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Journees Equations aux derivees partielles
Saint-Jean-de-Monts, 31 mai-4 juin 1999
GDR 1151 (CNRS)

Accurate Spectral Asymptotics
for Periodic Operators

Victor Ivrii

Abstract

Asymptotics with sharp remainder estimates are recovered for number
N(r) of eigenvalues of operator A(:r, D) — tW{x^ x) crossing level E as t runs
from 0 to r, r —> oo. Here A is periodic matrix operator, matrix W is positive,
periodic with respect to first copy of x and decaying as second copy of x goes
to infinity, E either belongs to a spectral gap of A or is one its ends. These
problems are first treated in papers of M.Sh.Birman, M.Sh.Birman-A.Laptev
and M.Sh.Birman-T.Suslina.

0. Results.

The main goal of this paper is to obtain sharp remainder estimates for spec-
tral asymptotics derived in papers of M.Sh.Birman [Bl-3], M.Sh.Birman-A.Laptev
[BL1.2], M.Sh.Birman-A.Laptev-T.Suslina [BLS], and M.Sh.Birman-T.Suslina [BS].
The second goal is to generalize their results.

Let us consider mRd D x D-matrix operator A{x, D) == Aw(x, D) with the Weyl
symbol A(x^) = E|a|<m ^r(^^)^7 where

(HI) A(x, y, D) are periodic with period lattice F = TLe\ ® Ze2 © . . . Ze^ and trans-
formation matrices { T i , . . . . Td} with respect to x^ which means that

A{x + e,, y , D) = T;A{x^ y , D)T, Vj = 1 , . . . , d (0.1)

with unitary commuting matrices Tj.

Moreover, let

|V^Vf(a,(:r,y) - a,(:r))| < C{y)-6-^ Va : |a| ^ K V|/3| : |/?| < K (0.2)
IV^I^C \/a:\a\^K (0.3)

wdth 8 > 0 and large enough K == K(m^ d, p.).
Work was partially supported by NSERC grant OGP0138277. Author expresses his deep gratitude to M.Sh.Birman
and M.Z.Solomiak for numerous stimulating discussions.
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Further we assume that A is elliptic:

\A(x^)v\ ̂  60(1^ - C)H Vrc^ 6 R^ Vi; 6 C^ (0.4)

Furthermore, we assume that

A(x^^=A(x^) V(^Q (0.5)

where f means Hermitian conjugation.
Then both operators A and A are self-adjoint in L2^, C0) and essential spectra

of A and A and spectrum of A coincide with

U U w (0-6)
A; ^e<y

where \k{^) are eigenvalues of operator A restricted to the space K^{T} of the func-
tions, quasi-periodic with quasi-momentum ^ and transformation matrices {T} =-
{ T i , . . . . Td}, )1 with the inner product as in L2^, CQ but multiplied by (VoK?)-1

where Q = [0, l]ei ® . . . [0, l]ed is an elementary cell, Q' == [0, l]e[ ® • • • © [0, l]e^ is a
dual ceil, (e^ CA.) = 2?^ Vj, k, T71 = T^ • • • T^ for n = n^ + • • • + nd^; without
loss of generality we assume that AA;(^) > AA.-I(^) Vfc.

So, Spec A has a zone character with possible overlapping of zones. Let us pick
some energy level which is in the spectral gap: E ^ Spec A.

Later we consider also cases when E is either lower end or upper end of spectral
gap: [E, E+e)n Spec A = {E}, {E - e,E] n Spec A = {E}.

Let W{x) == W{x^x) where

(H2) W { x ^ y ) and W(x^y) are Hermitian and periodic with period lattice F and
transformation matrices {T} = { T i , . . . , 7^} with respect to x^

and

IV^H'I < C{y)~m^w Va : |a| ^ 7< V|/3| : |/3| ^ ̂  ^ > 0 (0.7)

|V^(TV-l40|=0(|y|-^-m^-^) a^|->oo V/?: |/?| = 1 (0.8)

(TV^, y)z;, v} > C^^y}-^ ^x, y € ̂  Vz; G C^ (0.9)

where W7 is positive homogeneous with respect to y of degree —mp, and satisfies
(0.9) as well.

