R.L var. : random-intercept variance; R.L std. : random-intercept 
standard déviation ; resid.var. : residual variance ; ICC : intraclass corrélation. 

Kalbfleisch, and Hauck (1991), the marginal-model estimâtes are typically 
smaller in absolute value than their random-effects counterparts, in case a 
logistic link is issues. However, one should not refer to this phenomenon as 
bias since the two sets of parameter target at différent scientific questions. 

Within the group of random-effect estimâtes, NLMIXED can be considered 
the s tandard since it employs the most exact solution of ail (numerical inté
gration for the likelihood and numerical dérivation for the information ma
trix), even though Lesaffre and Spiessens (2001) discuss some issues with the 
quadrature algorithms used by NLMIXED. Note tha t the MIXOR estimâtes 
are virtually the same at the level of précision reported, with slightly différ
ent s tandard error. Further, PQL2 within MLwiN gives, due to the second-
order approximation, reasonably accurate results. PQL1 is unacceptably bi-
ased (note the bias is towards the marginal-model estimâtes), with some level 
of bias also observed with GLIMMIX. Some packages report the random-
intercept variance, while others report the random-intercept s tandard devia-
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tion. While thèse two pièces of information are équivalent, one should carefully 
check which one is reported. Due to the flexibility of the NLMIXED coding, 
one can choose to implement either, as illustrated before. 

6. Concluding Remarks 

In this paper, a gênerai framework for modeling repeated categorical data has 
been sketched, with three main model families : marginal, conditional, and 
subject-specific. We hâve focused mainly on subject-specific or random-effects 
model, with some emphasis on the generalized linear mixed model. Estimation 
and optimization algorithms hâve been discussed, together with available 
software. Thèse tools hâve been exemplified using a simple but illustrative 
analysis. 

While the similarities between linear and generalized linear mixed models are 
often pointed out, perhaps rightly so, one should be very aware of and careful 
with the différences. 

First, there is a close connection between parameter estimâtes from ail model 
families when the responses are normally distributed. This in not true in 
the generalized linear case. Indeed, in marginal modeling, the régression 
parameters are unequivocally population parameters; they détermine the 
effect of explanatory variables on the population mean response. In conditional 
(e.g., transition) and random-effects modeling, the régression parameters are 
still population parameters, in the sensé that they operate on ail subjects, 
but they détermine the effects of explanatory variables on the mean response 
of an individual subject, conditional on that subject's measurement history 
(transition model), or on the subject's own random characteristics (random 
effects model). No easy conversion between them is possible, and therefore the 
researcher has to reflect carefully on the scientific question, before selecting a 
model. 

Second, the random components in both types of mixed models interact 
completely differently. In a linear mixed model, the random effects are part 
of the linear predictor, and this is shared with the generalized linear mixed 
model case. However, the measurement error (residual error) are also within 
the linear predictor in the linear mixed model. There is no such thing in the 
generalized case. Above ail, this is due to the mean-variance link, typical for 
the generalized linear mixed model (e.g., the variance of a Bernoulli outcome 
is the product of success and failure probabilities ; the mean and variance are 
equal for Poisson data). Since the mean is transformed by means of the link 
function, so is the residual variance. Hence, both components of variability 
are not part of the same linear function in the generalized case. 

Third, and related to the previous issue, the présence of a link function gener-
ally prohibits the existence of a closed form expression for the score-equation 
contribution, i.e., intégrais cannot be avoided. This renders parameter esti
mation more complicated and a wide class of algorithms hâve been proposed, 
with an associâted class of software tools. The existence of various tools with 
différent numerical properties and performance makes thisfield rather tricky 
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and a thorough understanding of the issues is necessary before a satisfactory 
analysis can be undertaken. Arguably, knowledge of several (software) tools 
with a good understanding of the approximations on which they are based 
can greatly enhance insight. 
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