JOURNAL

DE

MATHÉMATIQUES

PURES ET APPLIQUÉES

FONDÉ EN 1836 ET PUBLIE JUSQU'EN 1874

PAR JOSEPH LIOUVILLE

EDMOND MAILLET

Sur les systèmes de réservoirs et divers problèmes d'algèbre et d'analyse corrélatifs

Journal de mathématiques pures et appliquées 6^e série, tome 9 (1913), p. 171-231. http://www.numdam.org/item?id=JMPA_1913_6_9_171_0

NUMDAM

Article numérisé dans le cadre du programme Gallica de la Bibliothèque nationale de France http://gallica.bnf.fr/

et catalogué par Mathdoc dans le cadre du pôle associé BnF/Mathdoc http://www.numdam.org/journals/JMPA Sur les systèmes de réservoirs et divers problèmes d'Algèbre et d'Analyse corrélatifs;

PAR EDMOND MAILLET.

I. — Introduction.

J'ai étudié antérieurement (') les systèmes de n réservoirs S_1, \ldots, S_n , en envisageant surtout les réservoirs de liquide dont la surface est libre, et dont les dispositifs de communication ne sont pas noyés, et supposant que chaque dispositif ne réunissait que deux réservoirs.

Mais d'abord, il pourra arriver pour les liquides que certains dispositifs soient noyés, c'est-à-dire que le débit du dispositif qui fait communiquer par exemple S_i et S_k dépende des niveaux z_i , z_k de ces deux réservoirs; d'autre part, des problèmes de même nature se rencontrent dans la théorie des gaz et dans celle de la chaleur, probablement ailleurs encore; enfin, certains dispositifs de communication peuvent être établis de façon que chacun réunisse un nombre quelconque de réservoirs, en sorte que S_i perd ou gagne par ce dispositif un débit dépendant des niveaux, pressions, etc., de ces réservoirs (exemple : conduites branchées ou maillées dans les distributions d'eau). On est ainsi conduit à envisager l'étude de ce problème général :

Soient n objets ou réservoirs S_1, \ldots, S_n qui jouissent d'une propriété ou d'un état défini pour chacun par une certaine quantité caractéristique variable z_1, \ldots, z_n , qui s'influencent réciproquement, et dont chacun peut subir, en outre, des actions extérieures

⁽¹⁾ Voir, par exemple, Comptes rendus, 13 juillet et 23 novembre 1908; Journ. de Math., 1909; Journ. École Polyt., 1909.

fonctions des quantités z_i ou du temps t. Quelles sont les variations de z_1, \ldots, z_n ?

Il s'agira généralement de *n* réservoirs d'énergie, qui échangent de l'énergie, et en perdent ou en gagnent au dehors, dans des conditions convenables.

D'autre part, les diverses questions que soulève cette étude conduisent à une série de problèmes d'Algèbre ou d'Analyse. Il convient d'abord de poser ces problèmes sous une forme aussi simple et aussi générale que possible pour l'analyste. Ainsi, dans le cas des liquides, les débits des dispositifs de communication peuvent avoir, d'après les formules usuelles, des expressions assez différentes, multiformes, qui pourraient conduire, pour un même système de réservoirs, à plusieurs types de systèmes d'équations différentielles et à une grande complication dans les recherches. De plus, les formules usuelles pourront être légèrement modifiées plus tard, et elles ne s'appliquent qu'à des types de dispositifs de formes assez régulières et spéciales. C'est là une difficulté qui relève surtout de l'Hydraulique théorique et expérimentale et de la Physique, qui se présente d'ailleurs souvent dans les problèmes que la nature offre à l'analyste, et qui peut, une fois résolue, n'être pas toujours appréciée à sa valeur. Enfin, on doit encore désirer donner aux équations fondamentales une forme assez générale pour que les propriétés qu'on en déduit aient, avec le moins de démonstrations possibles, des applications mécaniques et physiques aussi variées que possible.

J'ai réussi, pour des cas très étendus : 1° à établir les systèmes d'équations différentielles et implicites du problème général précité; 2° à montrer que, avec une alimentation limitée, les quantités z_1, \ldots, z_n restent limitées si, bien entendu, les communications internes et externes sont convenablement disposées; 3° à étudier la stabilité du régime permanent, les petites perturbations périodiques et les régimes voisins de ce régime.

La base de mes recherches est le postulat (') suivant que j'ai

⁽¹⁾ Seconde Notice supplémentaire sur mes travaux scientifiques, Paris, Gauthier-Villars, 1909, p. 19. Je l'ai déjà indiqué sous une forme moins générale dans des écrits antérieurs (par exemple, Journ. École Polyt., p. 52).

adopté: le débit d'un dispositif de communication de deux réservoirs S_1 , S_2 (et de deux seulement) est habituellement, sauf dans des domaines limités, une fonction univalente [mais qui peut être multiforme (')] de z_1 et z_2 , croissante de z_1 , décroissante (ou non croissante) de z_2 , quand $z_1 > z_2$, z_1 et z_2 étant les quantités caractéristiques de S_1 et S_2 . Ce postulat est d'accord avec les faits connus (Bazin, Boussinesq, Parenty, etc.), même quand le dispositif est un siphon, cas où le débit est bivalent dans un domaine limité; il pourrait conduire à des expériences de vérification.

Une formule de M. Bazin, relative aux déversoirs noyés, en hydraulique des liquides, semble être en contradiction partielle avec ce postulat. Or, il se trouve que les expériences corrélatives concordent au contraire avec lui, par suite, naturellement aussi la formule dans les limites où elle se trouve établie.

Plusieurs fois j'ai rencontré des problèmes d'Algèbre et d'Analyse que je n'ai pas complètement résolus, ou dont la portée peut être rendue sensiblement plus générale qu'il n'est nécessaire pour les conséquences que j'avais en vue. Certains de ceux dont j'ai détaillé ici la solution font l'objet d'une exposition spéciale qu'on peut lire sans étudier à fond le reste du Mémoire (\S IV au \S VI). Une solution plus étendue de quelques-uns de ces problèmes posés au mathématicien pur serait très désirable : elle comporterait, comme cas particuliers, des applications aux systèmes de n réservoirs. Je signalerai principalement l'étude d'une équation algébrique (\S V), qui comprend l'équation dite séculaire (\S).

⁽¹⁾ Cette fonction peut avoir jusqu'à cinq formes différentes aux environs d'un même point z_1 , z_2 .

⁽²⁾ La plus grande partie de mon Mémoire a fait l'objet de deux Communications résumées à l'Académie des Sciences de Paris (Comptes rendus, 12 et 19 juillet 1909); voir encore Intermédiaire des Math., 1909, p. 241, question 3623.

Incidemment, je mentionnerai que les fonctions asymptotiquement périodiques, rencontrées au cours de mes recherches d'hydraulique, ont fait aussi l'objet, pour le domaine réel et le domaine complexe, d'une Communication au Congrès de l'Assoc. franç. pour l'avancement des Sciences, tenu à Lille en 1909, et d'une Note dans le Bull. Soc. math., t. XXXVIII, 1910, p. 263.

PREMIÈRE PARTIE.

II. - Généralités.

1. Réservoirs pouvant communiquer deux a deux. — Soit un système de n réservoirs S_1, \ldots, S_n contenant un liquide, de l'eau, par exemple, dont la surface est libre, de niveaux y_1, \ldots, y_n comptés à partir d'un plan horizontal de comparaison; ces réservoirs peuvent communiquer 2 à 2 (mais non 3 à 3, 4 à 4, ...), reçoivent de l'extérieur des débits a_1, \ldots, a_n fonctions ou non du temps, et l'un au moins se déverse à l'extérieur. En ajoutant au besoin des réservoirs supplémentaires, on peut toujours supposer que le vidage se fait à l'extérieur par des déversoirs, orifices, etc., non noyés, ou encore, ce qui revient au même au point de vue de l'analyse, dans des réservoirs à niveau fixe assez bas qui n'appartiennent pas au système.

J'ai surtout envisagé antérieurement le cas où les déversoirs, orifices, etc., de communication ne sont pas noyés ('); on peut alors toujours supposer les réservoirs numérotés de façon que, au moins pendant une certaine période de temps, S_j alimente exclusivement S_{j+1}, \ldots, S_n , et que S_n a ses exutoires externes.

Ce cas est compris dans celui, plus général et compliqué, où l'on ne fait pas d'hypothèses sur les déversoirs, orifices, etc., dont le débit n'est plus, pour S_j , exclusivement fonction de y_j , ce qui rend les problèmes bien plus difficiles. En effet, la méthode que j'ai habituellement employée consistait à étudier le mouvement des eaux de 1, 2, ..., m réservoirs, en vérifiant les lois supposées pour un réservoir, admettant leur exactitude pour un système d'au plus m-1 réservoirs, puis l'établissant pour un système de m réservoirs. Cette méthode est évidemment en défaut dans le cas plus étendu précité.

Il y a pourtant un vif intérêt à aborder ce dernier : le problème

⁽¹⁾ Comptes rendus, 23 juillet et 23 nov. 1908; Journal de Math., 1909; Journ. Ecole Polyt., 1909, par exemple. Errata au Journal de Math., 1909: page 257, ligne 5 et page 259, lignes 11 et 17, après ajutages, ajouter non noyés; page 259, ligne 19, au lieu de u_i, lire z_i².

général de n réservoirs de liquide considéré ci-dessus n'est, en effet, qu'un cas particulier du problème type suivant:

2. Problème type. — Soient n objets S_1, \ldots, S_n jouissant d'une propriété ou d'un état défini pour chacun par une certaine quantité caractéristique variable z_1, \ldots, z_n ; cette propriété pour chacun est influencée par la proprieté analogue des autres, suivant une loi supposée connue : étudier les lois de variation de z_1, \ldots, z_n . Les n objets peuvent en outre subir, au sujet de cette propriété, des influences extérieures caractérisées pour S_i par une fonction a_i du temps et une fonction de z_i , ou même de plusieurs des quantités z.

Les problèmes envisagés dans la suite, et qui rentrent dans le problème type qui vient d'être énoncé, sont relatifs au cas où l'on regarde S_1, \ldots, S_n comme des réservoirs d'énergie, cette énergie étant susceptible de se transmettre d'un réservoir à l'autre ou au dehors, et les réservoirs pouvant en outre être alimentés en énergie.

Comme je l'ai déjà indiqué ailleurs (1), on peut, à ce point de vue, étudier, par exemple, en dehors du cas des liquides :

- 1° Dans la théorie de la chaleur, n corps conducteurs aux températures z_1, \ldots, z_n , et qui s'influencent réciproquement, en étant ou non en communication avec des sources de chaleur;
- 2º Dans l'hydraulique des gaz, n réservoirs d'air ou de gaz comprimé ou rarésié, aux pressions z_1, \ldots, z_n , qui communiquent et sont ou non alimentés du dehors.

Je signalerai d'autres cas par la suite.

Mais, dans ces nouveaux problèmes, le débit transmis par le corps conducteur ou le réservoir de gaz S_i à S_j peut dépendre de z_i et de z_j , comme pour les réservoirs d'eau quand le dispositif de communication est noyé. On se trouvera donc, s'il en est ainsi, dans un cas tout à fait analogue au cas général des n réservoirs de liquide. Il importe d'es-

⁽¹⁾ Bull. Soc. math., t. XXIII, 1905, p. 141.

Si l'on ne veut pas négliger, comme je continue à le faire, l'influence du temps de parcours des dispositifs de communication, les problèmes se compliquent encore; mais peut-être leur importance s'accroît-elle. On rencontre ainsi des problèmes relatifs aux distributions d'eau, aux rivières canalisées avec des barrages fixes, etc.

sayer d'obtenir, pour tous ces cas, des systèmes d'équations diss'érentielles semblables, de façon qu'un exposé commun conduise simultanément au plus grand nombre possible de propriétés du mouvement.

Je conviendrai d'appeler chaque objet un réservoir et z_i la quantité caractéristique de l'état de l'objet S_i à l'instant t. Il existera une certaine fonction de z_i

$$w_i = F_i(z_i)$$

croissante, ou non décroissante (je dirai dans la suite *croissante*, en vue d'abréger), qui sera la *capacité* de S_i pour la valeur de z_i considérée, et dont je fixerai le sens exact plus loin.

Nous allons chercher à définir analytiquement :

- 1º L'influence réciproque de deux réservoirs S_i et S_{jk} due aux dispositifs de communication qui les relient directement sans être rattachés à d'autres réservoirs ou à l'extérieur;
- 2º Les influences extérieures s'exerçant sur un réservoir S_j sans intervention des autres réservoirs;
- 3º Des cas étendus où les dispositifs de communication de deux réservoirs sont reliés en même temps à au moins un autre réservoir ou à l'extérieur. On ramènera ces cas aux deux précédents, grâce à l'introduction de réservoirs fictifs aux nœuds des dispositifs, c'està-dire aux points où se réunissent deux dispositifs.
- **5.** Influence directe de deux réservoirs l'un sur l'autre. Si S_i et S_j communiquent par un ou plusieurs dispositifs (déversoir, orifice ou tuyau, siphon, fil conducteur, etc.) qui ne sont rattachés à aucun autre des objets ou réservoirs ('), quand $z_i \ge z_j$, le débit par unité de temps de S_i vers S_j sera, dans le cas le plus général, à l'instant t, une fonction $\varphi_{ij}(z_i, z_j) \ge 0$, et que je supposerai provisoirement croissante de z_i , décroissante de z_j , et continue; ces hypothèses peuvent toutefois être en défaut dans certains domaines limités.

Quand $z_i < z_j$, le débit $\varphi_{ji} \ge 0$ a lieu de S_j vers S_i et est, en général, d'après l'hypothèse ci-dessus, fonction croissante de z_j , décroissante de z_i . Mais si l'on pose alors

$$\varphi_{Ji} = - \varphi_{Ij}(s_i, s_j),$$

⁽¹⁾ C'est ce que j'ai supposé dans mes travaux antérieurs en y disant que les réservoirs communiquent deux à deux.

définissant ainsi φ_{ij} quand $z_i < z_j$, on voit qu'on peut toujours dire que, quel que soit le signe de $z_i - z_j$, S_j reçoit de S_i , à l'instant t, le débit par unité de temps $\varphi_{ij}(z_i, z_j)$, positif ou négatif, avec $\varphi_{ij} = 0$ pour $z_i = z_j$, et qui est toujours, en général, fonction croissante de z_i , décroissante de z_j . De même, S_j reçoit de S_i le débit $\varphi_{ji} = -\varphi_{ij}$ à l'instant t.

On doit, de plus, admettre que la fonction φ_{ij} : 1° ne dépend plus de z_i ou de z_j quand z_i ou z_j devient inférieur à une certaine limite commune z_{ij} ; 2° s'annule quand les variables z_i et z_j s'abaissent toutes deux au-dessous de z_{ij} .

4. Influence directe de l'extenieur sur un reservoir. — Envisageons maintenant les influences extérieures au système et qui agissent sur S_i . Ce réservoir : 1° recevra de l'extérieur, par des procédés que nous n'avons pas besoin de définir, un certain débit d'alimentation $a_i(t)$ au moins égal à zéro (en général) et fonction du temps; 2° abandonnera à l'extérieur, par des dispositifs convenables (déversoirs, ajutages, fils conducteurs, etc.) qui ne sont reliés à aucun autre réservoir, un certain débit

$$-\varphi_{0i}(z_i),$$

quantité nulle ou positive par hypothèse; nous admettrons que $-\varphi_{0i}$ s'annule quand z_i s'abaisse au-dessous d'une certaine limite z_{0i} et est, en général, sauf dans des domaines limités, fonction continue et croissante de z_i .

3. RESERVOIRS POUVANT COMMUNIQUER 3 A 3, 4 A 4, ...; RESERVOIRS FICTIFS AUXILIAIRES. — Si le dispositif de communication de S_i et de S_j est rattaché à quelques autres réservoirs, un seul, S_k , par exemple, la question des échanges de S_i , S_j , S_k devient bien plus compliquée. On en a un exemple relativement simple dans l'hydraulique des liquides par le problème dit des trois réservoirs (1) S_i , S_j , S_k , d'où partent des tuyaux aboutissant à un nœud O(fig.1): on négligera ici l'influence de la longueur, supposée faible, des tuyaux OS_i , OS_i , OS_k .

⁽¹⁾ FLAMANT. Hydraulique, 3º édition, Paris; Béranger, 1909, p. 176. — RABUT, Cours autographié d'Hydraulique de l'École des Ponts et Chaussées, 1905-1906, p. 109 et 114.

Pour des sections données σ_i , σ_j , σ_k de ces tuyaux, si, par exemple,

$$z_i > z_j > z_k$$

on sait que S_k reçoit de l'eau, que S_i en fournit; mais, suivant les cas, S_j peut en recevoir, par exemple si

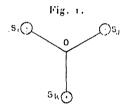
$$\frac{z_j-z_k}{z_j-z_j}$$

est assez petit; ou en fournir, par exemple si

$$\frac{z_i - z_j}{z_i - z_k}$$

est assez petit.

Une remarque analogue s'appliquera dans les autres cas (chaleur et gaz) signalés plus haut.



Avec la terminologie générale définie précèdemment, le débit du nœud O vers le réservoir S_i, à l'instant i, est une fonction

$$\varphi_{\omega i}(z,z_i),$$

où z est une quantité analogue à z_i [niveau piézométrique ('), température, pression], caractéristique de l'état du nœud O. On a, pour déterminer z,

$$\varphi_{\omega i} + \varphi_{\omega j} + \varphi_{\omega k} = 0,$$

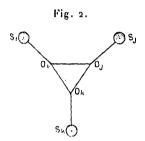
et $\varphi_{\omega i}$, $\varphi_{\omega j}$, $\varphi_{\omega k}$ sont, en général, des fonctions croissantes de z et décroissantes de z_i , z_j ou z_k respectivement, ayant mêmes propriétés que les φ_{ij} .