Let us consider operator A -- tW with t > 0. For each ( only finite number of
eigenvalues of A belong to {E — e,E + e) if E resides within spectral gap; further,
if E is the lower (upper) end of the spectral gap then under appropriate conditions
for each t only finite number of eigenvalues of A belong to (£', E + e) ({E — 6, E)
respectively). All the eigenvalues are monotone decreasing functions of t.

Let N(r) be a number of the eigenvalues of A — tW (counting multiplicities)
passing through E (reaching £', leaving E respectively) as t changes from 0+ to T-.
We are interested in asymptotics of N(r) as r ~> +00.

1!. e. functions such that u(x + n) = T~nu(x)ei<n^> Vn € F
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Theorem_0.1. Let conditions (HI), (H2), (0.2) - (0.5), (0.7) - (0.9) be fulfilled. Let
E ^ Spec A.

( i ) Further let us assume that there is an infinite number of \k exceeding E (or
equivalently A is not semibounded from above). Then

( d^ r -.T m for ^ > 1,
|N(r)-A/'(r)| ^ < r^logr for ^ = 1, (0.10)

d-l

r^ for IJL < 1,

Af(r)= f t n(y^T)d^/ (0.11)
J^ J Q '

where n(y, ̂  r) is the number of eigenvalues of operator A(x, y , D) — tW(x, y) cross-
ing E as t runs from 0+ to r—; this operator depends on y and is restricted to K^ST] .
Moreover

{ r'm for /2 > 1,
M(r) x r^ log T for ^ = 1, (0.12)

T^, f o r ^ < l .

(ii) Let us assume that there is finite number of \k exceeding E (or equivalently
A is semibounded from above) and that p. < 1. Then

|N(r)-A/'(T)|^CT^1 (o.l3)

and

Af{r) x T^ (0.14)

REMARK 0.2 (i) In assumptions of theorem O.l(i) with IJL > 1 and under standard
condition to periodic Hamilton trajectories fulfilled asymptotics (0.10) holds with
the remainder estimate o{r~m~}.

(ii) In assumptions of theorem 0.1 (i) with ^ > j^ standard Weyl asymptotics
holds w4th the remainder estimate 0(r~^~) (and even o{r~^~} under standard con-
dition to Hamiltonian trajectories).

(hi) In assumptions of theorem O.l(i) with /2 > 1 and 6 > 60 = 1 — {d — 1)(/^ — 1)
asymptotics (0.10) holds with

^{r)= !RdfQ^(y,^r)d^dy

+(27r)-^J^ (^M - ̂ (^0) - ̂ r^r) + F(^0))cte^

where y{x^,r} and P{x,^r) are the numbers of the negative eigenvalues of
matrices A(x, x, ̂ ) - rW(x, x) and A(x, ̂ ) - rW(x, x) respectively and n(y, ̂  X) is
introduced in the manner similar to n{y,^r) for operators A and W.
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(iv) In assumptions of theorem O.l(i) with ^ < (d-l)d~\ 6 > (1 -^)(ri- l)(d-
dp. - 1)~1 asymptotics (0.10) holds with

A/'(r)= I t n(y^,r)d^dy. (0.16)[ r ) = / / n(?/,^r
W J^yJRd Jo'

(v) In assumptions of theorem O.l(ii) with 6 > 1 asvmptotics (0.10) holds with
.V defined by (0.16). u ^

Now let us consider the case when E is a boundary of the spectral gap. First of
all, we have

Theorem 0.3. Let d > 2, fi = ̂  > 1, A = A and conditions ( H I ) , (Jf2), (0.2) -
(0.5), (0.7) - (0.9) be fulfilled. Let us assume that either

(a) [E, E + e) n Spec A = {E} or
(b) (E-e,E]nSpecA={E}.
Further, let us assume that

(H3) Xj(^) = E implies that A^-(^) is the simple eigenvalue of A(x,D^) on K^{r}
and ]iessXj(^ is non-degenerate.

