JOURNAL

DE

MATHÉMATIQUES

PURES ET APPLIQUÉES

FONDÉ EN 1836 ET PUBLIE JUSQU'EN 1874

PAR JOSEPH LIOUVILLE

J. LIOUVILLE

Nombre des représentations d'un entier quelconque sous la forme d'une somme de dix carrés

Journal de mathématiques pures et appliquées 2^e série, tome 11 (1866), p. 1-8.

http://www.numdam.org/item?id=JMPA_1866_2_11__1_0

 \mathcal{N} umdam

Article numérisé dans le cadre du programme Gallica de la Bibliothèque nationale de France http://gallica.bnf.fr/

et catalogué par Mathdoc dans le cadre du pôle associé BnF/Mathdoc http://www.numdam.org/journals/JMPA

JOURNAL

DE

MATHÉMATIQUES

PURES ET APPLIQUÉES.

NOMBRE DES REPRÉSENTATIONS

d'un entier quelconque sous la forme d'une somme de dix carrés;

PAR M. J. LIOUVILLE.

1. Je vais d'abord reproduire, sans y rien changer, une Note que j'ai insérée sous ce même titre dans les Comptes rendus de l'Académie des Sciences (séance du 19 juin 1865). Elle est ainsi conçue :

« La question dont je veux m'occuper ici pour en donner une solution complète m'a paru longtemps bien difficile. Il s'agissait de trouver une expression simple du nombre N des représentations dont un entier quelconque n est susceptible sous la forme d'une somme de dix carrés. Eisenstein a traité (Journal de Crelle, t. XXXV, p. 135) le cas particulier d'un entier impair =3 (mod. 4); mais après avoir indiqué la formule propre à ce cas, il ajoute qu'il n'y a pas de formule semblable pour les entiers = 1 (mod. 4). Une remarque de l'illustre géomètre au sujet des formes quadratiques à plus de huit indéterminées semble même tendre à décourager toute recherche ultérieure. Des entiers pairs, Eisenstein ne dit rien. Plus tard (cahier de juillet 1861, p. 238) j'ai traité le cas du double d'un entier = 3 (mod. 4); on restait toujours très-loin du but. Enfin mes efforts ont abouti. J'ai eu le bonheur d'arriver à la formule générale, et cela au moment même où je désespérais presque d'y jamais parvenir. Soit à l'excès (pris positi-

Tome XI (2e série). - JANVIER 1866.

vement) de la somme des quatrièmes puissances des diviseurs de n qui sont $\equiv 1 \pmod{4}$ sur la somme des quatrièmes puissances des diviseurs de n qui sont $\equiv 3 \pmod{4}$. Cet excès déjà employé par Eisenstein est un des éléments de ma formule. Mais il faut, de plus, avoir égard à la puissance de 2 par laquelle n est divisible; je désignerai l'exposant de cette puissance par α , en sorte que l'on ait $n=2^{\alpha}m$, m étant impair et l'exposant α pouvant se réduire à zéro. Observous en passant que la valeur de λ ne dépend pas de celle de α ; elle est la même pour n et pour m. On distinguera le cas de $m \equiv 1 \pmod{4}$ et celui de $m \equiv 3 \pmod{4}$. En outre, quand n est la somme de deux carrés, il faudra compter le nombre μ des solutions de l'équation

$$n=s^2+s'^2,$$

où les entiers s, s' sont indifféremment positifs, nuls ou négatifs, et aussi calculer la somme des produits $s^2 s'^2$ pour toutes les solutions. Cette somme étant représentée par ν , on aura

$$N = \frac{4}{5} \left(16^{\alpha + 1} + (-1)^{\frac{m-1}{2}} \right) \lambda + \frac{8}{5} n^2 \mu - \frac{64}{5} \nu.$$

» Quand m est $\equiv 3 \pmod{4}$, l'équation $n = s^2 + s'^2$ est impossible; μ et ν sont donc nuls, et l'on a seulement

$$\mathbf{N} = \frac{4}{5} \left(\mathbf{16}^{\alpha+1} - \mathbf{1} \right) \lambda,$$

attendu qu'alors

$$(-1)^{\frac{m-1}{2}}=-1.$$

Supposez de plus n impair, c'est-à-dire $\alpha = 0$, et vous retomberez sur la formule d'Eisenstein. Faites au contraire $\alpha = 1$, et vous retrouverez un résultat que j'ai obtenu dans le temps.

» Quand m est $\equiv 1 \pmod{4}$, on a

$$(-1)^{\frac{m-1}{2}}=1,$$

partant

$$N = \frac{4}{5} \left(16^{\alpha + 1} + 1 \right) \lambda + \frac{8}{5} n^2 \mu - \frac{64}{5} \nu.$$

Mais dans cette hypothèse même de $m \equiv 1 \pmod{4}$, il se peut que l'équation $n = s^2 + s'^2$ soit impossible; alors, μ et ν étant nuls, il reste seulement

$$\mathbf{N} = \frac{4}{5} \left(\mathbf{16}^{\alpha + 1} + \mathbf{1} \right) \lambda.$$

- » Je renvoie pour de plus amples développements à un prochain cahier du Journal de Mathématiques. »
- 2. Ajoutons maintenant quelques exemples. Et d'abord soit n=1, d'où $\alpha=0$, m=1, $\lambda=1$, puis $\mu=4$ et $\nu=0$, en vertu des deux identités

$$1 = (\pm 1)^2 + 0^2$$
, $1 = 0^2 + (\pm 1)^2$.