Il y a des cas encore plus compliqués: ainsi, dans le dispositif de communication précédent, on peut remplacer le nœud O par un

⁽¹⁾ Il s'agit de la quantité $\zeta + \frac{p'}{\varpi}$, que certains auteurs appellent aussi *charge* $(\zeta, \text{ niveau}; p, \text{ pression}; \varpi, \text{ poids spécifique}).$

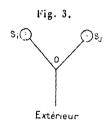
triangle (une maille) $O_iO_jO_k$. Chaque nœud O_i , O_j , O_k donne lieu à une équation analogue à (1).

On ramènera ces cas compliqués au cas où les réservoirs peuvent communiquer 2 à 2, mais non 3 à 3, 4 à 4, ..., en supposant à chaque nœud O (ou O_i , O_j , O_k) un réservoir fermé fictif, pour lequel la



quantité analogue à z_i est z, et dont la capacité w = F(z) est nulle, négligeable ou, plus généralement, constante. Les réservoirs S seront dits des réservoirs réels, pour éviter toute confusion.

Le cas où les dispositifs de communication de deux ou plusieurs réservoirs sont aussi reliés à l'extérieur, se traitera de la même



manière: on introduira toujours aux points de croisement de deux dispositifs (tuyaux, fils, etc.), un réservoir fictif donnant lieu à une équation analogue à (1), mais où figure une fonction

$$\phi_{\omega 0}\!=\!-\phi_{0\omega}.$$

Ceci posé, dans ce qui suit, je n'exclurai pas, a priori, contrairement à ce que j'ai fait dans mes travaux antérieurs, les cas où le dispositif de communication de deux réservoirs réels est relié à un autre réservoir réel ou à plusieurs autres, c'est-à-dire le cas où il y a des réservoirs fictifs. Je n'exclurai pas davantage le cas où les réservoirs

peuvent réagir 2 à 2 l'un sur l'autre, c'est-à-dire où les fonctions $\varphi_{ij}(z_i, z_j)$ dépendent de z_i et z_j à la fois. Je changerai dès lors de notation pour simplifier; S_i désignera, soit un réservoir réel, soit un réservoir fictif, et j'aurai à étudier un système de n réservoirs

$$S_1, \ldots, S_n$$

dont certains sont réels, les autres étant fictifs.

III. — Équations du problème. — Justification des hypothèses du paragraphe II.

6. Soit le réservoir S_i réel ou sictif : il reçoit, par unité de temps, le débit

$$Q_i = \varphi_{0i} + \varphi_{1i} + \ldots + \varphi_{i-1,i} + \varphi_{i+1,i} + \ldots + \varphi_{ni} + \alpha_i,$$

 a_i étant le débit d'alimentation qui vient de l'extérieur au temps t, avec $a_i(t) \ge 0$ en général; si l'on pose $\varphi_{ii} = 0$,

$$Q_i = \varphi_{0i} + \varphi_{1i} + \ldots + \varphi_{ni} + a_i.$$

Je me placerai dans le cas étendu où $Q_i dt$ est égal au produit de la perturbation dz_i apportée pendant le temps dt par les autres réservoirs et le milieu extérieur à l'état de S_i , et d'une certaine fonction $S_i(z_i) \ge 0$ de z_i . La capacité w_i est justement prise, par définition, de façon que

$$w_i' = \frac{dw_i}{dt} = S_i(z_i) \frac{dz_i}{dt}, \quad -$$

c'est-à-dire que

(2)
$$\frac{dw_l}{dt} = S_l \frac{dz_l}{dt} = Q_i = \varphi_{0i} + \ldots + \varphi_{ni} + a_i, \qquad a_i \geq 0 \qquad (i = 1, 2, \ldots, n).$$

On dira que S_i est un réservoir fictif si l'on a, quels que soient t et z_i ,

$$\frac{dw_i}{dt} = 0 \quad \text{et} \quad S_i(z_i) = 0.$$

Le système (2) est alors, en général, un système mixte d'équations différentielles et implicites.

Pour plus de clarté, et aussi pour justifier suffisamment les hypothèses que nous avons faites au paragraphe II sur les fonctions $\varphi_{ij}(z_i, z_j)$, il sera bon de préciser un peu la signification et la forme

des quantités qui figurent dans les formules (2), lorsqu'on étudic un des cas indiqués dans le paragraphe précédent ou d'autres analogues, et relatifs à l'hydraulique des eaux, à celle des gaz et à la théorie de la chaleur. Il en résultera une idée plus nette et plus détaillée du caractère de généralité des équations (2) et de la variété de leurs applications.

7. Réservoirs des des réservoirs, des ajutages ou des siphons servant d'exutoires à un réservoir.

Déversoir non noyé à crête horizontale ('). — Si z est la cote de la surface libre du réservoir, z_0 celle de la crête du déversoir, le débit Q a pour valeur

$$Q = m(z - z_0)^{\frac{3}{2}},$$

où m est un coefficient positif constant ou lentement variable avec z; Q est nul pour $z \le z_0$. On peut prendre aussi

$$(3 bis) m = \mu \left[1 + k \left(\frac{z - z_0}{z - z_0 + \rho} \right)^2 \right],$$

où μ et k sont peu variables avec z et positifs, et p est une constante > o et qui dépend du déversoir.

Déversoir noyé à crête horizontale (2). — Si z_1 est le niveau du réservoir d'aval, z celui du réservoir d'amont, z_0 celui de la crête du déversoir, on peut se servir de la formule de Lesbros ou de celle de Buat

(4)
$$Q = m_{1}(z - z_{0})\sqrt{z - z_{1}}$$
ou
$$Q = m'_{1}\left(z - z_{0} + \frac{z_{1} - z_{0}}{2}\right)\sqrt{z - z_{1}},$$
avec
$$z \ge z_{1} \ge z_{0},$$

⁽¹⁾ FLAMANT, Hydraulique, 3º édition, Paris, Béranger, 1909, p. 120. — RABUT, Cours autographié d'Hydraulique de l'École des Ponts et Chaussées, 1905-1906, p. 218. — Voir encore les travaux de M. Bazin, Annales des Ponts et Chaussées et de M. Boussinesq, Comptes rendus, ainsi que A. Boulanger, Hydraulique générale; Paris, O. Doin, 1909, t. II.

⁽²⁾ Consulter les mêmes auteurs.

 m_1 et m'_1 étant peu variables avec z et z_1 ; Q s'annule lorsque z et z_1 sont au plus égaux à z_0 .

On peut aussi envisager les valeurs de Q données par M. Bazin (à ce sujet, voir ci-après).

Ajutages et orifices analogues ('). — Quand leurs dimensions sont modérées, soit z_0 la cote du centre de gravité de l'orifice; le débit sera, z et z_1 étant les niveaux des réservoirs,

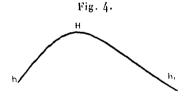
(5)
$$Q = m_2 \sqrt{z - z_1}, \quad z \ge z_1 \ge z_0,$$

$$Q = m_3 \sqrt{z - z_0}, \quad z \ge z_0 \ge z_1,$$

suivant que l'ajutage est noyé ou non; Q s'annule encore pour z et $z_1 \le 0$, et m_2 , m_3 sont des coefficients lentement variables avec z et z_1 .

On pourrait trouver des cas un peu différents si l'on supposait les orifices munis de clapets qui soient eux-mêmes soumis à l'action de ressorts.

Siphons (2). — Soient H la cote du sommet, h et h_1 les cotes des centres de gravité des orifices d'entrée et de sortie du siphon, orifices supposés petits. Pour simplifier, je suppose H = h, $H = h_1$ notable-



ment inférieurs à la hauteur du liquide qui équivaut à la pression de l'atmosphère (ou du milieu extérieur).

Soient z le niveau de l'eau du réservoir où débouche l'orifice h, z_1 le niveau analogue pour le réservoir où débouche l'orifice h_1 , h_2 la plus grande des quantités h et h_1 , et $z \ge z_1$. Le débit Q est nul (le cas de

⁽¹⁾ FLAMANT, Hydraulique, p. 55. - RABUT, Cours, p. 213 et 221.

Si l'ajutage était suivi d'un tuyau de longueur appréciable, il faudrait prendre pour z₀ la cote du centre de gravité de l'orifice de sortie.

⁽²⁾ Collignon, Hydraulique; Paris, Dunod, 1880, p. 264. On peut aussi se reporter à cet Ouvrage pour ce qui précède.

l'amorçage artificiel étant exclu) si, à aucun moment, on n'a eu $z \ge H$. Si l'on vient à avoir $z \ge H$ et si, ensuite, z en variant reste $\ge h_2 + \varepsilon$ (ε petit),

(6)
$$Q = \lambda \sqrt{s - s_1}, \quad s \ge h_2 + \varepsilon, \quad s_1 \ge h_1,$$

$$Q = \lambda \sqrt{s - h_1}, \quad s \ge h_2 + \varepsilon, \quad s_1 \le h_1.$$

Enfin, si z devient $\leq h_2 + \varepsilon$, puis varie, on a Q = 0 tant que z < H. Ici, λ et λ_1 sont des coefficients constants ou lentement variables avec z et z_1 .

Observations générales. — Dans ces formules usuelles, Q est bien fonction croissante de z, et décroissante ou non croissante de z; toutefois, une formule de M. Bazin (') relative aux déversoirs noyés, et que nous ne reproduisons pas, ne satisfait pas complètement à ces conditions. Mais, comme l'indique lui-même M. Bazin, cette formule n'est vraie qu'entre certaines limites; si l'on se reporte au graphique expérimental dont cette formule est la représentation algébrique, on remarque immédiatement que, dans l'étendue des expériences exécutées, les conditions en question sont entièrement remplies.

D'une façon générale, les expériences mêmes de M. Bazin viennent à l'appui de mes hypothèses du paragraphe II.

Si l'on prend le Tableau de la page 700 des Annales des Ponts et Chaussées de décembre 1896 relatifs aux déversoirs noyés, on voit, en en parcourant les lignes, que, pour un même débit Q, le niveau d'amont z croît quand le niveau d'aval z, croît; quand on parcourt les colonnes, on constate que, pour une même valeur de z, et un même déversoir (A, B, C ou D d'après les notations de M. Bazin), z croît avec Q; on en conclut

$$\frac{\partial Q}{\partial z} > 0, \qquad \frac{\partial Q}{\partial z_1} < 0.$$

De même, d'après les séries 70 à 85 de M. Bazin (Ann. des Ponts et Chaussées, février 1894), on peut vérifier rapidement que la charge H, sur la crête du déversoir de comparaison, par suite, le

⁽¹⁾ RABUT, Cours, p. 221. — H. BAZIN, Expériences nouvelles sur l'écoulement en déversoir; Paris, Dunod, 1898, p. 103, formule (16), et graphique de la page 102 bis.

débit Q, croît avec z (z = h charge d'amont) et est fonction décroissante de z_1 ($z_1 = h_1$ charge d'aval).

On pourra encore consulter les séries 1, 2, 3, etc., des Annales des Ponts et Chaussées d'octobre 1888 et les travaux théoriques de M. Boussinesq (1).

Les expressions de Q qu'on vient d'indiquer ou de rappeler sont, chacune, univalentes; mais, quand z et z, varient avec le temps, la valeur q qui exprime, à l'instant t, le débit, peut être égale tantôt à l'une tantôt à l'autre de ces expressions; q sera donc, en général, une fonction multiforme. D'autre part, q pourra être, quand z et z_1 restent entre certaines limites, une fonction bivalente : en dehors du cas évident des siphons, il semble résulter des études de M. Bazin, que, surtout aux environs des valeurs de z et z, pour lesquelles la formule qui exprime q change, l'expression Q à choisir pour q peut dépendre, non seulement de z et z, mais encore des circonstances antérieures du mouvement; aux environs de ces valeurs critiques, q pourrait être une fonction par exemple bivalente, et même discontinue de z et z,; il paraît toutesois possible d'admettre que ceci n'a lieu qu'au voisinage de valeurs particulières de z et de z, ou, comme pour les siphons, dans un domaine limité. On aura à tenir compte de ces circonstances à l'occasion; mais, si

$$y = \varphi(z, z_1),$$

où p est positif ou négatif, il semble qu'on puisse toujours admettre, dans la théorie, que

$$\varphi(+\infty, z_1) = +\infty, \qquad \varphi(z, +\infty) = -\infty.$$

J'ajoute une dernière remarque, qui a son intérêt : les formules ci-dessus sont relatives plutôt au cas où le régime est permanent, c'est-à-dire où z et z, sont constants; quand le régime n'est pas permanent, il pourrait convenir de regarder certains des coefficients qui entrent dans ces formules comme dépendant légèrement du temps t, mais de façon que les valeurs de ces coefficients diffèrent peu de celles qui correspondent au régime permanent pour les mêmes valeurs de z et de z, au moins quand les variations de z et z, sont assez lentes. Ceci

⁽¹⁾ Comptes rendus et Flamant, Hydraulique, p. 88 et suiv. — A. Boulanger, Hydraulique générale, t. II.

24

conduirait à faire une hypothèse analogue sur les fonctions $\varphi_{ij}(z_i, z_j)$ considérées au paragraphe II; on pourra voir plus loin (§ VIII) que, dans certains cas au moins, les problèmes envisagés restent abordables, malgré la complication qu'introduit cette hypothèse (¹).

Enfin, il suffira d'indiquer que, dans la formule (2), pour les réservoirs d'eau ou de liquide, lorsque S_i est un réservoir réel, w_i est, à une constante près, le volume du liquide de ce réservoir correspondant au niveau z_i , tandis que $S_i(z_i)$ est > 0 et représente la section horizontale du réservoir; quand S_k est un réservoir fictif, la quantité $S_k(z_k) = 0$.

8. Réservoirs de Chaleur. - Soient

$$S_1, \ldots, S_n$$

n corps conducteurs (réservoirs fictifs ou non) à l'intérieur de chacun desquels se maintient une température uniforme (ou sensiblement)

$$z_1, \ldots, z_n,$$

isolés ou non de l'extérieur, et réunis par des fils conducteurs isolés et dont on néglige la longueur et le volume. On aura ici, φ_{ij} et φ_{0i} étant des quantités de chaleur par unité de temps,

(7)
$$\varphi_{ij} = k_{ij} \, \omega_j (z_i - z_j), \qquad \varphi_{0i} = -h_i \sigma_i (z_i - z_0),$$
où

$$k_{ij}$$
, ω_j , h_i , σ_i

sont des constantes et z₀ la température du milieu extérieur. D'autre part,

(8)
$$\frac{dw_i}{dt} = C_i V_i \frac{dz_i}{dt}, \quad S_i(z_i) = C_i V_i,$$

où V_i est le volume de S_i et C_i une constante. A une première approximation, les équations (2) du n° 6 sont linéaires et à coefficients constants, comme je l'ai déjà indiqué antérieurement (2) dans un cas

⁽¹⁾ Ce procédé a une portée très générale. Il paraît susceptible d'être utilisé dans les applications théoriques de beaucoup de formules expérimentales connues, quand on suppose que celles-ci ne sont qu'approximatives (exemples possibles : formules relatives à la résistance au mouvement d'un corps dans un fluide, coefficients de frottement, etc.).

⁽²⁾ Bull. Soc. math., t. XXIII, 1905, p. 142.

Journ. de Math. (6 serie), tome IX. — Fasc. II, 1913.

moins général; mais rien n'empêche de supposer que les paramètres k_{ij}, \ldots, S_i soient légèrement variables avec z_i et z_j ou avec z_i .

Ces considérations s'appliquent aussi aux cas où les dispositifs de communication sont branchés ou maillés, à condition d'introduire des réservoirs ou corps fictifs pour lesquels

$$\frac{dw_l}{dt} = 0.$$

On pourrait compliquer le problème en supposant que certains corps sont formés (à part leur enveloppe extérieure) de substances susceptibles de passer de l'état solide à l'état liquide, et réciproquement. Envisageant S_i , pendant les périodes où aucun changement d'état ne se produit dans S_i , on a encore la même équation (2) que précédemment pour S_i , la quantité caractéristique de l'état de S_i étant z_i ; pendant les périodes où un changement d'état se produit dans S_i , la température z_i reste constante et égale à Z_i , mais le poids p_i de la substance fusible contenue dans S_i devient la quantité caractéristique de l'état de S_i , et

(8 bis)
$$\frac{dw_i}{dt} = \gamma_i \frac{dp_i}{dt}, \quad o \leq p_i \leq P_i,$$

où γ_i est un paramètre, P_i le poids total de la substance fusible (').

9. Réservoirs de GAZ. — La variété des cas est considérable. On peut supposer que certains réservoirs échangent ou non de la chaleur avec le milieu extérieur; s'ils en échangent, on pourra étudier le cas où ils sont maintenus à une température fixe qui pourra ne pas être la même pour chacun d'eux, ou le cas où quelques-uns se refroidissent par simple rayonnement. Je me contenterai d'indiquer ici deux cas où les réservoirs sont supposés conserver une même température T_0 , qui est aussi celle du milieu extérieur.

⁽¹) Je ne me préoccupe pas ici de la question de la réalisation physique effective des conditions du problème. On aurait un cas plus compliqué, semble-t-il, si l'on supposait que les substances P_i peuvent passer de l'état liquide à l'état gazeux.