Then statements (i),(ii) of theorem 0.1 remain true.

REMARK 0.4 (i) Due to condition (H3) operator A - E - tW "looks like" A - tW in
the case (b) with second order operator A (similar to -A) and we need to assume
that ft > 1 to avoid -0 being a point of accumulation of the spectra of both these
operators. In the case (a) operator A - E - tW "looks like" -A - tW and condition
p > 1 seems to be "overkill".

(ii) It is known that condition (H3) holds for A = -A + V(x), D = 1 and the
lowest Ai; in this case <^o = 0 is the only minimum point; the same is true for second
order operator in divergent form.

Now we consider the case ft = 1 with extra-logarithmic factor.

Theorem 0.1'. (i) Let all the conditions of theorem 0.1 be fulfilled excluding (0.7)-
(0.9) which are replaced by

IV^Vfl^l < Cpm{y)-W Va : |a| < K V/? : |/?| < K^ (0.7)'

\V^W - W)\ = o(pm(y}-W) a^| ̂  oo V/3 : \Q\ = 1 (0.8)'

{W(x, y)v, v) > CVH2 V:r, y e R^v e C^ (0.9)'

with

p = H-^(log y\)-^ (log log H)-^2 . • . ( log.. . log|y|)-^ (\y\ > C) (0.17)
Itimes

and with Wp~2 positively homogeneous of degree 0.
(i) Then statement (i) of theorem 0.1 remains true as soon as f pd~lrd~2dr <

oo. Moreover, if this assumption is violated, statement (i) modified in obvious
way remains true (modification affects remainder estimate which is now 7i{r) =
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r m fr<ro(r) ()d lrd 2dr with ro(T) defined from r^p(ro(r)) = 1). Moreover, as soon
as f pdrd~ldr < oo magnitude of the principal part does not change; if this assump-
tion is violated, magnitude of the principal part will be A4(r) = f pdrd~ldr.

(ii) Furthermore, statement (ii) remains true after modification of the magnitude
of the principal part and remainder estimate (which are now %o(^) = ̂ (r)^1 and
M-Q^} = TQ^V respectively).

Theorem 0.3'. Let all the assumptions of theorem 0.11 be fulfilled excluding condi-
tion E ^ Spec A which is replaced by one of the assumptions (a) or (b) of theorem
0.3 and by (H3). Let either ^l=n^->lor:fi=l, m^(d - 1) > 2 and either d > 3
or E is the lower bound of the spectral gap (case (a)/

Then both statements (i),(ii) of theorem 0.1' remain true.

Theorem 0.3". Let conditions of theorem 0.3 be fulfilled excluding (0.7) - (0.8)
which are replaced by (0.7)' - (0.8)'. Moreover, let d = 2 and (E - e, E] D Spec A =
{E}. Furthermore, let either ̂  = m^- > 1 or ̂  = 1, ̂  = m^- > 1.

Then statements (i) and statement (ii) of theorem 0.1' remain true.

Amazingly, for d = 2, ^ = m^- = 1, ^2 = ^ € (0, l]and E being the upper
end of the spectral gap theorem 0.3' needs to be modified in the very significant
way. Let us consider all the quasi-momentums ^ and all the eigenvalues \k such
that A^(^) = E. Due to condition (H3) we can number them as ^p and \k with
p = 1, . . . , P. Let Gp = KessXkp^p) and \x\p = \Gp2x\. Let us assume that

IQA V^'lyl^l < C(log \y\)-2-6 Va : 1 < a < K (0.18)

with 6 > 0.
Moreover, let us consider >Vp(y) = (W(r^,y)wp(x),Wp(x)) where Wp is an eigen-

function corresponding to eigenvalue E and quasi-momentum f^p and Wp{r) a mean
value of >V(r0) over sphere [\y\p = r}. Let us assume that