Notre formule donnera dans ce cas

$$N = \frac{4}{5} (16 + 1) + \frac{8}{5} \cdot 4 = 20,$$

résultat exact, attendu que dans l'équation

$$1 = (\pm 1)^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2$$

on peut faire occuper à $(\pm 1)^2$ dix places différentes.

Soit, en second lieu, n=2, d'où $\alpha=1$, m=1, $\lambda=1$, puis $\mu=4$ et $\nu=4$, en vertu de l'identité

$$2 = (\pm 1)^2 + (\pm 1)^2$$
.

On aura par notre formule

$$N = \frac{4}{5}(16^2 + 1) + \frac{8}{5} \cdot 4 \cdot 4 - \frac{64}{5} \cdot 4 = 180.$$

Or l'équation

$$2 = (\pm 1)^2 + (\pm 1)^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2$$

fournit effectivement pour l'entier 2 cent quatre-vingts représentations lorsqu'on y opère les permutations qu'elle comporte. Soit ensuite n=3, d'où $\alpha=0$, m=3, $\lambda=3^4-1=80$; on a cette fois $\mu=0$ et $\nu=0$, puisque 3 n'est pas somme de deux carrés. Notre formule donne donc

$$N = \frac{4}{5}(16 - 1).80 = 960;$$

et cela s'accorde avec l'identité

$$3 = (\pm 1)^2 + (\pm 1)^2 + (\pm 1)^2 + o^2 + o^2 + o^2 + o^2 + o^2 + o^2 + o^2$$

où l'on aura soin d'opérer les permutations convenables.

Soit encore n=4, d'où $\alpha=2$, m=1, $\lambda=1$, $\mu=4$, $\nu=0$. On aura par notre formule

$$N = \frac{4}{5}(16^3 + 1) + \frac{8}{5}.4^2.4 = 3380,$$

résultat confirmé par les deux identités

$$4 = (\pm 2)^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2$$
 et

$$4 = (\pm 1)^2 + (\pm 1)^2 + (\pm 1)^2 + (\pm 1)^2 + o^2 + o^2 + o^2 + o^2 + o^2 + o^2$$

eu égard aux permutations qu'elles comportent et qui sont au nombre de dix pour l'une et de deux cent dix pour l'autre.

Soit enfin n = 5, partant $\alpha = 0$, m = 5, $\lambda = 5^4 + 1 = 626$; puis $\mu = 8$ et $\nu = 32$, en vertu des deux identités

$$5 = (\pm 2)^2 + (\pm 1)^2$$
, $5 = (\pm 1)^2 + (\pm 2)^2$.

D'après notre formule, il faudra que

$$N = \frac{4}{5}(16+1).626 + \frac{8}{5}.25.8 - \frac{64}{5} \cdot 32 = 8424;$$

or on s'assurera qu'il en est ainsi au moyen des deux équations

$$5 = (\pm 2)^2 + (\pm 1)^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2$$

et

$$5 = (\pm 1)^2 + o^2 + o^2 + o^2 + o^2 + o^2.$$

Je ne pousserai pas plus loin ces vérifications numériques.

3. Décomposons l'entier m de toutes les manières possibles en un produit $d\vartheta$ de deux facteurs conjugués. L'excès de la somme des quatrièmes puissances des diviseurs $d \equiv 1 \pmod{4}$ sur celle des diviseurs $d \equiv 3 \pmod{4}$ sera

$$\sum (-1)^{\frac{d-1}{2}} d^4,$$

ou, ce qui revient au même,

$$(-1)^{\frac{m-1}{2}}\sum_{i}(-1)^{\frac{\delta-1}{2}}d^{4},$$

valeur positive ou négative suivant que m est $\equiv 1$ ou 3 (mod. 4). Comme λ désigne cet excès pris positivement, on a

$$\lambda = \sum (-1)^{\frac{\delta-1}{2}} d^4,$$

c'est-à-dire

$$\lambda = \rho_4(m),$$

en employant une notation dont nous avons souvent fait usage dans ce Journal et qui consiste à désigner généralement par

 $\rho_{\upsilon}(m)$

la somme

$$\sum (-1)^{\frac{\delta-1}{2}} d^{v}.$$

La premier terme

$$\frac{4}{5} \left[16^{\alpha+1} + (-1)^{\frac{m-1}{2}} \right] \lambda$$

de la valeur N peut donc s'écrire

$$\frac{4}{5}\left[16^{\alpha+1}+\left(-1\right)^{\frac{m-1}{2}}\right]\rho_{4}(m).$$

Les deux autres termes

$$\frac{8}{5}n^2\mu - \frac{64}{5}\nu$$

peuvent être remplacés par ce terme unique

$$\frac{16}{5} \sum (s^4 - 3s^2s'^2)$$

où la somme

$$\sum$$

porte sur les entiers s, s' (positifs, nuls ou négatifs) qui figurent dans l'équation

 $n=s^2+s'^2.$

Je supprime la démonstration, qui du reste est facile.