Cas où l'écoulement par les orifices est adiabatique. — La vitesse d'écoulement dans la section contractée pour un orifice reliant les réservoirs S_i et S_j , où les pressions sont p_i et p_j , avec $p_i > p_j$, est telle que (1)

$$u^2 := C_1 \left[1 - \left(\frac{p}{p_i} \right)^{\frac{k-1}{k}} \right] \qquad (k = 1, 41 \text{ environ}),$$

ici p est la pression dans la section contractée et C_1 une constante (comme les quantités C_2 , C_3 , ... qu'on va envisager). Le débit en poids est

$$\varphi_{ij} = C_2 u \delta,$$

où è est la densité dans la section contractée; on a

$$\frac{\frac{p}{p_{i}} = \left(\frac{\hat{o}}{\delta_{i}}\right)^{k},}{\varphi_{ij} = C_{3} \delta_{i} \left(\frac{p}{p_{i}}\right)^{\frac{1}{k}} \sqrt{1 - \left(\frac{p}{p_{i}}\right)^{\frac{k-1}{k}}} = C_{3} \delta_{i} \sqrt{\frac{\left(\frac{p}{p_{i}}\right)^{\frac{2}{k}} - \left(\frac{p}{p_{i}}\right)^{\frac{k+1}{k}}},}$$

c'est-à-dire encore, puisque

$$\frac{\delta_i}{\delta_0} = \frac{p_i}{p_0},$$

 δ_0 et p_0 étant la densité et la pression du milieu extérieur,

(9)
$$\varphi_{ij} = C_4 p_i \sqrt{\left(\frac{p}{p_i}\right)^{\frac{2}{k}} - \left(\frac{p}{p_i}\right)^{\frac{k}{k-1}}}.$$

On sait (2) que cette formule s'applique avec

$$(9 bis) p = p_j$$

⁽¹⁾ RESAL, Traité de Mécanique. t. II, 1874, p. 336. — Boussinesq, Journal de Math., 1904, p. 80. — Flamant, Hydraulique. — Voir encore de Saint-Venant et Wantzel, Journ. École Polyt., 27e Cahier, 1839, p. 85.

⁽²⁾ Boussinesq, loc. cit., où la quantité n est celle désignée ici par k. — Voir encore, dans le Tome CIII (1886) des Comptes rendus, les Communications de MM. Haton de la Goupillière, Hirn, Hugoniot, Parenty, et dans les Annales des Mines (1902) les articles de MM. Rateau et Parenty.

quand

$$\frac{p_j}{p_i} \ge \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}} = 0,528....$$

Lorsque $\frac{p_j}{p_j}$ est < 0.528..., il semble qu'on puisse admettre, d'après de Saint-Venant et Wantzel, Hugoniot, Rateau, etc., que

$$\frac{p}{p_i} = \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}} = 0,528\dots$$

La valeur de φ_{ij} s'obtient donc en remplaçant, dans la formule (9) ci-dessus, le rapport $\frac{p}{p_i}$ par la constante 0,528..., en sorte que

(10)
$$\varphi_{ij} = C_5 p_i \quad \text{pour} \quad \frac{p_j}{p_i} \leq \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}}.$$

Il n'est pas inutile de rappeler que cette valeur de $\frac{p}{p_i}$ est celle qui rend maximum le radical qui figure dans la formule (9), par suite aussi le débit pour une valeur donnée de p_i .

Ainsi, dans le premier cas [formules (9) et (9 bis)], φ_{ij} est fonction de p_i et p_j , croissante de p_i , décroissante de p_j , comme on le vérifie ; dans le deuxième cas [formule (10)], φ_{ij} est fonction de p_i seul, et fonction croissante (1). Le premier cas présente une certaine analogie avec celui d'un orifice noyé pour les liquides, le second avec celui d'un orifice non noyé.

D'autre part, le poids du gaz du réservoir S_i , dont le volume est V_i , est

$$V_i \delta_i = V_i p_i \frac{\delta_0}{p_0} = w_i$$

et

(11)
$$\frac{dw_i}{dt} = V_i \frac{\delta_0}{p_0} \frac{dp_i}{dt} = a_i + \varphi_{0i} + \varphi_{1i} + \ldots + \varphi_{ni}.$$

On posera

$$S_i = V_i \frac{\delta_0}{\rho_0}$$

⁽¹⁾ J'as négligé la variation du coefficient de contraction; il semble (RESAL, loc. cit.) que, si l'on en tient compte, les conclusions soient vraies a fortiori. En admettant d'après d'autres auteurs que ce coefficient décroisse lentement et régulièrement quand la charge croît, les conclusions subsistent encore, comme on peut le vérifier.

et, pour les réservoirs fictifs,

$$V_i = o$$
;

le système d'équations obtenu sera de la forme (2). Il est assez remarquable que ces équations sont linéaires, par suite assez facilement intégrables, dans les périodes où les rapports $\frac{p_i}{p_i}$ sont tous $\leq 0,528...$, s'il y a de pareilles périodes. Il en sera ainsi dans le cas de n réservoirs réels S_1, \ldots, S_n , si l'on prend, par exemple, à l'origine des temps

$$\frac{p_i}{p_{i+1}} \leqslant 0.528... \qquad (i = 0.1, 2, ..., n-1).$$

Cas où l'écoulement par les orifices est isotherme. — La vitesse u d'écoulement par un orifice reliant S_i à $S_j(p_i > p_j)$ est telle que (')

$$u^2 = C_1' \log \frac{p_i}{p}$$

où le logarithme est népérien; le débit en poids est

$$\varphi_{ij} = C', u \delta,$$

avec

$$\frac{p}{\hat{\sigma}} - \frac{p_i}{\delta_i} = \frac{p_0}{\delta_0}$$

et

(12)
$$\varphi_{ij} = C_3 p \sqrt{\log \frac{p_i}{p}} \qquad (C_1, C_2, C_3 = \text{const.});$$

 φ_{ij} est fonction croissante de p_i ; mais φ_{ij} est fonction décroissante de p quand

$$p \ge \frac{p_i}{\sqrt{c}} = 0,6065...p_i,$$

croissante dans le cas contraire; lorsque

$$(12 bis) p_j \stackrel{\geq}{=} \frac{p_i}{\sqrt{e}},$$

on pourra prendre $p = p_j$, par analogie avec ce qu'on a vu pour l'écoulement adiabatique, et φ_{ij} satisfait alors aux hypothèses du paragraphe II entre certaines limites; lorsque (12 bis) n'a plus lieu, je crois que les données manquent pour déterminer p; l'écoulement isothermique est d'ailleurs peut-être difficile à réaliser.

⁽¹⁾ FLAMANT, Hydraulique; p. 541.

10. Réservoirs de liquide et de gaz à température constante T₀ (à titre d'exemple). — Certains réservoirs sont supposés ne pas communiquer avec l'atmosphère, et contenir du gaz et de l'eau; les réservoirs communiquent par des orifices toujours noyés par l'eau, de façon que le gaz de chacun des réservoirs fermés ait un simple rôle régulateur et conserve un poids constant.

Avec ces hypothèses, soient S_m un réservoir d'eau et de gaz, qui ne communique pas avec l'atmosphère, p_m^0 la pression du gaz quand le liquide est à la cote initiale z_m^0 ,

$$\mathbf{W}_m(z_m^0) = \mathbf{W}_m^0$$

le volume du gaz pour cette cote,

$$w_m(z_m^0) = w_m^0$$

le volume correspondant du liquide, $W_m(z)$ et $w_m(z)$ les volumes analogues correspondant à la cote z; on a

$$W_m(\boldsymbol{z}_m) + w_m(\boldsymbol{z}_m) = W_m^0 + w_m^0 = C_m = \text{const.};$$

la pression p_m est telle que

$$p_m \mathbf{W}_m = p_m^0 \mathbf{W}_m^0$$
;

le débit liquide de S_i vers S_j est, ϖ désignant le poids spécifique du liquide,

(13)
$$\begin{cases} \varphi_{ij} = \mu \sqrt{p_i - p_j + \varpi(z_i - z_j)} & \text{quand} \quad p_i + \varpi z_i \geq p_j + \varpi z_j, \\ \text{et} \\ \varphi_{ij} = -\mu' \sqrt{p_j - p_i + \varpi(z_j - z_i)} & \text{quand} \quad p_j + \varpi z_j \geq p_i + \varpi z_i; \end{cases}$$

dans ces formules, p_i est égal à p_0 quand S_i est un réservoir à surface libre, et à

$$p_i^0 \frac{\mathbf{C}_i - \mathbf{w}_i^0}{\mathbf{C}_i - \mathbf{w}_i} = \frac{\lambda_i}{\mathbf{C}_i - \mathbf{w}_i} \qquad (\lambda_i \text{ const.}),$$

quand S_i ne communique pas avec l'atmosphère; de même pour p_j . Le débit φ_{ij} est encore fonction croissante de z_i , décroissante de z_j . On a alors

(14)
$$\frac{dw_i}{dt} = a_i + \varphi_{0i} + \varphi_{1i} + \ldots + \varphi_{ni},$$

où φ_{0i} est du type (15) ci-après.

On pourrait évidemment envisager des cas analogues plus compliqués.

Si, au lieu d'admettre que le gaz est maintenu à la température constante T₀, on suppose sa détente adiabatique, les résultats seront de même nature; on aura alors

$$p_m \mathbf{W}_m^k = p_m^0 (\mathbf{W}_m^0)^k;$$

si Si contient du liquide et du gaz,

$$p_i = \left(\frac{\mathbf{C}_i - w_i^0}{\mathbf{C}_i - w_i}\right)^k p_i^0 = \frac{\lambda_i'}{(\mathbf{C}_i - w_i)^k} \qquad (\lambda_i' \text{ const.}).$$

Les deux cas ci-dessus se ramènent à d'autres cas antérieurement considérés; je pose, pour les deux cas,

 $p_i + \boldsymbol{\omega} \boldsymbol{z}_i = \boldsymbol{\omega} \mathbf{Z}_i = \psi_i(\boldsymbol{z}_i),$

d'où

$$z_i = \overline{\omega}_i(\mathbf{Z}_i), \qquad \overline{\omega}_i' = \frac{\overline{\omega}}{\psi_i'} \ge \mathrm{o};$$

(14) devient

(14 bis)
$$S_i \varpi_i' \frac{dZ_i}{dt} = a_i + \varphi_{0i} + \ldots + \varphi_{ni},$$

οù

où
$$\begin{cases} \varphi_{ij} = \mu \sqrt{\overline{\varpi}} \sqrt{\overline{Z}_i - \overline{Z}_j} & \text{ou } -\mu' \sqrt{\overline{\varpi}} \sqrt{\overline{Z}_j - \overline{Z}_i}, \\ \varphi_{0i} = -\mu'' \sqrt{\overline{\varpi}} \sqrt{\overline{Z}_i - \overline{Z}_{i0}} & (\overline{Z}_{i0} = \text{const.}). \end{cases}$$

Ces formules sont du type (5); mais les quantités $S_i(z_i)$ se trouvent remplacées par les quantités $S_i \varpi_i'$ (1).

IV. — Propriété des systèmes d'équations (2).

11. Je vais maintenant envisager le système (2) en employant, mais seulement pour plus de commodité, car cela ne serait pas indispensable, la terminologie générale introduite au paragraphe II, et qui comporte interprétation mécanique ou physique de a_i (débit d'alimentation), φ_{ij} (débit de S_i à S_j), w_i (capacité de S_i pour la valeur de z_i considérée). Ce paragraphe est donc une pure étude d'analyse, avec interprétation mécanique ou physique. J'admettrai qu'on ait

⁽¹⁾ Quand on fera intervenir en Hydraulique des eaux des réservoirs fictifs, soit ici, soit ailleurs, on pourra admettre que les expressions φ_{ω_i} , φ_{ω_e} , ... envisagées au nº 5 sont sensiblement de la forme (15); si S_i est fictif, Z_i est alors un niveau piézométrique, pi n'étant plus déterminé comme dans (13).

vérifié par un procédé quelconque l'existence de la solution considérée. Soit donc le système d'équations

(2)
$$w_i' = S_i z_i' = \varphi_{0i} + \varphi_{1i} + \ldots + \varphi_{ni} + \alpha_i.$$

Je ferai les hypothèses suivantes, qualifiées d'hypothèses A :

$$\varphi_{ii} = 0, \qquad \varphi_{ij} = -\varphi_{ji};$$

si φ_{ij} , avec i > 0, n'est pas identiquement nul, sa valeur absolue est limitée *supérieurement* quand z_i et z_i le sont; on a

$$\varphi_{ij} = +\infty \quad \text{pour} \quad z_i = +\infty, \\
\varphi_{ij} = -\infty \quad \text{pour} \quad z_j = +\infty;$$

la première égalité veut dire ici que, z_j étant au plus égal au nombre b_i donné, on peut toujours trouver un nombre b_i assez grand pour que, quand $z_i > b_i$, on ait, quel que soit z_i ,

$$\varphi_{ij} > c_i$$

 c_i étant un nombre donné arbitrairement grand; inversement, si, pour une valeur de z_i au plus égale au nombre donné b_j , on a

$$\varphi_{ij} > c'_i$$

où c'_i est un nombre suffisamment grand, on a aussi

$$z_i > b'_i$$

où b_i' est un nombre donné arbitrairement grand; la deuxième égalité a une signification analogue.

2° Un réservoir au moins a un exutoire externe, autrement dit, un des φ_{0i} n'est pas identiquement nul quel que soit z_i ; quand φ_{0i} n'est pas identiquement nul, il est nul ou négatif; alors, sa valeur absolue est limitée supérieurement quand z_i l'est, et

$$\varphi_{0i} = -\infty$$
 pour $z_i = +\infty$,

cette égalité ayant une signification analogue à celle des deux précédentes.

3° a. Ou bien

$$S_i(z_i) = 0$$
 et $w_i = const.$;

b. Ou bien

$$S_i > 0$$
 pour $z_i > \lambda_i$ $(\lambda_i \text{ const.});$
 $S_i = w_i = 0$ pour $z_i \le \lambda_i,$
 $w_i(z_i) = +\infty$ pour $z_i = +\infty;$

 S_i et w_i sont finies quand z_i l'est.

 4° a_i est positif ou négatif, mais c'est une fonction de t limitée supérieurement en valeur absolue.

 5° Les fonctions φ_{ij} , φ_{0j} ne sont pas forcément continues, ni univalentes, du moins dans certains domaines bornés; mais il en est autrement pour les valeurs des z_i ou z_j qui dépassent certaines limites.

Tel est l'ensemble des hypothèses A, qui comprennent celles du paragraphe II.

Je vais d'abord classer les réservoirs d'après la répartition des dispositifs de communication, autrement dit des indices des fonctions φ_{ij} qui ne sont pas identiquement nulles.

Soit

$$u_1 = w_1 + w_2 + \ldots + w_n$$

la capacité totale de l'ensemble s, des réservoirs

$$S_1, \ldots, S_{a_1},$$

qui ont un exutoire externe (autrement dit, lorsque $i \le n_1$, φ_{0i} n'est pas identiquement nul quel que soit z_i , φ_{0i} l'est pour $i > n_1$); soit

$$u_2 = w_{n_1+1} + \ldots + w_{n_2+n_3}$$

la capacité totale de l'ensemble s₂ des autres réservoirs

$$S_{n_1+1} = S_1^{(2)}, \qquad \ldots \qquad S_{n_1+n_2} = S_{n_2}^{(2)},$$

dont chacun peut communiquer, au moins quand la quantité caractéristique z corrélative est assez grande, avec un des réservoirs de l'ensemble s_i , mais non avec l'extérieur (autrement dit φ_{ij} , pour chaque valeur de i égale à $n_i + 1, \ldots$, ou n_2 , et une valeur de j correspondante égale à $1, \ldots$, ou n_1 , n'est pas identiquement nul); et ainsi de suite, jusqu'à l'ensemble s_m , dont la capacité totale est u_m . Si S_i est un réservoir de l'ensemble s_k , il communique avec un réservoir de l'ensemble s_{k-1} (avec l'extérieur quand k=1) dès que z_i est assez grand, et il ne peut communiquer qu'avec des réservoirs des ensembles s_{k-1} , s_k et s_{k+1} (avec l'extérieur, s_i et s_2 si k=1, avec s_{m-1} et s_m si k=m); φ_{ij} ne peut être $\neq 0$ que si S_j appartient à s_{k-1} , s_k ou s_{k+1}

Journ de Math. (6º série), tome IX. - Fasc. II, 1913.

[à s_1 ou s_2 quand (') k = 1, à s_{m-1} ou s_m quand k = m]. On admet que l'ensemble s_1, \ldots, s_m contient tous les réservoirs; autrement dit, on admet qu'on peut passer par les dispositifs de communication d'un réservoir quelconque à l'extérieur; ceci est évidemment essentiel quand on veut montrer que les z_i restent limités.

On aura ultérieurement à envisager un mode de groupement analogue des réservoirs (§ VII, n° 16).

Avec ces conventions, les équations (2) donnent, puisque

$$\frac{du_{1}}{dt} = a_{1} + \ldots + a_{n_{1}} + \varphi_{01} + \ldots + \varphi_{0n_{1}} + \sum_{21} \varphi_{ij},$$

$$\frac{du_{2}}{dt} = a_{n_{1}+1} + \ldots + a_{n_{2}} + \sum_{12} \varphi_{ij} + \sum_{32} \varphi_{ij},$$

$$\frac{du_{1}}{dt} = \sum_{l} a + \sum_{l=1,l} \varphi_{ij} + \sum_{l+1,l} \varphi_{ij},$$

$$\frac{du_{m}}{dt} = \sum_{m} a + \sum_{m=1,m} \varphi_{ij};$$

dans ces formules, $\sum_{l} \alpha$ est, à l'instant t, la somme des débits externes d'alimentation reçus par s_{ℓ} , $\sum_{l=1,\ell} \varphi_{ij}$ la somme des débits positifs ou négatifs qui vont de $s_{\ell-1}$ à s_{ℓ} , $\sum_{l=1,\ell} \varphi_{ij}$ la somme des débits qui vont de $s_{\ell+1}$ à s_{ℓ} . On a

(16 bis)
$$\sum_{l+1,l} + \sum_{l,l+1} = 0, \qquad \sum_{m+1,m} = 0.$$

La seconde des équations (16), par exemple, s'obtient en remarquant que, dans le second membre, les débits échangés par les réservoirs de s₂ disparaissent.

⁽¹⁾ φ_{i0} n'est pas identiquement nul; mais il suffit de considérer $\varphi_{0i} = -\varphi_{i0}$.

Je pose encore

$$(17) \quad \mathbf{U}_1 = u_1 + u_2 + \ldots + u_m, \quad \ldots \quad \mathbf{U}_l = u_l + u_{l+1} + \ldots + u_m, \quad \ldots, \quad \mathbf{U}_m = u_m.$$

On a, d'après (16) et (16 bis),

où $\sum_{i}' a$ est la somme des a_i des groupes s_i , s_{i+1} , ..., c'est-à-dire des débits externes d'alimentation reçus par les réservoirs de ces groupes.

Ceci posé, je me restreindrai au cas, déjà compliqué, où les réservoirs de s_i sont à la fois tous fictifs ou tous réels, c'est-à-dire que, au point de vue de l'analyse, si, quel que soit p, dans le groupe s_p , w'_i est ou non identiquement nul, quel que soit le système des valeurs initiales des z, les w'_i du même groupe s_p le sont aussi.

Je dis que les zi restent limités.

La démonstration est simple quand m=1, c'est-à-dire quand tous les réservoirs peuvent communiquer avec l'extérieur. Mais il n'en est pas de même lorsque m est quelconque.

Par hypothèse, $|a_1|, ..., |a_n|$ ont des limites supérieures.

Si les réservoirs de s_i sont réels, on peut trouver une quantité A_i telle que, si l'on vient à avoir $u_i \ge A_i$, on ait sûrement

(19)
$$\frac{dU_1}{dt} = a_1 + \ldots + a_n + \varphi_{01} + \ldots + \varphi_{0n_1} = -\varepsilon$$

(ε fixe positif arbitraire). En effet, si A_i est assez grand, $\varphi_{01}, \ldots, \varphi_{m_1}$ étant nuls ou négatifs, on est sûr, d'après les hypothèses $A(3^o)$ relatives aux w_i , que l'une des quantités caractéristiques z_1, \ldots, z_{m_1} est assez grande pour que cette inégalité ait lieu, puisque

$$w_i(\infty) = +\infty$$
.

Si les réservoirs de s_i sont fictifs, on posera $u_i = A_i$ (A_i constante arbitraire); l'inégalité (19) aura encore lieu quand une quelconque des quantités z_1, \ldots, z_{n_i} , soit z_{i_i} , devient $\geq \zeta_i$, ζ_i étant un nombre convenablement choisi, fixe et assez grand.

De même, je suppose qu'on ait

$$u_1 \leq A_1$$
 ou $z_{i_1} \leq \zeta_1$ $(i_1 = 1, 2, ..., n_1),$

suivant que s_1 est réel ou fictif; quand u_2 dépasse une certaine limite A_2 qui dépend de A_1 ou de ζ_1 , si s_2 est réel, ou quand une quelconque des quantités z_{i_1} ($i_2 = n_1 + 1, \ldots$, ou $n_1 + n_2$) dépasse une certaine limite ζ_2 , si s_2 est fictif, on a

$$\frac{d\mathbf{U}_2}{dt} = a_{n_1+1} + \ldots + a_{n_2} + \sum_{ij} \varphi_{ij} \leq -\varepsilon.$$

En effet, ceux des φ_{ij} qui seraient positifs ont, d'après les hypothèses A (1°) une limite supérieure qui dépend de A, ou de ζ_1 ; si A_2 est assez grand, ou ζ_2 , il y a toujours parmi les réservoirs s_2 un réservoir dont la quantité caractéristique z_{i_2} est assez élevée pour que le second membre de (19 bis) soit au plus égal à $-\varepsilon$; et ainsi de suite.

Quand on a

$$u_{\ell-1} \leq \Lambda_{\ell-1}$$
 ou $z_{i_{\ell-1}} \leq \zeta_{\ell-1}$

suivant, que $s_{\ell-1}$ est réel ou fictif, z_{i_ℓ} prenant les valeurs des diverses quantités caractéristiques de $s_{\ell-1}$, on peut trouver une quantité A_ℓ que ne peut dépasser u_ℓ si s_ℓ est réel, ou une quantité ζ_ℓ que ne peut dépasser aucune des quantités z_{i_ℓ} relatives à s_ℓ si s_ℓ est fictif, sans que

(19 ter)
$$\frac{d\mathbf{U}_{t}}{dt} \stackrel{?}{=} -\varepsilon;$$

etc.

Ceci posé, on pourra choisir en outre A_i , A_2 , ..., ζ_1 , ζ_2 , ..., de façon que, à l'origine des temps t = 0, on ait pour les valeurs initiales u_1^0 , u_2^0 , ..., $z_{i_1}^0$ ($i_1 = 1, 2, ..., n_1$), $z_{i_2}^0$, ..., de u_1 , u_2 , ..., z_{i_1} , z_{i_2} , ...

$$(20) \qquad \begin{array}{ccccc} u_1^0 \subseteq \mathbf{A}_1 & \text{ on } & \mathbf{z}_{t_1}^0 \subseteq \zeta_1 & \text{ avec} & u_1 = \Lambda_1, \\ & \ddots & \ddots & \ddots & \ddots & \ddots \\ u_m^0 \subseteq \mathbf{A}_m & \text{ ou } & \mathbf{z}_{t_m}^0 \subseteq \zeta_m & \text{ avec} & u_m = \mathbf{A}_m. \end{array}$$

Il y a donc certainement un instant ou une phase du mouvement

où, quand on pose

$$B_{i} = A_{i} + \ldots + A_{m}$$

on a

$$\begin{cases} u_1 \leq A_1 & \text{ou} \quad z_{i_1} \leq \zeta_1 \quad \text{avec} \quad u_1 = A_1, \\ \dots & \dots & \dots \\ u_m \leq A_m \quad \text{ou} \quad z_{i_m} \leq \zeta_m \quad \text{avec} \quad u_m = A_m, \\ U_1 \leq B_1, \quad \dots, \quad U_m \leq B_m. \end{cases}$$

Je dis qu'on aura toujours

(22)
$$U_i \leq B_i \quad (i = 1, 2, ..., m).$$

En effet, ceci a lieu quand on a l'inégalité $u_r \leq A_r$ ou $z_{i_r} \leq \zeta_r$, quel que soit r. Je suppose au contraire que, par moments, cette dernière inégalité puisse être en défaut pour certaines valeurs de r, par exemple à partir de l'instant t_1 exclus, et j'envisage une phase du mouvement, entre les instants t_1 et t_2 , assez courte pour que, dans cette phase, on ait constamment, z_{i_r} étant une certaine quantité caractéristique d'un réservoir de s_r ,

$$\begin{cases} u_k \geq A_k, & u_{k_1} \geq A_{k_2}, & \dots, & k < k_1 < \dots, \\ z_{i_q} \geq z_q & \text{avec} & u_q = A_q, \\ z_{i_{q_1}} \geq \zeta_{q_1}, & \text{avec} & u_{q_1} = A_{q_1}, & \dots \\ & (q < q_1 < \dots); \end{cases}$$

ici, q, q_1, \ldots se rapportent à des réservoirs fictifs et sont différents de k, k_1, \ldots qui se rapportent à des réservoirs réels; les u_i autres que u_k, u_{k_1}, \ldots sont tous tels que $u_i \leq A_i$, et les z_i , des réservoirs des systèmes fictifs s_r autres que s_q, s_{q_i}, \ldots sont tous tels que $z_{i_r} \leq \zeta_r$.

Si
$$q < k$$
,
$$(22 ter) \qquad \frac{dU_q}{dt} \le -\varepsilon,$$

d'après (19 ter), pour tout instant $t + \tau$ dans l'intervalle de t_1 à t_2 , et, par suite, l étant un quelconque des entiers au plus égaux à q,

$$\begin{cases} U_{q} \leq B_{q} - \varepsilon \tau \leq B_{q}, & U_{l} = u_{l} + u_{l+1} + \ldots + U_{q} \leq B_{l}, \\ U_{q} - u_{q} = U_{q+1} \subseteq B_{q} - u_{q} \leq B_{q+1}, \end{cases}$$

puisque $u_q = A_q$, les réservoirs de s_q étant tous fictifs.

ou

Si k < q, on a de même, l désignant un quelconque des entiers $\leq k$,

$$(22_{\delta}) \quad \frac{d\mathbf{U}_k}{dt} \leq -\epsilon, \quad \mathbf{U}_k \leq \mathbf{B}_k, \quad \mathbf{U}_t \leq \mathbf{B}_t, \quad \mathbf{U}_{k+1} \leq \mathbf{B}_k - u_k \leq \mathbf{B}_{k+1},$$

dans l'intervalle de t_1 à t_2 .

Je puis donc supposer que les inégalités

$$U_1 \leq B_1, \quad \dots, \quad U_{\nu} \leq B_{\nu}$$

aient été établies pour l'intervalle de t_1 à t_2 jusqu'à un certain indice ν par la considération de $s_1, \ldots, s_{\nu-1}$, et j'envisage le premier des systèmes de réservoirs $s_{\nu}, s_{\nu+1}, \ldots$, savoir s_{μ} , pour lequel on a dans cet intervalle

$$egin{array}{ll} egin{array}{ll} egi$$

 $u_{\mu} \ge \Lambda_{\mu}$ si s_{μ} est re

Il pourra se faire qu'il n'y ait pas de pareil système s_{μ} ; alors

S'il y a un pareil système s_{μ} , et s'il est fictif, ou bien $\mu = \nu$, ou bien $\mu > \nu$. Quand $\mu = \nu$,

S'il y a un pareil système s_{μ} et s'il est réel, ou bien $\mu = \nu$, ou bien $\mu > \nu$. Le même raisonnement a lieu, car $u_{\mu} \ge A_{\mu}$.

Finalement on est conduit à une contradiction, et l'on a bien dans l'intervalle de t_1 à t_2 , par suite dans tout intervalle, d'après un raisonnement identique, les inégalités (22). Il résulte alors des égalités (17) et des hypothèses A (3°) que les quantités caractéristiques des réservoirs réels sont limitées supérieurement.

On en conclut la même propriété pour les quantités caractéristiques

des réservoirs fictifs, même alimentés (c'est-à-dire même quand les a_i correspondants ne sont pas nuls).

En effet, si

$$s_k$$
, s_{k+1} , ..., s_{p-1}

sont des systèmes de réservoirs fictifs d'indices consécutifs, d'après (16),

(23)
$$\begin{cases} \sum_{k} a + \sum_{k=1,k} \varphi_{ij} + \sum_{k+1,k} \varphi_{ij} = 0, \\ \sum_{k+1} a + \sum_{k,k+1} \varphi_{ij} + \sum_{k+2,k+1} \varphi_{ij} = 0, \\ \vdots \\ \sum_{p=1} a + \sum_{p=2,p-1} \varphi_{ij} + \sum_{p,p-1} \varphi_{ij} = 0; \end{cases}$$

en additionnant,

(24)
$$\sum_{k} a + \ldots + \sum_{p-1} a + \sum_{k-1,k} \varphi_{ij} + \sum_{p,p-1} \varphi_{ij} = 0.$$

On pourra avoir dans cette formule k = 1, si s_i est fictif, ou p - 1 = m, si s_m est fictif; dans ce dernier cas, $\sum_{m+1,m} \varphi_{ij} = 0$. Dès lors,

on choisira k et p de façon que s_k ne soit pas précédé d'un système fictif, ni s_{p-1} suivi d'un système fictif : ceci fait, puisque les z_i des systèmes réels sont limités supérieurement, comme on l'a vu tout à l'heure, ceux des φ_{ij} de (24) qui sont positifs ont une limite supérieure ; il en sera par suite de même de la valeur absolue de ceux des φ_{ij} qui sont négatifs. Donc, les z_{i_k} de s_k et les $z_{i_{p-1}}$ de s_{p-1} (si p-1 < m) sont limités supérieurement. Il en résulte successivement, d'après (23), que les $z_{i_{k+1}}$ de s_{k+1} , les $z_{i_{k+2}}$ de s_{k+2} , ..., sont limités supérieurement.

On a ainsi démontré complètement que les z_i sont limités, au moins quand chacun des ensembles s_i ne contient que des réservoirs tous fictifs ou tous réels, et même donné un moyen de trouver une limite supérieure des z_i , en tenant compte de (20).

Dans le cas du régime permanent, où le système des équations (16) prend la forme (23), le raisonnement se simplifie et se réduit à celui qu'on vient de faire sur ces équations (23).

En définitive, on aboutit au théorème suivant que j'énonce au point de vue de la théorie des équations différentielles :

Théorème 1. — Soit le système mixte d'équations implicites et différentielles

(2)
$$S_i(z_i)\frac{dz_i}{dt} = \frac{dw_i}{dt} = \varphi_{0i} + \varphi_{1i} + \ldots + \varphi_{ni} + a_i \qquad (i = 1, 2, \ldots, n),$$

où S_i , w_i , φ_{ji} , a_i satisfont aux hypothèses Λ , et où t est le temps.

Soit encore s, l'ensemble de celles de ces équations, les n, premières par exemple, pour lesquelles φ_{0i} n'est pas identiquement nul; soit s_2 l'ensemble de celles des autres équations, les n_2 suivantes par exemple, pour lesquelles φ_{ji} n'est pas identiquement nul quand i > 0, $1 \le j \le n_1$, etc. (1). J'admets que cette classification comprenne toutes les équations (2), et que les quantités $S_i(z_i)$ d'un même ensemble s_k soient toutes à la fois identiquement nulles ou non.

Dans ces conditions, pour toute solution z_1, \ldots, z_n de ce système, dont les valeurs initiales sont finies, z_1, \ldots, z_n restent limités supérieurement quand t croît indéfiniment.

Au point de vue de la Mécanique et de la Physique, le résultat ci-dessus donne le corollaire suivant :

Corollaire. — Tout étant posé comme ci-dessus, si le système d'équations (2) détermine les variations des quantités caractéristiques $z_1, ..., z_n$ d'un système de réservoirs, de façon que les réservoirs S_i d'un même ensemble s_k soient à la fois tous réels ou tous fictifs, ces quantités caractéristiques restent limitées supérieurement.

Remarque I. -- Voici une extension de ce qui précède. Au lieu du système (16), je considère le système

(25)
$$\frac{du_r}{dt} = \sum_{r} a + \Phi_{r-1,r} + \Phi_{r+1,r} \qquad (r = 1, 2, ..., m),$$

qu'on en déduit en remplaçant dans (16) $\sum_{r=1,r}$ et $\sum_{r=1,r}$ par $\Phi_{r-1,r}$ et $\Phi_{r+1,r}$.

Celles des hypothèses A qui sont relatives aux φ_{ij} sont alors remplacées par les suivantes :

$$\Phi_{r-1,r} = -\Phi_{r,r-1}, \qquad \Phi_{m,m+1} = \Phi_{m+1,m} = 0.$$

⁽¹⁾ Au besoin, pour plus de détails, voir p. 193.

 $\Phi_{r-1,r}$ est pour r > 1 une fonction croissante des z_i de s_{r-1} , décroissante des z_i de s_r , finie quand ces z_i sont limités supérieurement, égale à $+\infty$ quand un des z_i de s_{r-1} est égal à $+\infty$, égale à $-\infty$ quand un des z_i de s_r est égal à $+\infty$. Les propriétés de Φ_{0i} sont analogues, Φ_{0i} ne dépendant alors que des z_i de s_i . Enfin, les Φ_{0i} , $\Phi_{r-1,r}$ sont des fonctions continues de z_i lorsque z_i dépasse une certaine limite finie.

On peut appeler hypothèses B les hypothèses A ainsi modifiées. On en conclut:

Soit le système d'équations différentielles et implicites

$$S_i \frac{dz_i}{dt} = \frac{dw_i}{dt} = a_i + \Phi_i(z_1, \ldots, z_n) \qquad (i = 1, 2, \ldots, n),$$

où S_i , w_i , a_i satisfont aux hypothèses A (ou B); je suppose qu'on puisse grouper ces équations, désignées par $S_1, ..., S_n$, en ensembles $s_1, s_2, ..., s_m$ tels que l'addition membre à membre des équations de chaque ensemble donne un résultat de la forme (25), les w_i d'un même ensemble étant tous constants ou tous tels que $S_i(z_i) > 0$ si z_i dépasse une certaine limite et $w_i(\infty) = +\infty$: on peut affirmer que, pour une solution de valeurs initiales finies, les z_i restent tous limités supérieurement.

En effet, les raisonnements qui nous ont servi à établir le théorème précédent s'appliquent identiquement.

DEUXIÈME PARTIE.

V. — Sur les déterminants, l'équation dite « séculaire » et des équations analogues.

12. Soient n(n+1) quantités $B_{ik}(i=1,2,...,n;k=0,1,2,...,n)$ satisfaisant aux conditions suivantes $\binom{1}{2}$:

(1)
$$\begin{cases} B_{ik} \geq 0, & \text{lorsque } i \neq k, \\ B_{i0} + B_{i1} + \ldots + B_{ii} + \ldots + B_{in} = 0; \end{cases}$$

(1) Si l'on a des quantités $B_{ik}(i, k > 0)$ telles que $B_{ik} \ge 0$ pour $i \ne k$, $B_{i1} + \ldots + B_{in} \le 0$,

on peut toujours déterminer des quantités $B_{i0} \ge 0$ de façon que les conditions (1) aient lieu pour ces B_{ik} et les B_{i0} .