La formule qui résulte de ces changements divers, savoir

$$\mathbf{N} = \frac{4}{5} \left[\mathbf{16}^{\alpha+1} + (-1)^{\frac{m-1}{2}} \right] \rho_{4}(m) + \frac{16}{5} \sum (s^{4} - 3s^{2}s'^{2})$$

est celle que j'ai d'abord obtenue; je l'ai mise ensuite sous une forme plus commode pour le calcul. La somme

$$\sum (s^4 - 3s^2s'^2)$$

qu'on y rencontre est tantôt positive, tantôt négative. Elle change de signe et acquiert une valeur numérique quadruple quand l'exposant α (dans l'équation $n=2^{\alpha}m$) augmente d'une unité, m ne changeant pas. De là une relation simple entre les valeurs

$$N(2^{\alpha}m), N(2^{\alpha+1}m)$$

de N, qui répondent aux entiers respectifs

$$2^{\alpha}m$$
, $2^{\alpha+1}m$.

On a, en effet,

$$N\left(2^{\alpha+1}m\right)+4N\left(2^{\alpha}m\right)=\left[16^{\alpha+2}+4\left(-1\right)^{\frac{m-1}{2}}\right]\rho_{4}(m),$$

équation dont on pourra tirer parti.

4. Je vais dire en peu de mots comment j'ai été conduit à l'équation

$$\mathbf{N} = \frac{4}{5} \left[\mathbf{16}^{\alpha + 1} + (-1)^{\frac{m-1}{2}} \right] \rho_4(m) + \frac{16}{5} \sum_{\alpha} (s^4 - 3s^2 s^2),$$

que j'écris plus explicitement

$$N(2^{\alpha}m, 10) = \frac{4}{5} \left[16^{\alpha+1} + (-1)^{\frac{m-1}{2}} \right] \rho_{A}(m) + \frac{16}{5} \sum_{\alpha} (s^{4} - 3s^{2}s^{2}),$$

et dont je possède maintenant cinq à six démonstrations différentes. En désignant par

N(n, p, q)

le nombre des représentations de l'entier n (ou $2^{\alpha}m$, m impair, $\alpha = 0, 1, 2, ...$) en p carrés dont les q premiers sont impairs et à racines positives, tandis que les suivants sont pairs et à racines indifféremment positives, nulles ou négatives, j'ai donné (dans le cahier d'octobre 1861, p. 370-371) une formule générale comprenant comme cas particulier celle-ci:

$$2^{4\alpha}\rho_4(m) = N(2^{\alpha+2}m, 10, 4) + 4N(2^{\alpha+2}m, 10, 8).$$

Une autre formule générale que je n'ai pas encore communiquée au public, mais qui m'est connue depuis longtemps et qui sort d'une source semblable, m'avait appris d'autre part que l'on a aussi

$$4(-1)^{\frac{m-1}{2}}\rho_4(m) = 5N(2^{\alpha}m, 10) - 96N(2^{\alpha+2}m, 10, 4) + 256N(2^{\alpha+2}m, 10, 8),$$

en désignant comme tout à l'heure par

$$N(2^{\alpha}m, 10)$$

le nombre des représentations de l'entier $2^{\alpha}m$ sous la forme d'une somme de dix carrés quelconques. Mais il me fallait une troisième équation entre

$$N(2^{\alpha}m, 10), N(2^{\alpha+2}m, 10, 4), N(2^{\alpha+2}m, 10, 8)$$

pour en conclure la valeur de ces trois quantités et spécialement celle tant cherchée de N ($2^{\alpha}m$, 10). Or j'en suis resté longtemps aux deux équations ci-dessus. Enfin, au même moment pour ainsi dire, par deux voies différentes, l'une toute spéciale, l'autre générale, j'ai reconnu que

$$N(2^{\alpha+2}m, 10, 4) - 16N(2^{\alpha+2}m, 10, 8) = \frac{1}{2}\sum (s^4 - 3s^2s^{2}),$$

la somme

$$\sum (s^4 - 3s^2s'^2)$$

étant celle que j'ai introduite plus haut et qui est relative à l'équa-

$$2^{\alpha}m = s^2 + s'^2$$
.

Mes formules se trouvant ainsi complétées, j'ai eu non-seulement la valeur de

$$N(2^{\alpha}m, 10),$$

mais en outre celles de

$$N(2^{\alpha+2}m, 10, 4)$$

et de

$$N(2^{\alpha+2}m, 10, 8),$$

qu'on formera facilement.