Journ. de Math. (6° série), tome IX. – Fasc. II, 1913.

d'où $B_{ii} \le o$. Soient encore des quantités

ct le déterminant
$$\Delta = \begin{vmatrix}
B_1 & B_2 & \dots & B_n \\
B_{12} & B_{22} & \dots & B_{2n} \\
\dots & \dots & \dots & \dots \\
B_{1n} & B_{2n} & \dots & B_{nn}
\end{vmatrix}.$$

Je vais établir le théorème suivant :

Theoreme I. $-(-1)^{n-i}\Delta$ est au moins égal à 0, et peut se développer sous forme d'une somme de termes tous positifs, de façon que chacun d'eux soit un produit positif de facteurs dont l'un est un B_j , et chacun des autres, au signe près, ou un B_{ik} ($i \neq k$ ou non), ou une somme de B_{ik} d'une même colonne différents, et dont l'un est alors B_{ii} et donne son signe au facteur. Chaque terme qui contient B_j , avec i > 1, est de la forme

$$B_j B_{1k} \dots (k > 1),$$

les facteurs non écrits ne contenant aucun terme de la première colonne.

En effet, je pose

(3)
$$\begin{cases} B_{i0} + B_{i1} + \ldots + B_{in} = -C_{i0} = 0, \\ -(B_{i0} + \ldots + B_{i,m-1}) = B_{im} + B_{i,m+1} + \ldots + B_{in} = -C_{im} \quad (i \text{ et } m \ge 1); \end{cases}$$

d'où, d'après (1),

(4)
$$C_{im} \geq 0$$
, si $m \leq i$, $C_{im} \leq 0$, si $m > i$.

Pour n = 1, $\Delta = B_1 \ge 0$; pour n = 2,

$$\Delta = B_1 B_{22} - B_2 B_{12} \stackrel{<}{=} 0;$$

pour n=3,

$$\Delta = B_1 \begin{vmatrix} B_{22} & B_{32} \\ B_{23} & B_{33} \end{vmatrix} - B_2 \begin{vmatrix} B_{12} & B_{32} \\ B_{13} & B_{33} \end{vmatrix} + B_3 \begin{vmatrix} B_{12} & B_{22} \\ B_{13} & B_{23} \end{vmatrix},$$

et, puisque

$$\begin{vmatrix} B_{22} & B_{32} \\ B_{23} & B_{33} \end{vmatrix} = \begin{vmatrix} B_{22} + B_{23} & B_{32} + B_{33} \\ B_{23} & B_{33} \end{vmatrix} = -\begin{vmatrix} C_{22} & C_{32} \\ B_{23} & B_{33} \end{vmatrix},$$

$$\Delta = -B_1 C_{22} B_{33} + B_1 C_{32} B_{23} - B_2 B_{12} B_{33} + B_2 B_{13} B_{32} + B_3 B_{12} B_{23} - B_3 B_{13} B_{22}$$

Les six termes du second membre sont positifs et de la forme annoncée.

Je suppose le théorème établi pour les déterminants à n-1 lignes et colonnes au plus.

Soit Δ_{ik} le mineur obtenu en supprimant dans Δ la i^{tiene} colonne et la k^{tiene} ligne. On a

(5)
$$\Delta = B_1 \Delta_{11} - B_2 \Delta_{21} + B_3 \Delta_{31} - \dots$$

En ce qui concerne Δ_{11} , d'après (3) et (4),

$$-\Delta_{11} = \begin{vmatrix} C_{22} & C_{32} & \dots & C_{n2} \\ B_{23} & B_{33} & \dots & B_{n3} \\ \dots & \dots & \dots & \dots \\ B_{2n} & B_{3n} & \dots & B_{nn} \end{vmatrix},$$

et $-\Delta_{11}$ est de la forme Δ , mais avec n-1 lignes et colonnes. D'après l'hypothèse, on a

 $(-1)^{n-1}\Delta_{11} \geq 0,$

et le premier membre de cette inégalité peut se développer sous forme d'une somme de termes tous positifs; de même pour $(-1)^{n-1}B_1\Delta_{11}$, dont chaque terme est alors de la forme indiquée dans l'énoncé

On a maintenant

$$\Delta_{21} = \left| egin{array}{ccccc} B_{12} & B_{32} & \dots & B_{n2} \ B_{13} & B_{33} & \dots & B_{n3} \ \dots & \dots & \dots & \dots \ B_{1n} & B_{3n} & \dots & B_{nn} \end{array}
ight|,$$

et Δ_2 , est de la forme Δ , mais avec n-1 lignes et colonnes: $(-1)^{n-2}B_2\Delta_{24}$ est une somme de termes positifs dont chacun a la forme indiquée dans l'énoncé et contient une des quantités B_{12}, \ldots, B_{1n} en facteur.

Enfin, quand k > 2,

$$\Delta_{k1} = \begin{vmatrix} B_{12} & B_{22} & \dots & B_{k-1,2} & B_{k+1,2} & \dots & B_{n2} \\ B_{13} & B_{23} & \dots & \dots & \dots & \dots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ B_{1n} & B_{2n} & \dots & B_{k-1,n} & B_{k+1,n} & \dots & B_{nn} \end{vmatrix}.$$

Faisant passer la ligne qui contient B_{ik} à la première place, on obtient un déterminant $(-1)^{k-2}\Delta_{ki}$ de la forme Δ , mais avec n-1

lignes et colonnes, dont le produit par $(-1)^{n-2}$ est positif. Le terme correspondant du développement (5) de Δ est $(-1)^{k-1}$ $B_k \Delta_{k1}$, et son produit par $(-1)^{n-1}$ peut se mettre sous forme d'une somme de termes tous positifs, dont chacun a la forme indiquée dans l'énoncé, et contient en facteur une des quantités B_{12}, \ldots, B_{1n} .

C. Q. F. D

Corollaire 1. — Si λ est une limite inférieure de celles des quantités B_i , B_{ik} ($k \ge 0$, $i \ge 1$) qui ne sont pas nulles, et si $\Delta \ne 0$, on a

$$(-1)^{n-1}\Delta \geq \lambda^n$$
.

Un des termes du développement de $(-1)^{n-1}\Delta$ indiqué au théorème le est en effet \neq 0, et, par suite, $\geq \lambda^n$, puisque tout facteur différent de zéro d'un de ces termes est au moins égal à λ en valeur absolue, d'après (1).

Corollaire II. - Le déterminant

(6)
$$-D = - \begin{vmatrix} B_{11} & B_{21} & \dots & B_{n1} \\ B_{12} & B_{22} & \dots & B_{n2} \\ \dots & \dots & \dots & \dots \\ B_{1n} & B_{2n} & \dots & B_{nn} \end{vmatrix}$$

peut se mettre sous la forme $\hat{\Delta}$, en sorte que

$$(-1)^n D \geq 0.$$

En effet, d'après (3) et (4),

(6 bis)
$$-D = \begin{vmatrix} C_{11} & C_{21} & \dots & C_{n1} \\ B_{12} & B_{22} & \dots & B_{n2} \\ \dots & \dots & \dots & \dots \\ B_{1n} & B_{2n} & \dots & B_{nn} \end{vmatrix},$$

qui est de la forme Δ .

Théorème II. — 1° Si, les conditions (1) ayant lieu, les quantités C_{ii} sont toutes > 0, on a

(7)
$$(-1)^n D = C_{11} C_{22} ... C_{nn} > 0;$$

2° En particulier, les conditions (1) ayant lieu, si $\lambda > 0$ est une

limite inférieure de celles des quantités $B_{ik}(k \neq i, k \geq 0, i \geq 1)$ qui ne sont pas nulles, et si, pour chaque valeur de i, il y a une valeur de k < i telle que $B_{ik} > 0$, on a

$$(8) (-1)^n D \ge \lambda^n.$$

En effet, dans ce dernier cas, d'après (1), (3) et (4),

(8 bis)
$$C_{ii} = B_{i0} + B_{i1} + ... + B_{i,l-1} \ge \lambda;$$

(8) sera une conséquence de (7), qu'il suffit d'établir.

L'inégalité (7) est évidente pour n = 1; je la suppose vraie pour les déterminants (6) à au plus n - 1 lignes et colonnes. D'après (5), (6 bis) et la démonstration du théorème I,

$$-D = C_{11}D_{11} - C_{21}D_{21} + \dots,$$

$$(-1)^{n-1}D_{11}C_{11}, \quad (-1)^{n-2}C_{21}D_{21}, \quad \dots$$

sont positifs, et

(9)
$$(-1)^n D \ge (-1)^{n-1} C_{11} D_{11}.$$

Il suffit de vérifier que

(10)
$$(-1)^{n-1} \mathbb{D}_{11} \geq \mathbb{C}_{22} \dots \mathbb{C}_{nn};$$

or, le déterminant D_{11} est de la même forme que D, mais avec n-1 lignes et colonnes seulement; d'après l'hypothèse (10) a lieu, par suite (7).

COROLLAIRE 1. – Tout étant posé comme aux théorèmes I et II, si $B_1 > 0$, on a $(-1)^{n-1}\Delta \ge B_1 C_{22} \dots C_{nn} > 0.$

Cette inégalité résulte de (5), (7) et (10), Δ_{11} étant de la forme (6) de D.

Corollabre II. — Tout étant posé comme au théorème II, chaque mineur d de D dont la diagonale principale ne contient que des B_{ii} est $\neq o$.

En effet, soient c_{ii} les quantités analogues aux C_{ii} pour $d:-c_{ii}$ sera formé, par exemple, de B_{kk} et de termes qui entrent dans C_{kk} ,

d'après (3), et l'on aura

$$-c_{ii} \leq -C_{kk}$$
, $o < C_{kk} \leq c_{ii}$.

Le déterminant d étant de la forme D, d'après le théorème II, d est différent de zéro.

Corollaire III. - Soit l'équation en x

(11)
$$D(x) = \begin{vmatrix} B_{11} - \sigma_1 x & B_{21} & \dots & B_{n1} \\ B_{12} & B_{22} - \sigma_2 x & \dots & B_{n2} \\ \dots & \dots & \dots & \dots \\ B_{1n} & B_{2n} & \dots & B_{nn} - \sigma_n x \end{vmatrix} = 0,$$

avec

(12)
$$\sigma_1, \quad \sigma_2, \quad \ldots \quad \text{et} \quad \sigma_n \geq 0,$$

et qui n'est pas identique : 1° Quand les B_{ik} satisfont aux conditions (1), (11) n'a aucune racine réelle > 0; 2° Quand les B_{ik} satisfont en outre aux conditions du théorème II, cette équation n'a aucune racine réelle \geq 0; dans ce dernier cas, si m des quantités $\sigma_1, \ldots, \sigma_n$ exactement sont \neq 0, l'équation est effectivement de degré m.

En effet: 1° soit x > 0; d'après le corollaire II du théorème I, -D(x) peut se mettre sous la forme Δ ; d'après le théorème I, $(-1)^n D(x)$, qui n'est pas identiquement nul, peut se développer sous la forme d'une somme de termes tous positifs, dont un au moins dépend de x, est ≥ 0 pour x = 0 et croît avec x; donc $(-1)^n D(x) > 0$ lorsque x est plus grand que zéro;

2º Dans ce cas, on est sûr que D(x) n'est pas identiquement nul, car

$$(-1)^n D(o) > o$$

d'après le théorème II; soient

$$\sigma_{i_1}, \ldots, \sigma_{i_m}$$

ceux des σ_i qui sont \neq 0 : le coefficient de

$$\sigma_{i_1}\ldots\sigma_{i_m}x^m,$$

dans le développement de D(x) est, au signe près, un déterminant d de la forme indiquée au corollaire II du théorème II, et ce coefficient est $\neq 0$.

Lemme I. - L'équation

$$\begin{vmatrix} a_{11} - \sigma_1 x & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} - \sigma_2 x & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{nn} - \sigma_n x \end{vmatrix} = 0,$$

où $\sigma_1, \ldots, \sigma_n$ sont ≥ 0 , et $a_{ki} = a_{ik}$, a toutes ses racines réelles.

Ce résultat est bien connu quand $\sigma_1, \ldots, \sigma_n$ sont tous égaux à 1. Or, il suffit de se reporter à la démonstration qui figure dans l'Algèbre supérieure (1) de M. H. Weber pour voir que celle-ci subsiste à peu près identiquement quand $\sigma_1, \ldots, \sigma_n$ sont quelconques > 0 (2).

Il ne reste donc à traiter que le cas où quelques-uns d'entre eux seraient nuls; on pourra toujours admettre que ce sont $\sigma_{m+1}, \ldots, \sigma_m$. Partant du cas où $\sigma_1, \ldots, \sigma_n$ sont tous > 0, on fait tendre $\sigma_{m+1}, \ldots, \sigma_n$ vers o: n-m racines au moins croissent indéfiniment en valeur absolue, et, à la limite, les autres racines sont réelles.

On peut aussi dans ce cas observer que la démonstration de M. H. Weber s'applique encore presque identiquement.

Lemme II. — L'équation

$$\begin{vmatrix} b_{11} - \sigma_1 x & b_{21} & 0 & 0 & \dots & 0 \\ b_{12} & b_{22} - \sigma_2 x & b_{32} & 0 & \dots & 0 \\ 0 & b_{23} & b_{33} - \sigma_3 x & b_{43} & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \vdots & \dots & \dots & \dots & b_{nn} - \sigma_n x \end{vmatrix} = 0,$$

où $\sigma_1, \ldots, \sigma_n$ sont ≥ 0 , $b_{i,i-1}$ et $b_{i-1,i} \geq 0$, $b_{ik} = 0$ quand |i-k| > 1, a toutes ses racines réelles.

En effet, je multiplie les termes des diverses colonnes par les quantités positives $\mu_1, \mu_2, \ldots, \mu_n$, et je pose

$$b_{ik}\mu_i = a_{ik}, \quad \sigma_i\mu_i = \sigma'_i, \quad \mu_i > 0;$$

⁽¹⁾ Traduction J. Griess, Paris, Gauthier-Villars, 1898, p. 321 et suiv., ou texte allemand, Algebra, 1, 2te Auslage, p. 307.

⁽²⁾ Au sujet de ce cas voir Pierina Quintili, Giorn. di Mat. (A. Capelli), t. XLVII, janv.-fév. 1909, p. 21-24.

l'équation devient

$$\begin{vmatrix} a_{11} - \sigma'_1 x & a_{21} & 0 & \dots \\ a_{12} & a_{22} - \sigma'_2 x & a_{32} & \dots \\ 0 & a_{23} & a_{33} - \sigma'_3 x & \dots \\ \vdots & \vdots & \vdots & \ddots & \dots \end{vmatrix} = 0.$$

Si les $a_{i,i-1}$, $a_{i-1,i}$ sont simultanément nuls ou $\neq 0$, je puis disposer des $\mu_i > 0$ de façon que

$$a_{12} = a_{21}, \quad a_{23} = a_{32}, \quad \dots,$$
 suffit de poser

car il suffit de poser

$$\mu_1 b_{12} = \mu_2 b_{21}, \quad \mu_2 b_{23} = \mu_3 b_{32}, \quad \dots, \quad \mu_{n-1} b_{n-1,n} = \mu_n b_{n,n-1};$$

le lemme I s'applique, et (14) a toutes ses racines réelles.

Si des deux quantités $b_{i,i-1}, b_{i-1,i}$ l'une est nulle et l'autre différente du zéro; soit, par exemple,

$$b_{23}b_{32} = 0, \quad b_{32} + b_{23} \neq 0;$$

le déterminant du premier membre de (14) est égal au produit de deux déterminants de même forme

$$\begin{vmatrix} b_{11} - \sigma_1 x & b_{21} \\ b_{12} & b_{22} - \sigma_2 x \end{vmatrix} \quad \text{et} \quad \begin{vmatrix} b_{33} - \sigma_5 x & b_{43} & 0 & \dots \\ b_{34} & b_{44} - \sigma_4 x & b_{54} & \dots \\ 0 & b_{45} & b_{55} - \sigma_5 x & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 &$$

pour lesquels on peut supposer la propriété établie, car celle-ci est évidemment vraie pour n=1 ou 2.

Théorème III. – Les B_{ik} satisfaisant aux conditions (1), avec $B_{ik} = B_{ki}$, l'équation (11), supposée non identique, a toutes ses racines réclles et ≤ 0 . Quand les B_{ik} satisfont en outre aux conditions du théorème II, l'équation (11) est effectivement de degré m si m des quantités σ_i exactement sont $\neq 0$, et ses m racines sont < 0.

D'après le corollaire III du théorème II, il suffit de montrer que l'équation (11) a toutes ses racines réelles : c'est ce qui résulte du lemme I.

Corollaire. — J'admets que les B_{ik} satisfassent aux conditions (1) et à celles du théorème II, avec $B_{ik} = B_{ki}$ (1), et, quand B_{ik} est $\neq 0$

⁽¹⁾ Plus simplement et plus généralement, les résultats du corollaire subsistent quand, supposant d'abord ces conditions remplies, on fait ensuite varier assez peu d'une manière quelconque les coefficients B.

 $(i \neq k, i, k \geq 1)$, je remplace dans (11) $B_{ki}(k \leq i)$ par $B_{ik} + \varepsilon_{ik}$, avec $|\varepsilon_{ik}|$ assez petit par rapport à λ : on peut toujours prendre les $|\varepsilon_{ik}|$ assez petits pour que cette nouvelle équation ait les parties réelles de ses racines toutes négatives < 0. Si même l'équation (11) avec $\varepsilon_{ik} = 0$. a toutes ses racines distinctes, la nouvelle équation a toutes ses racines réelles, distinctes et < 0, quand les $|\varepsilon_{ik}|$ sont assez petits.

la nouvelle équation : ses racines sont de la forme $x_1 + y_1\sqrt{-1}$; quand les $|\varepsilon_{ik}|$ tendent vers zéro, $x_1 + y_1\sqrt{-1}$ a pour limite une racine de (11), et y_1 tend vers zéro, s'il n'est pas nul, en sorte que x_1 est négatif quand les $|\varepsilon_{ik}|$ sont assez petits, d'après le théorème III; y_1 ne peut d'ailleurs être \neq 0 que si E = 0 a deux racines $x_1 \pm y_1\sqrt{-1}$ ayant même limite, c'est-à dire si (11) a une racine double.

C. Q. F. D.

Remarque. — On peut observer au sujet de cette démonstration que, si l'on fait varier d'une manière continue à partir de zéro les ε_{ik} sans les assujettir à conserver des modules très petits, l'équation E = 0 ne pourra cesser d'avoir négatives les parties réelles de ses racines sans que l'une des quantités x_i s'annule. Si donc l'on pouvait démontrer que l'équation E = 0 n'a pas de racine imaginaire pure tant que les B_{ik} satisfont aux conditions (1) et à celles du théorème II, on aurait par cela même démontré que cette équation a les parties imaginaires de ses racines toutes négatives.

Je me contenterai d'indiquer, sans développer les calculs, que ce procédé réussit lorsque $n \le 3$; dans ce cas donc, les racines de E = 0 ont toujours leurs parties réelles négatives, et sont toutes réelles ou, évidemment, toutes distinctes.

Théorème IV. - Soit l'équation en x

$$\begin{vmatrix} B_{11} - \sigma_1 x & B_{21} & o & \dots & o \\ B_{12} & B_{22} - \sigma_2 x & B_{32} & \dots & o \\ o & B_{23} & B_{33} - \sigma_3 x & \dots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ o & o & o & \dots & B_{n-1,n} & B_{nn} - \sigma_n x \end{vmatrix} = o,$$

$$Journ. de Math. (6' série), tome IX. - Fasc. II, 1913. 27$$

où $\sigma_1, \ldots, \sigma_n$ sont ≥ 0 , et $B_{ik} = 0$ quand |i-k| > 1 (i, k égaux à 1, 2, ..., n). Lorsque les B_{ik} satisfont aux conditions (1), (14 bis) a toutes ses racines réelles et ≤ 0 ; elles sont même < 0 lorsque les B_{ik} satisfont en outre aux conditions du théorème II, et, dans ce dernier cas, si m des quantités σ_i exactement sont $\neq 0$ l'équation est effectivement de degré m.

En effet, d'après le corollaire III du théorème II, il suffit de montrer que l'équation (14 bis) a toutes ses racines réelles. C'est ce qui résulte du lemme II, qui est applicable, puisque, d'après (1), $B_{ik} \ge o$ ($i \ne k$).

Remarque. — On pourrait aussi démontrer directement, sans l'intermédiaire des lemmes I et II, que (14 bis) a toutes ses racines réelles. Soit X_k le déterminant obtenu en supprimant, dans le déterminant (14 bis) ou X, les k premières lignes et colonnes. On remarquera qu'on a pour X, X_1 , X_2 , ..., une suite d'égalités

$$X = (B_{11} - \sigma_1 x) X_1 - B_{12} B_{21} X_2, \quad \dots, \quad X_{n-1} = B_{nn} - \sigma_n x, \quad X_n = 1,$$
 et que les polynomes
$$X_1, X_1, \dots, X_n$$

forment une suite ayant des propriétés analogues aux suites de Sturm quand σ , ..., σ_n sont tous différents de zéro et de même signe; alors X a toutes ses racines réelles parce que la différence entre le nombre des variations de cette suite pour $x = +\infty$ et $x = -\infty$ est égal à n. Le cas où certains des $\sigma_1, \ldots, \sigma_n$ sont nuls s'en déduit comme cas limite.

On peut encore observer que le théorème IV comporte un corollaire analogue à celui du théorème III : si dans (11) on suppose d'abord que les B_{ik} satisfassent aux conditions (1) et à celles du théorème II, qu'on les fasse alors varier assez peu, et que les B_{ik} , pour lesquels |k-i|>1 ($i, k\geq 1$), soient non plus nuls, mais suffisamment petits, l'équation (11) correspondante a encore les parties réelles de ses racines négatives.

VI. - Sur certains systèmes d'équations implicites.

13. Soit un système de n équations implicites

(15)
$$f_k(z_1,\ldots,z_n) + a_k = 0 \qquad (k = 1, 2, \ldots, n),$$

où les inconnues réelles sont $z_1, ..., z_n$, et où les a_k sont des paramètres récls. Les fonctions f_k sont supposées univalentes, continues et ayant des dérivées, au moins dans le domaine δ où on les considère. Soit

(16)
$$B_{ik} = \frac{\partial f_k}{\partial z_i};$$

on a le théorème suivant :

Théorème. — Soit, pour un système a_i^0 de valeurs des a_i ,

$$z_1^0, \ldots, z_n^0,$$

une solution des équations (15). Les Bik satisfaisant aux conditions du deuxième alinéa du théorème II du paragraphe V, la valeur correspondante du jacobien D des f_k est différente de zéro, et les équations (15) définissent, pour les valeurs des a_i voisines des a_i^0 , n fonctions $z_1, ..., z_n des a_i$ telles que

$$E_{ik} = \frac{\partial z_k}{\partial a_i} \stackrel{?}{=} 0.$$

Plus exactement, soit, pour le système z'' de valeurs des $z_i, \lambda_i > 0$ une limite supérieure, $\lambda > 0$ une limite inférieure de celles des quantités | B_{ik} | qui ne sont pas nulles : on a

$$\mathbf{E}_{k\,k} \stackrel{>}{=} \lambda_1^{-1},$$

et quand $i \neq k$,

$$E_{ik} = 0$$
 ou $E_{ik} \ge \frac{\lambda}{\lambda_1^2}$,

cette dernière inégalité ayant forcément lieu pour les valeurs de i et de k telles que $B_{ik} > o$.

En effet, D est différent de zéro, et même, d'après (8) (§ V),

$$(-1)^n D \stackrel{>}{=} \lambda^n$$
.

Il est bon d'indiquer incidemment à quoi équivalent, pour les fonctions f_k , les conditions imposées aux B_{ik} . La condition énoncée au deuxième alinéa du théorème II, qu'il y a un $B_{ik} > 0$, pour chaque valeur de i et une valeur de k < i, exprime que, pour ces valeurs de i et k, on a

$$\frac{\partial f_k}{\partial z_i} > 0$$
;

de même, B_{ii} < 0 [équations (1), nº 12] exprime que

$$\frac{\partial f_i}{\partial z_i} < 0.$$

Par conséquent, les conditions relatives aux B_{ik} équivalent pour la fonction f_i , dans le domaine considéré, aux suivantes : f_i est fonction décroissante de z_i et non décroissante des autres quantités z_k ; pour chaque valeur de i, il y a une valeur de k < i telle que f_k soit fonction effectivement croissante de z_i ; enfin, pour i = 1, 2, ..., n,

$$B_{i_1}+\ldots+B_{i_n}=\frac{\partial(f_1+f_2+\ldots+f_n)}{\partial z_i}\leq 0.$$

Ceci posé, on a

(17)
$$df_k + da_k = B_{1k} dz_1 + \ldots + B_{nk} dz_n + da_k = 0,$$

$$D dz_k = - \begin{vmatrix} B_{11} & \ldots & B_{k-1,1} & da_1 & B_{k+1,1} & \ldots & B_{n1} \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ B_{1n} & \ldots & B_{k-1,n} & da_n & B_{k+1,n} & \ldots & B_{nn} \end{vmatrix}.$$

Amenant, dans le déterminant du second membre, les $k^{\text{ièmes}}$ lignes et colonnes à la première place, on a

$$D dz_k = -D_k$$

οù

$$D_{k} = \begin{vmatrix} da_{k} & B_{1k} & B_{2k} & \dots & B_{k-1,k} & B_{k+1,k} & \dots & B_{nk} \\ da_{1} & B_{11} & B_{21} & \dots & B_{k-1,1} & B_{k+1,1} & \dots & B_{n1} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ da_{n} & B_{1n} & B_{2n} & \dots & B_{k-1,n} & B_{k+1,n} & \dots & B_{nn} \end{vmatrix}.$$

Ce déterminant, quand on suppose les da_i positifs, est du type (2) du n° 12, et alors, d'après le théorème I, $(-1)^{n-1}D_k$ est ≥ 0 et de la forme

$$(-1)^{n-1}D_k = E'_{1k} da_1 + \ldots + E'_{nk} da_n,$$

où $E'_{ik} \ge 0$, puisque le premier membre de (18) est positif quand $da_i \ge 0$, les autres da_k étant nuls. Soit

(19)
$$\mathbf{E}'_{ik} = (-1)^n \mathbf{D} \mathbf{E}_{ik}, \quad \text{d'où} \quad \mathbf{E}_{ik} \geq 0;$$

(corollaire II du théorème I, nº 12);

on a

$$(-1)^n D dz_k = (-1)^{n-1} D_k,$$

 $dz_k = E_{1k} da_1 + ... + E_{nk} da_n$

et

(20)
$$\frac{\partial z_k}{\partial a_i} = \mathbf{E}_{ik} = \mathbf{0}.$$

On peut même préciser un peu plus. On a, d'après le théorème I, puisque D se déduit de D_k en y remplaçant da_i par B_{ki} ,

$$(-1)^{n-1}D = E'_{1k}B_{k1} + \ldots + E'_{nk}B_{kn} = (-1)^{n}D(E_{1k}B_{k1} + \ldots + E_{nk}B_{kn}),$$

$$-1 = E_{1k}B_{k1} + \ldots + E_{nk}B_{kn};$$

le second membre ne comprend que le terme $E_{kk}B_{kk}$ qui puisse être négatif, en sorte que

$$-B_{kk}E_{kk} \stackrel{>}{=} 1, \qquad E_{kk} \stackrel{>}{=} \frac{1}{\lambda_1};$$

ces inégalités résulteraient aussi de la considération de l'égalité

$$\frac{\partial f_k}{\partial z_1} \frac{\partial z_1}{\partial a_i} + \ldots + \frac{\partial f_k}{\partial z_n} \frac{\partial z_n}{\partial a_i} = \eta_{ki},$$

où $\eta_{ki} = 0$, si $k \neq i$, et $\eta_{kk} = -1$, égalité qui s'écrit aussi

$$B_{1k}E_{i1}+\ldots+B_{nk}E_{in}=\eta_{ki}$$
;

il suffit en effet d'y faire i = k.

Quand $i \neq k$, le scul terme du premier membre qui puisse être négatif est

 $B_{kk}E_{ik}$;

si donc un des termes

$$B_{mk}E_{im}$$
 $(m \neq k),$

est différent de zéro, on devra avoir $E_{ik} \neq 0$, $E'_{ik} \neq 0$, et inversement. Par conséquent, lorsque $B_{ik} > 0$, puisque E_{ii} est > 0, d'après (21), on a

$$\mid \mathbf{B}_{kk} \mathbf{E}_{ik} \mid \stackrel{>}{\geq} \mathbf{B}_{ik} \mathbf{E}_{i\ell} \stackrel{>}{\geq} \frac{\lambda}{\lambda_1}$$
,
$$\mathbf{E}_{ik} \stackrel{>}{\geq} \frac{\lambda}{\lambda_1^2}$$
. C. Q. F. D.

VII. — Alimentation permanente et régime permanent des systèmes de réservoirs.

14. Alimentation permanente. — Je reprends les équations (2) du paragraphe III, en admettant, comme dans tout ce qui suit, que les φ_{ij} satisfassent, non aux hypothèses Λ du paragraphe IV, mais aux hypothèses plus restrictives des paragraphes II et III; ce dernières paraissent suffire, comme je l'ai expliqué au paragraphe II, pour l'étude des systèmes de réservoirs naturels ou, plus généralement, des systèmes envisagés dans le paragraphe VII.

Le seul cas où un régime permanent, pour lequel $z_1, ..., z_n$ soient constants, est possible, c'est celui où les a_i sont constants, sans être tous nuls, bien entendu, s'il y a mouvement. C'est là une condition nécessaire, et les équations du régime permanent sont

(22)
$$\varphi_{0i} + \varphi_{1i} + \ldots + \varphi_{ni} + \alpha_i = f_i + \alpha_i = 0$$
 $(i = 1, 2, \ldots, n).$

Mais, a priori, on ne peut affirmer qu'il y aura un régime permanent pour un système donné de valeurs des a_i , c'est-à-dire qu'on n'est pas certain que le système (22) ait alors une solution. Ainsi, une fontaine intermittente, dont l'alimentation est constante, a un régime périodique. On pourrait donc examiner, a_1 , a_2 , ..., a_n étant des constantes données, positives, nulles ou même négatives : 1° dans quels cas il y a un régime permanent, c'est-à-dire pour quelles valeurs de a_1 , ..., a_n les équations (22) ont une solution; 2° dans quels cas il y a un régime périodique, qui dépendra alors des équations (2) du paragraphe a_1 ; a_2 0 les autres cas, s'il y en a_1 0 qui dépendront de ces mêmes équations (2).

Je commence par indiquer un exemple de chacun de ces trois cas.

Premier cas. — Régime permanent. — Il suffira de considérer un seul réservoir, qui donne lieu à l'équation

$$\varphi_{01} + a_1 = 0$$
.

Si φ_0 , est une fonction continue de z, égale à zéro pour une certaine valeur de z, et les valeurs plus petites, et à $-\infty$ lorsque $z_1 = +\infty$,

cette équation a toujours au moins une racine pour chaque valeur de $a_1 > 0$ (exemple en hydraulique des liquides : cas où le réservoir S_1 possède un déversoir externe non noyé à l'aval); il y a un régime permanent au moins pour chaque valeur de a_1 ; il n'y en a qu'un si φ_{01} est fonction constamment décroissante de z_1 .

Un exemple plus étendu en hydraulique des eaux est fourni par un système de *n* réservoirs à surface libre et à exutoires non noyés à l'aval, dans des conditions étudiées par moi antérieurement (').

Deuxième cas. — Régime périodique avec alimentation permanente. — Soit, en hydraulique des liquides, — φ_0 , une fonction de z_1 qui exprime sous certaines conditions le débit d'un siphon non noyé à l'aval (²) (§ III, n° 7), ou une fonction de même nature, c'està-dire ici une fonction qui peut prendre les deux valeurs

$$\psi_1(z_1) > 0$$
 et o

quand z_1 varie entre h_1 et H_1 , la valeur

$$\psi_1(z_1) = 0$$

quand $z_1 < h_1$, la valeur

$$\psi_1(z_1) \neq 0$$

quand $z_1 \ge H_1$. La fonction $\psi_1(z_1)$ est discontinue pour $z_1 = h_1$, $\psi_1(h_1 + \varepsilon)$ étant > 0, > 0 (0, nombre fixe) si petit que soit le nombre positif ε , et $\psi_1(h_1 - \varepsilon)$ étant nul; de plus, $\psi(z_1)$ est fonction croissante de z_1 pour $z_1 > h_1$.

Alors $\varphi_{01} + a_1$ est d'une des formes

$$a_1 - \psi_1(z_1)$$
 on a_1 ;

pour une valeur de $a_i > 0$, le régime permanent n'est possible que si l'on peut avoir

$$a_1 = \psi_1(z_1);$$

la condition nécessaire et suffisante pour qu'il en soit ainsi est

$$a_1 \stackrel{>}{=} \psi_1(h_1 + \varepsilon);$$

⁽¹⁾ Voir par exemple Journ. École Pol., 1909, p. 52.

⁽²⁾ On suppose l'orifice d'aval, de cote h'_2 , plus bas que celui d'amont, de cote h_1 , c'est-à-dire que, dans la seconde formule (6) du nº 7, il faut remplacer z par z_1 , z_1 par z_2 , h par h_1 , h_1 par h'_2 , et h_2 par $h_1 > h'_2$.

si elle est remplie, il existe un régime permanent ('); sinon, il n'y en a pas.

Soit une valeur a, inférieure à

$$\lim_{t \to 0} \psi_1(h_1 + \varepsilon)_{\varepsilon=0}:$$

$$\frac{dw_1}{dt} = a_1 - \psi_1(z_1) \quad \text{ou} \quad \frac{dw_1}{dt} = a_1,$$

d'après les équations (2) du paragraphe III.

 $S_{+}(z_{+})$ étant, comme ci-dessus d'ailleurs, supposé fini et > o quand z_{+} est fini et au moins égal à h_{+} , et la valeur initiale de z_{+} étant comprise entre h_{+} et H_{+} , lorsque la deuxième équation s'applique, z_{+} finit par atteindre la valeur H_{+} ; à partir de ce moment, il convient d'envisager la première équation (le siphon s'amorce alors, car on est dans le cas des liquides), et z_{+} décroît; mais on a

$$a_1 - \psi_1(z_1) \leq -\alpha_1$$
 $(\alpha_1 = \text{const.} > 0);$

 z_i reprend donc la valeur h_i au bout d'un temps fini, et, à partir de ce moment, il faut envisager la deuxième équation (le siphon se désamorce). Le mouvement est évidemment périodique, et sa période est

$$P_{1} = \int_{h_{1}}^{H_{1}} \left[\frac{1}{a_{1}} + \frac{1}{\psi_{1}(z_{1}) - a_{1}} \right] S_{1} dz_{1}.$$

Plus généralement, soit un système de n réservoirs dont un seul, S_1 , possède un exutoire externe, en sorte que

$$\varphi_{02}=\ldots=\varphi_{0n}=0$$
;

si φ_{01} est la même fonction bivalente que tout à l'heure, et si

$$U_1 = w_1 + \ldots + w_n$$

on a [équations (18) du paragraphe IV]

$$\frac{d\mathbf{U_1}}{dt} = \varphi_{01} + a_1 + \ldots + a_n;$$

quand

$$0 < a_1 + \ldots + a_n < \lim \psi_1 (h_1 + \varepsilon)_{\varepsilon=0}$$

⁽¹⁾ Le régime est alors asymptotiquement permanent pour une valeur initiale quelconque de z_1 (Journ. École Pol., p. 43 et 52-56).

le régime permanent est impossible : U, est alternativement croissant et décroissant.

Troisième cas. — Régimes avec alimentation permanente et qui ne sont ni permanents ni périodiques.

On en a un exemple immédiat en considérant deux réservoirs S_1 , S_2 analogues au réservoir S_1 envisagé dans le deuxième cas, avec des périodes P_1 , P_2 , et qui se déversent exclusivement par des siphons non noyés à l'aval dans un troisième réservoir S_3 pour lequel a_3 est constant, et φ_{03} univalent. On a

$$\frac{dw_{3}}{dt} = \varphi_{03} + \varphi_{13} + \varphi_{23} + \alpha_{3} = \varphi_{03} + \Lambda_{3}(t),$$

où φ_{13} , φ_{23} ne dépendent pas de z_3 .

Si P₁ et P₂ sont incommensurables entre eux, on peut montrer que z_3 n'est pas périodique. Je ne reproduis pas ici la démonstration.

Au contraire, si P_1 et P_2 sont commensurables entre eux, z_1 et z_2 ont une période commune P

$$\frac{dw_3}{dt} = \varphi_{03} + \Lambda_3(t),$$

où $\Lambda_3(t)$ est périodique, de période P; on sait que (¹) z_3 est asymptotiquement périodique. Soit, en particulier, $P=P_1=P_2$; le mouvement pourra présenter une circonstance curieuse : si a_1+a_2 est relativement assez petit, la période P, d'après son expression calculée plus haut (deuxième cas), sera grande; pendant la majeure partie de cette période, c'est-à-dire pendant le remplissage de S_1 et S_2 , $\Lambda_3(t)=a_3$, et le mouvement de S_3 semblera durant ce temps asymptotiquement permanent, ce phénomène pouvant présenter une ou deux phases.

Bien que, dans le troisième cas étudié ci-dessus, la solution z_1, z_2, z_3 n'ait, en général, aucune période, on sait qu'on peut affirmer l'existence d'un système $\zeta_1, \zeta_2, \zeta_3$ tel que les conditions

$$|z_1-\zeta_1| \leq \varepsilon, \qquad |z_2-\zeta_2| \leq \varepsilon, \qquad |z_3-\zeta_3| \leq \varepsilon,$$

⁽¹⁾ Journ. École Polyt., 1909, p. 28 et 45.

(ε nombre positif arbitrairement petit) seront remplis une infinité de fois (¹).

J'ai insisté sur ces exemples relativement simples : ils montrent la variété des cas que l'on peut rencontrer dans l'étude des réservoirs avec alimentation permanente, et ils ne sont peut-être pas sans intérêt au point de vue de l'hydraulique souterraine.

Dans ce qui suit, je n'envisagerai plus que des fonctions φ_{0i} , φ_{ki} univalentes, au moins dans les domaines étudiés.

43. Propriétés des équations différentielles et implicites du mouvement quelconque d'un système de réservoirs. — Je reprends le système d'équations (2) du paragraphe III,

$$w_i' = S_i z_i' = \varphi_{0i} + \varphi_{1i} + \ldots + \varphi_{ni} + a_i = f_i + a_i,$$

relatives au mouvement quelconque d'un système de réservoirs; je vais signaler certaines propriétés des quantités

$$B_{ik} = \frac{\partial f_k}{\partial z_i}$$

qui comportent des applications dans la suite. On a

(23)
$$\begin{vmatrix}
B_{ki} = \frac{\partial f_i}{\partial z_k} = \frac{\partial \varphi_{ki}}{\partial z_k} = -\frac{\partial \varphi_{ik}}{\partial z_k} \stackrel{?}{=} 0 \\
B_{ik} = \frac{\partial f_k}{\partial z_i} = \frac{\partial \varphi_{ik}}{\partial z_i} = -\frac{\partial \varphi_{ki}}{\partial z_i} \stackrel{?}{=} 0 \\
B_{ii} = \frac{\partial f_i}{\partial z_i} = \frac{\partial (\varphi_{0i} + \dots + \varphi_{ni})}{\partial z_i} = -(B_{i0} + B_{i1} + \dots + B_{i,i-1} + B_{i,i+1} + \dots + B_{in}); \\
B_{ii} \stackrel{?}{=} 0 \text{ et, par définition, } B_{i0} = -\frac{\partial \varphi_{0i}}{\partial z_i} \stackrel{?}{=} 0.$$

Le jacobien ou déterminant fonctionnel des f_i est un déterminant du type considéré au corollaire II du théorème I du paragraphe V, et les B_{ik} satisfont aux conditions (1) de ce paragraphe.

On peut en outre ajouter, aux hypothèses des paragraphes II et III sur les φ_{0i} , φ_{ki} , les hypothèses suivantes, habituellement vraies. Le domaine où varient $z_1, z_2, ..., z_n$ peut se subdiviser en domaines

⁽¹⁾ Cf. II. Poincaré, Méthodes nouvelles de la Mécanique céleste, t. III. Paris, Gauthier-Villars, 1899.

partiels δ limités par certaines multiplicités ou surfaces dans l'espace à n dimensions

$$\psi(z_1,\ldots,z_n)=0;$$

ces équations, dans des cas très usuels, seront de la forme

$$z_i = \lambda z_k$$
 avec λ constant, ou $z_i = \text{const.}$;

ainsi, dans le cas d'un réservoir unique d'eau, muni de petits orifices aux cotes $\mu_1, \mu_2, ...,$ ces équations seront

$$z_1 = \mu_1$$
 ou $z_1 = \mu_2$, ou

Soit δ un de ces domaines partiels, les frontières du domaine, formées par certaines de ces surfaces, étant exclues : les fonctions φ_{0i} , φ_{ki} , quand elles ne sont pas identiquement nulles dans le domaine δ , y seront supposées partout différentes de zéro, univalentes, finies et continues; leurs dérivées par rapport aux variables qui entrent effectivement dans ces fonctions sont différentes de zéro dans δ , et finies.

Ainsi, en hydraulique des eaux, si l'un des dispositifs de communication de S_i et de S_k est un ajutage ordinaire à la cote c, on a pour ce dispositif l'une des cinq formes suivantes, où les coefficients m_1, \ldots, m_4 , ainsi que le coefficient m' indiqué ensuite, sont des quantités constantes ou lentement variables avec z_i et z_k :

$$(24) \begin{cases} \varphi_{ik} = m_1 \sqrt{z_i - z_k} & (z_i \geq z_k \geq c), \\ \varphi_{ik} = -m_2 \sqrt{z_k - z_i} & (z_k \geq z_i \geq c), \\ \varphi_{ik} = m_3 \sqrt{z_i - c} & (z_i \geq c \geq z_k), \\ \varphi_{ik} = -m_4 \sqrt{z_k - c} & (z_k \geq c \geq z_i), \\ \varphi_{ik} = 0 & (c \geq z_i, c \geq z_k). \end{cases}$$

De même, pour un ajutage externe de S_i , à la cote c',

(25)
$$\begin{cases} \varphi_{0i} = -m' \sqrt{z_i - c'} & (z_i \leq c'), \\ \varphi_{0i} = 0 & (z_i \leq c'). \end{cases}$$

Les fonctions φ_{ik} , φ_{0i} sont, on le voit, univalentes, mais multiformes (comparer avec la fin du n° 7).

En réalité, les formules (24) ci-dessus, par exemple, ne seraient suffisamment exactes que si l'ajutage avait une section infiniment

petite; dans le cas d'une section finie de petites dimensions, c est la cote du centre de gravité de la section, et les formules (24) ne s'appliquent que quand $|z_i - c|$ ou $|z_k - c|$ sont supérieurs à une petite quantité positive ε . La fonction φ_{ik} est encore multiforme, mais il y a une région déterminée par une quelconque des inégalités

$$|z_i-c| \leq \varepsilon, |z_k-c| \leq \varepsilon,$$

où la valeur de cette fonction est mal connue.

On pourra négliger e, et les quantités analogues pour un dispositif quelconque, ou encore, plus rigoureusement, exclure du domaine δ non seulement la frontière, mais encore le voisinage immédiat de la frontière.

Finalement, en tenant compte aussi des paragraphes II et III, on fera, au sujet des quantités (23), les hypothèses suivantes, que j'appellerai hypothèses C, et qui seront valables dans le domaine δ :

1º Lorsque φ14 n'est pas identiquement nul dans δ, l'une des deux

 B_{ik} ou B_{ki} est > 0:

si, par exemple, φ_{ki} dépend effectivement de z_k , $B_{ki} > o$ d'où $B_{kk} < o$; $ext{2}^o$ Lorsque φ_{0i} n'est pas identiquement nul dans \hat{o} , $ext{3}^o$, $ext{2}^o$ by $ext{3}^o$ $ext{2}^o$ $ext{3}^o$ $ext{3}^o$ e

$$B_{ki} > o$$
 d'où $B_{kk} < o$;

$$B_{i0} > o$$
 d'où $B_{ii} < o$

par exemple, si \mathbf{S}_{t} a un dispositif externe à une cote $c \leq z_{t}$,

$$B_{i1} + \ldots + B_{ii} + \ldots + B_{in} = -B_{i0} < 0;$$

3° Si un dispositif de communication de S_t avec un autre reservoir, ou avec l'extérieur, fonctionne de façon que l'une au moins des fonctions $\varphi_{0i}, \varphi_{1i}, \ldots, \varphi_{ni}$ ne soit pas identiquement nulle et dépende de z_i

$$B_{ii} < o$$
.

Il y a intérêt à observer qu'on pourra, à l'occasion, faire sur les B_{i_0} , B_{ik} des hypothèses encore plus précises.

Ainsi, en hydraulique des eaux, je suppose que les dispositifs de communication de S_i et S_k soient des ajutages noyés; on pourra

prendre sensiblement, dans beaucoup de cas [nº 7, formule (5) et (6); nº 8, formule (7); nº 10, formule (15)],

(27)
$$B_{ki} = \frac{\partial f_i}{\partial z_k} = \frac{\partial \varphi_{ki}}{\partial z_k} = -\frac{\partial \varphi_{ki}}{\partial z_i} = \frac{\partial \varphi_{ik}}{\partial z_i} = \frac{\partial f_k}{\partial z_i} = B_{ik},$$

où $i \neq k$; le jacobien des f_i est alors un déterminant symétrique; les fonctions f_i sont les dérivées partielles d'une même fonction

$$F(z_1,\ldots,z_n),$$

par rapport à z_1, \ldots, z_n , et les équations différentielles et implicites (2) du paragraphe III deviennent

(28)
$$w_i' = S_i z_i' = \frac{\partial F}{\partial z_i} + a_i.$$

Si le dispositif de communication de S_i et S_k est un déversoir noyé, et si $[n^0, 7]$, formule (4)]

$$\varphi_{ki} = m(z_k - c)\sqrt{z_k - z_i} \qquad (z_k > z_i > c),$$

on a

(29)
$$\frac{\partial \varphi_{ki}}{\partial z_k} + \frac{\partial \varphi_{ki}}{\partial z_i} = B_{ki} - B_{ik} > 0.$$

16. Sur le cas général du régime permanent. — Les équations du régime permanent sont de la forme

$$(3o) f_i + a_i = 0,$$

avec a_i constant ≥ 0 , et analogues aux équations (15) du paragraphe VI; un des a_i est > 0.

J'admets que le système de valeurs a_i^0 des a_i considéré soit tel que les équations ci-dessus aient une solution $z_i^0, ..., z_n^0$ située à l'intérieur d'un des domaines δ définis tout à l'heure à propos de (23), c'est-à-dire que $z_1^0, ..., z_n^0$ ne satisfassent à aucune des conditions $\psi(z_1, ..., z_n) = 0$.

Je classe alors les réservoirs d'une manière analogue à celle du théorème I du paragraphe IV, en envisageant non plus les communications possibles, mais les communications effectives. Soit le groupe s, des réservoirs

$$S_1, \ldots, S_n$$

qui se déversent effectivement à l'extérieur par un dispositif (orifice, déversoir, etc.) qui fonctionne, c'est-à-dire que, pour les valeurs z_i^0

 $\operatorname{des} z_i$, on a

$$\varphi_{01}, \ldots, \varphi_{0n_1}$$
 tous < 0 ;

On a $n_4 > 0$, puisque les a_i^0 sont ≥ 0 et non tous nuls, et que, le régime étant permanent, il faut qu'un des dispositifs externes fonctionne. Soit ensuite le groupe s_2 de ceux

$$S_{n_1+1}, \ldots, S_{n_2}$$

des autres réservoirs qui alimentent effectivement un au moins des réservoirs de s_1 : les réservoirs de s_2 n'ont aucun dispositif externe fonctionnant, et, de plus, par hypothèse, chacun d'eux fournit un débit positif plus grand que zéro à l'un des s_4 . Soit encore le groupe s_3 de ceux

$$S_{n_2+1}, \ldots, S_{n_3}$$

des autres réservoirs qui alimentent effectivement un au moins des réservoirs de s₂, etc. J'admettrai que, pour le système des valeurs de

$$z_1, \ldots, z_n, a_1, \ldots, a_n$$

considérées, chaque réservoir du système fait partie d'un de ces groupes; il en sera forcément ainsi dans le cas où les a_i^0 sont tous > 0.

D'après (26), c'est-à-dire d'après les hypothèses C, on a pour les réservoirs de s,

$$B_{10}, \ldots, B_{n_{10}} > o;$$

pour chaque valeur de k égale à $n_1 + 1, ..., n_2$, il y a au moins une valeur de $i \le n_1$, et telle que

$$B_{ki} > 0$$

puisque chaque réservoir de s_2 alimente effectivement un au moins des s_i ; pour chaque valeur de k égale à $n_2 + 1, ..., n_3$, il y a une valeur de i telle que

$$n_1 + 1 \leq i \leq n_2$$
 et $B_{ki} > 0$,

puisque chaque réservoir de s₃ alimente au moins un des s₂, etc.

Les B_{ki} , puisque, d'après (23) ou (26), $B_{kk} < 0$ pour chaque valeur de k, satisfont donc aux conditions (1) du paragraphe V, et, en outre, aux conditions de l'alinéa 2 du théorème II de ce paragraphe. Ce théorème II et ses conséquences s'appliquent ainsi au jacobien du

système (30), et ce jacobien est différent de zéro, et du signe de $(-1)^n$. En particulier, on peut se servir ici du théorème du paragraphe VI: à chaque système de valeurs des a_i tel que les $|a_i - a_i^0|$ soient assez petits correspond une solution z_1, \ldots, z_n de (30) telle que les $|z_i - z_i^0|$ soient petits, et que z_1, \ldots, z_n ne satisfassent à aucune des conditions $\psi(z_1, \ldots, z_n) = 0$. J'envisage une de ces solutions et je suppose que a_k éprouve un accroissement infiniment petit positif; on a

$$\mathbf{E}_{ik} = \frac{\partial \mathbf{z}_k}{\partial a_i} \geq \mathbf{o}, \quad \mathbf{E}_{kk} \geq \lambda_1^{-1} > \mathbf{o}, \quad k \neq i \quad \text{ou} \quad k = i,$$

et

$$\mathbf{E}_{ki} = \frac{\partial z_i}{\partial a_k} > 0$$
, si $\mathbf{B}_{ki} = \frac{\partial f_i}{\partial z_k} > 0$, avec $k \neq i$;

 $dz_1, ..., dz_n$ ne peuvent être négatifs.

D'autre part, pour chaque valeur de k, d'après (26), on a

$$B_{ki} = \frac{\partial \varphi_{ki}}{\partial z_k} > 0, \qquad k \neq i,$$

lorsque S_k alimente effectivement S_i , ou lorsque S_i alimente effectivement S_k par un dispositif de communication dont le débit dépend de z_k (on pourra dire, par extension, que ce dispositif est alors $noy\acute{e}$). Enfin, soit S_j un réservoir quelconque autre que S_k et l'équation

$$df_j = B_{1j} dz_1 + \ldots + B_{nj} dz_n = 0,$$

οù

 $dz_1, \qquad \ldots, \qquad dz_n \geq 0;$

d'après ce qui précède,

$$B_{ii} < o$$

on ne peut donc avoir $dz_j = 0$ que si celles des quantités dz_l pour lesquelles B_{lj} est $\neq 0$ sont nulles; mais $B_{lj} = \frac{\partial \varphi_{lj}}{\partial z_l}$ est $\neq 0$, d'abord quand S_l est un réservoir qui alimente effectivement S_j , ensuite quand S_l est un réservoir que S_j alimente par un dispositif de communication noyé. Ces résultats montrent complètement quelle sera l'influence sur les quantités caractéristiques d'une petite variation de la quantité α_k . Dès lors, on obtient ces propriétés:

Quand on fait croître légèrement le débit permanent d'alimen-

tation a_k d'un réservoir S_k au voisinage de la valeur a_k^0 , les valeurs $z_1, ..., z_n$ de la solution permanente qui correspond à $a_1, ..., a_n$, et est voisine de la solution $z_1^0, ..., z_n^0$, ne peuvent décroître; z_k croît effectivement; on en conclut de proche en proche quels sont les réservoirs dont les quantités caractéristiques croissent effectivement en observant que, si z_i ($i \neq k$ ou non) croît effectivement, les quantités caractéristiques des réservoirs que S_i alimente, ou qui alimentent S_i par un dispositif noyé, croissent effectivement.

Une partie de ces résultats, dans les cas particuliers usuels, pourra paraître plus ou moins intuitive à l'hydraulicien, après réflexion toutefois, eu égard à la complexité du problème; mais ce sera moyennant plus d'hypothèses qu'on n'en fait ici.

17. Cas particuliers du régime permanent. — Je me contenterai à ce sujet d'indiquer sommairement quelques exemples, en rappelant que je suppose les fonctions φ_{ik} univalentes.

Premier cas. — J'admets que S_n communique avec S_{n-1} seul, ..., S_k avec S_{k-1} et S_{k+1} seuls, ..., et que S_1 se déverse à l'extérieur. On a pour le régime permanent

$$w'_n = \varphi_{n-1,n} + a_n = 0,$$
 ..., $w'_k = \varphi_{k-1,k} + \varphi_{k+1,k} + a_k = 0,$..., $w'_1 = \varphi_{01} + \varphi_{21} + a_1 = 0.$

Si l'on pose encore

$$U_{k} = w_{k} + w_{k+1} + \ldots + w_{n},$$

$$(31) \begin{cases} U'_{n} = a_{n} + \varphi_{n-1,n} = 0, & \ldots, & U'_{k} = a_{k} + \ldots + a_{n} + \varphi_{k-1,k} = 0, & \ldots, \\ U'_{1} = a_{1} + \ldots + a_{n} + \varphi_{01} = 0. \end{cases}$$

Quand

$$a_k+\ldots+a_n\geq 0$$
,

quel que soit k, le système (31) a toujours une solution acceptable; on détermine de proche en proche z_1, \ldots, z_n .

DEUXIÈME CAS. — On peut aussi traiter complètement le cas de deux réservoirs (n=2). Pour tout système de valeurs de $a_1 \ge 0$, $a_2 \ge 0$, $a_1 + a_2 > 0$, il y a toujours un régime permanent.

Troisième cas. — Je suppose que S_k alimente exclusivement un ou plusieurs des réservoirs $S_{k-1}, ..., S_1$, aucun des dispositifs de communication n'étant noyé: alors $\varphi_{ki} = -\varphi_{ik}$ est ≥ 0 et ne dépend que de z_k , lorsque k > i. On a les équations

$$\Phi_k + \varphi_{k+1,k} + \ldots + \varphi_{nk} + a_k = 0 \qquad (k = 1, 2, \ldots, n), \qquad a_k \geq 0,$$
où
$$\Phi_k = \varphi_{0k} + \varphi_{1k} + \ldots + \varphi_{k-1,k}$$

ne dépend que de z_k . Ces équations déterminent de proche en proche

$$z_n, z_{n-1}, \ldots, z_1,$$

et la solution est toujours acceptable quand z_1, \ldots, z_n satisfont à certaines inégalités. Par exemple, celles-ci seront, grâce au besoin à une numérotation convenable des réservoirs : 1° pour les liquides, sous des conditions évidentes pour les dispositifs,

$$z_n > z_{n-1} > \ldots > z_1;$$

2° pour n réservoirs de gaz maintenus à la température T_0 du milieu intérieur, la détente par les orifices étant adiabatique (§ III, n° 9)

$$\frac{z_j}{z_i} \leq \left(\frac{2}{\mu+1}\right)^{\frac{\mu}{\mu-1}}, \quad \text{avec } \mu = 1, 41....$$

pour toute valeur de $j \le i$; l'égalité (10) du paragraphe III s'appliquant, les équations du mouvement permanent sont linéaires par rapport aux pressions z_i .

VIII. — Des régimes voisins du régime permanent. Stabilité de ce régime. — Alimentation périodique.

18. Je vais m'appuyer dans ce qui suit sur quelques théorèmes relatifs (¹) aux systèmes d'équations différentielles et implicites signalés par moi dans les *Comptes rendus* du 19 juillet 1909 (p. 198), et dont je ne donne pas la démonstration ici. Ce sont les théorèmes mentionnés

⁽¹⁾ Il sera bon de se reporter à ce sujet au Tome III du *Traité d'Analyse* de M. E. Picard, et à la traduction d'un Mémoire russe de M. P. Bohl parue dans le *Bull. Soc. math.*, t. XXXVIII, 1910, p. 5 et suiv.

sous les nos I, II et III de cette Communication, et dont les deux premiers peuvent être complétés comme il est dit ci-après:

1° La propriété des solutions des systèmes d'équations différentielles et implicites considérées indiquée sous le n° I s'étend aux solutions des systèmes analogues obtenus en ajoutant aux X_i , où $F_i = 0$, quel que soit i, de petites fonctions $\psi_{\ell}(t)$, de modules assez petits pour $t \ge 0$, et qui tendent vers 0, quand ℓ croît indéfiniment.

Si les fonctions $\psi_i(t)$ ne tendent pas toutes vers o lorsque t croît indéfiniment, mais conservent des modules suffisamment petits lorsque $t \ge 0$, on conclut seulement que les x_k et les x'_k ont leurs modules toujours inférieurs à une quantité arbitrairement petite pour $t \ge 0$.

2º La propriété des systèmes d'équations différentielles et implicites considérées indiquée sous le nº II peut se préciser ainsi : pour chaque valeur réelle de μ de module assez petit, chacun de ces systèmes possède une solution périodique unique de période ω , quand l'équation caractéristique $\delta = o$ n'a aucune racine de la forme

$$\frac{2\lambda\pi i}{\omega}$$
,

où λ est un entier quelconque, positif, nul ou négatif. Cette solution périodique est développable en séries ordonnées suivant les puissances de μ et à coefficients périodiques de période ω .

Je désignerai par (I, C. R.), (II, C. R.), (III, C. R.) les théorèmes en question ainsi complétés.

19. Ceci posé, soit encore le système mixte d'équations différentielles et implicites (2) du paragraphe III,

(32)
$$w'_{i} = S_{i}z'_{i} = \varphi_{0i} + \varphi_{1i} + \ldots + \varphi_{ni} + a_{i} = f_{i} + a_{i},$$

relatives au mouvement d'un système de réservoirs, et où les φ_{0i} , φ_{ki} sont univalentes dans le domaine considéré δ_i , qui appartient à un des domaines définis à propos de (23) (n° 15).

Soient

$$z_i = \zeta_i$$
 (ζ_i const.)

une solution permanente correspondant à un régime permanent a_i^0 ;

$$z_i = \zeta_i + \eta_i$$
 $(i = 1, 2, ..., n)$

une solution quelconque, avec $|\eta_i|$ assez petit, et qui correspond à une petite variation δa_i de l'alimentation, δa_i pouvant être fonction du temps; on suppose la solution ζ_i comprise dans δ_i .

Je désigne par σ_i la valeur de S_i quand $z_i = \zeta_i$; on aura, d'après (23), les relations (1)

$$(\sigma_i + S_i' \eta_i + \ldots) \eta_i' = \delta \alpha_i + B_{1i} \eta_1 + \ldots + B_{ni} \eta_n + \ldots,$$

où les B_{ki} satisfont à (26) (hypothèses C). En outre, je conserve ici les hypothèses et la classification des réservoirs du n° **16** du paragraphe VII : les B_{ki} , d'après (23) et (26), satisfont aux conditions (1) du paragraphe V, et, aussi, aux conditions de l'alinéa 2 du théorème II de ce même paragraphe; ce dernier théorème et ses conséquences s'appliquent ainsi au déterminant des B_{ki} , c'est-à-dire au jacobien des f_i pour

$$\eta_1 = \ldots = \eta_n = 0;$$

ce jacobien est différent de zéro et du signe de $(-1)^n$.

Les équations différentielles et implicites précédentes donneront, en résolvant par rapport aux η'_i le nouveau système,

(33)
$$\sigma_i \eta_i' = \delta \alpha_i + B_{1i} \eta_i + \ldots + B_{ni} \eta_n + V_i,$$

où les V_i sont des séries en δa_i , η_1, \ldots, η_n ne contenant que des termes qui sont du deuxième degré au moins par rapport à ces n+1 quantités, et renferment chacun un ou plusieurs des η_1, \ldots, η_n .

Dès lors, si l'on suppose que les δa_i sont des fonctions de t limitées supérieurement et inférieurement, par exemple des fonctions périodiques, le système (33) a des analogies avec les systèmes considérés dans ma Communication précitée des Comptes rendus. L'équation caractéristique est

$$\hat{o} = \begin{vmatrix} B_{11} - \sigma_1 x & \dots & B_{n1} \\ \dots & \dots & \dots \\ B_{1n} & \dots & B_{nn} - \sigma_n x \end{vmatrix} = o,$$

du type des équations (11) du corollaire III du théorème II du paragraphe V : le deuxième alinéa de ce corollaire s'applique. On en conclut ces conséquences, en n'envisageant que des valeurs de $t \ge 0$:

⁽¹⁾ Bien entendu, on suppose les développements en série possibles, au moins quand les $|\eta_i|$ sont assez petits.

1º Soit

$$\delta a_1 = \delta a_2 = \ldots = \delta a_n = 0.$$

Les équations (33) sont celles des petites perturbations du régime permanent. Les seconds membres de ces équations ne renferment plus les δa_i . D'après (I, C. R.), chaque fois que l'équation caractéristique a ses racines toutes réelles < 0, ou toutes distinctes avec partie réelle < 0, les η_i tendent vers o quand t croît indéfiniment, et le régime permanent est stable, pourvu que les valeurs initiales des $\eta_i = z_i - \zeta_i$ aient leurs modules assez petits : le régime est alors asymptotiquement permanent.

2° Si les δa_i sont des fonctions de t de modules suffisamment petits quel que soit $t \ge 0$, et qui tendent vers o quand t croît indéfiniment, on peut les représenter par

$$\delta a_i = \mu \psi_i(t)$$

où μ est un paramètre, et où le module de $\psi_i(t)$ est limité et tend vers o quand t croît indéfiniment; si $|\mu|$ et les $|\delta a_i|$ sont assez petits, sous les mêmes conditions relatives à l'équation caractéristique $\delta = 0$, d'après (I, C, R), le régime est encore asymptotiquement permanent : une alimentation assez peu différente d'une alimentation permanente, et asymptotiquement permanente, assure un régime asymptotiquement permanent.

Si les δa_i , tout en ayant leurs modules assez petits, plus petits que α par exemple, ne tendent pas forcément vers o avec t^{-1} , d'après (I, C. R.), on conclura seulement : une alimentation sensiblement permanente assure un régime sensiblement permanent. De plus, la rapidité de variation des z_k peut être rendue aussi petite qu'on veut pourvu que α soit pris assez petit.

3º Soit

$$\delta a_i = \mu f_i(t),$$

où les $f_i(t)$ sont périodiques et de même période ω , et limités supérieurement et inférieurement, et où μ est un paramètre.

D'après (III, C. R.), chaque fois que l'équation caractéristique $\delta = 0$ a ses racines toutes réelles < 0, ou toutes distinctes avec partie réelle < 0, pour chaque valeur de μ de module assez petit, il existe un régime périodique de période ω , et toutes les solutions réelles de (33)

dont les valeurs initiales ont des modules assez petits sont asymptotiquement périodiques de période ω , et asymptotiques à la solution périodique.

On peut encore, d'après (II, C.R.), affirmer l'existence d'une solution périodique de période ω quand l'équation $\delta = 0$ n'a aucune racine qui soit une imaginaire pure.

Il y a intérêt à observer que les conclusions 1° et 2° ci-dessus restent vraies si l'on suppose que les coefficients, à partir de B_{ii} , des développements des seconds membres de (33) dépendent légèrement de t, d'après (I, C. R.) : il suffira de mettre chaque coefficient sous la forme $a + \mu \chi(t)$, où a est une constante, $\chi(t)$ une fonction à module limité, et de supposer $|\mu|$ assez petit.

20. L'application des remarques précédentes 1°, 2° et 3° est subordonnée seulement à la vérification de la nature des racines de l'équation caractéristique du système (33), généralement à la vérification de ce fait que cette équation $\delta = 0$ a ses racines toutes réelles < 0, ou toutes distinctes avec partie réelle < 0. Je vais indiquer quelques cas où l'on est certain que ces dernières conditions ont lieu, en me basant principalement sur le paragraphe V, et supposant encore, ce qui est permis, que les dispositifs de communication satisfassent aux conditions du n° 16, c'est-à-dire que, pour chaque valeur de k, il y ait une valeur de i < k telle que B_{ik} soit > 0.

Premier cas. — Cas de deux ou trois réservoirs. — Le système (33) devient, pour deux réservoirs par exemple,

$$\sigma_1 \eta_1' = \delta \alpha_1 + B_{11} \eta_1 + B_{21} \eta_2 + V_1, \qquad \sigma_2 \eta_2' = \delta \alpha_2 + B_{12} \eta_1 + B_{22} \eta_2 + V_2;$$

l'équation caractéristique

$$\delta = \begin{vmatrix} B_{11} - \sigma_1 x & B_{21} \\ B_{12} & B_{22} - \sigma_2 x \end{vmatrix} = 0,$$

est du type considéré au théorème IV du paragraphe V. Les B_{ki} satisfont, d'après (26) (n° 13), aux conditions de l'alinéa 2 du théorème II du même paragraphe, en sorte que les racines de $\delta = 0$ sont réelles et < 0.

La démonstration pour trois réservoirs résulte de la remarque qui suit le corollaire du théorème III du paragraphe V. DEUXIÈME CAS. — Cas particulier de n réservoirs. — Le cas précédent de deux réservoirs est renfermé dans le suivant : S_n communique effectivement avec S_{n-1} seul, ..., S_k avec S_{k-1} et S_{k+1} seuls, ..., S_k avec S_2 ; de plus, chacun des réservoirs peut avoir un exutoire externe qui fonctionne. Les équations (33) deviennent, puisqu'ici les B_{ki} et φ_{ki} sont nuls pour |i-k| > 1, sauf peut-être B_{k0} et φ_{0k} ,

(34)
$$\begin{cases} \sigma_k \eta_k' = \delta a_k + B_{k-1,k} \eta_{k-1} + B_{k,k} \eta_k + B_{k+1,k} \eta_{k+1} + V_k, \\ B_{01} = 0, \quad B_{n+1,n} = 0. \end{cases}$$

Le théorème IV du paragraphe V s'applique encore; d'après (26) (n° 15), les racines de $\delta = 0$ sont réelles et < 0.

Troisième cas. — J'envisage, en partie pour mémoire, le système de réservoirs déjà considéré au n° 17 (troisième cas) du paragraphe VII. D'après les égalités (23) (n° 15) de ce paragraphe, on a

$$B_{ik} = \frac{\partial \varphi_{ik}}{\partial z_i} = 0,$$

quand k > i; d'après (26), n° 13, l'équation caractéristique se réduit à

$$(B_{11}-\sigma_1x)\dots(B_{nn}-\sigma_nx)=0$$

et a toutes ses racines négatives < 0.

Quatrième cas. — Cas général des réservoirs d'eau, d'eau et gaz, de chaleur, sous certaines conditions pour les dispositifs de communication.

Si l'on se reporte, dans le paragraphe III, aux équations (5) et (6) du n° 7 relatives au débit d'un ajutage noyé ou d'un siphon noyé, (7) du n° 8 relative au débit de chaleur d'un fil conducteur reliant deux réservoirs, (15) du n° 10 relative au débit d'eau d'un orifice noyé reliant deux réservoirs d'eau et gaz, on voit que ce débit peut toujours se mettre sous la forme

$$\varphi_{ki} = \mathbf{F}(z_k - z_i),$$

si l'on choisit convenablement les quantités caractéristiques dans le cas des équations (15) du n° 10; c'est-à-dire qu'ici pour ces dernières équations, changeant la notation, on écrit z_k , z_i au lieu de Z_k , Z_i (1).

⁽¹⁾ Ces dernières quantités sont alors des niveaux piézométriques. On peut

On a alors, d'après (23) (n° 15), si φ_{ki} n'est pas identiquement nul, et si l'on suppose *tous* les dispositifs de communication des réservoirs entre eux noyés,

$$\frac{\partial \varphi_{ki}}{\partial z_k} = \mathbf{B}_{ki} = -\frac{\partial \varphi_{ki}}{\partial z_i} = \mathbf{B}_{ik}.$$

Suivant les cas,

$$\varphi_{ki} = m(z_k - z_i), \quad \text{ou} \quad \varphi_{ki} = m_1 \sqrt{\pm (z_k - z_i)},$$

m et m_i étant constants si l'on veut; mais il sera plus exact de supposer que m et m_i sont des fonctions très lentement variables de z_k et de z_i , ou même, avec certaines conditions, de t (voir la fin des nos 7 et 19).

Avec ces hypothèses, dans les équations (33) correspondant aux systèmes considérés ici,

$$B_{ki} = \frac{\partial \varphi_{ki}}{\partial \zeta_k} \quad \text{et} \quad B_{ik} = -\frac{\partial \varphi_{ki}}{\partial \zeta_i}$$

sont tels que leur rapport

$$\frac{\mathbf{B}_{ki}}{\mathbf{B}_{ik}} = \mathbf{I} + \boldsymbol{\varepsilon}_{ik}$$

diffère peu de l'unité.

D'autre part, quand au contraire φ_{ki} est identiquement nul dans le domaine envisagé, on a

$$B_{ki} = B_{ik} = 0$$
.

Si chacun des B_{ki} (k et i > 0) satisfait à une de ces deux conditions, et si les $|\varepsilon_{ik}|$ sont assez petits, on peut appliquer le théorème III du paragraphe V et son corollaire. Quand les $|\varepsilon_{ik}|$ sont tous nuls, l'équation caractéristique $\delta = 0$ a ses racines réelles < 0, d'après ce qu'on a supposé au n° 19 (p. 227). Quand ils ne sont pas tous nuls, s'ils sont assez petits par rapport à la plus petite de celles des quantités $|B_{mn}|$ qui sont différentes de zéro, les racines de l'équation caractéristique ont leurs parties réelles < 0; en général (') même, ces racines seront réelles, distinctes et plus petites que zéro, et les résultats du n° 19 sont applicables.

évidemment admettre dans le quatrième cas l'intervention des réservoirs fictifs, d'après le n° 8 et la note (1) de la fin du n° 10.

(1) C'est là une réserve qu'exige l'emploi du corbhaire du théorème III du paragraphe V.