^M^r^logr)2^^)!^^^^,.,^-.

satisfy

\9^p(z)\ < Cz-^-^-^ Va < K. (0.19)

Theorem 0.5. Let conditions of theorem 0.3 be fulfilled excluding (0.7)-(0.8) which
are replaced by (0.7)' - (0.8)7. Moreover, let d = 2 a d (E - e,E] n Spec A = {E}.
Further, let ^ = m^- = 1 6^ ̂  = ^ € (0,1). Lef conditions (0.18), (0.19) &e
fulfilled.

Then statements (i) and statement (ii) of theorem 0.1' remain true for At replaced
by AT + ̂ Kp<pNp where Np(r) is the maximal dimension of the negative subspace
of quadratic form

{GpVu, V^) - r[Wu, u), u € Up (0.20)

where Mp = {u = v(\x\p)wp(x)} with the scalar function v e L2(R+,rdr), suppv C
{log r (log log r)^2 > T2} of one variable r.
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Substituting z = (loglogr)1-^ v = {Wr^) j^ we see that Np(r) is the ̂
mension of the negative subspace of one-dimensional Schrodinger operator

D,gD, + $ ~ T

with g x 1 and <S> x z^1-^) restricted to z ^ z(r) == (logr)1-^1 . Then in this
statement one can replace Np(r) by its Weyl approximation

-^pM == ^ / ^(^ ~ $)|-^ x r^i (0.21)
z Jz>z(r)

Let us consider the operator treated in [BL]:

Theorem 0.6. For operator m = d = 2, A = -A anri H' == Ty(y) satisfying
conditions of theorem 0.5 with ̂  = 1, ̂  £ (0,1] asymptotics

N(r) = A^(T) + M(r) + O(^) (0.22)

holds.
Further, under standard condition to Hamiltonian trajectories this asymptotics

holds with the remainder estimate o(r^).

REMARK 0.7 (i) Similar statement holds as I = 2, ^2 = 1 but in this case z =
log log log r, log$(z) ^ z, A/p(r) x r^ logr and one can take z{r) = 0.

(ii) Similar statement holds as I ^ 3, IJL = ^ = - • = ^_i = 1^ -oo < /^ < 1
but in this case A/p(r) x r^(log.. .logr)^"^"1.

^-2times
Definitely A/i is not a principal part but still it is larger than the remainder

estimate.
(hi) On the other hand, asymptotics (0.22) with remainder estimate 0(7-^) and

even o{r~r-} under standard condition to Hamiltonian trajectories holds for d ^ 3
for operator A = -A - V where V = -K\x\~2 as |.r| > c with Hardy constant K.

(iv) One can prove results similar to theorems 0.5, 0.6 in the case / = 1 with
treschold at /ii = d~1)2.
REMARK 0.8 (i) The same asymptotics hold for operators not in R^ but in a domain
X and with boundary condition BU\QX = 0_ where X and B coincide with X and
B as |.r| > c where X + F = X, condition Bu = 0 is periodic with transformation
matrices { T i , . . . , 7^} and we assume that
(A) there exist functions ^ (j = !,._.., d'} such that (f)j(x.+ e^) - ̂ (x) = ^
\/j. k = 1, . . . , d' and Be^^u^ = Bu\^ ̂
where d! = d here.

(ii) Furthermore, the similar asymptotics hold for operators waveguides i.e.
domains bounded in x11 = (^+1,...,^) and satisfying above conditions with
r C R^ 3 x ' = (x^ . . . , X d ' } and Ti , . . . .T^; here d1 < d.

(iii) On the other hand, the same asymptotics hold for operators with Weyl
symbol a{x, <f - ax) where a is a matrix such that an e F' Vn e F. In this case

2! realized it after discussion with M.Sh.Birman. I will elaborate in the detailed paper.
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K^,{r} is the space of functions such that u(x + n) = T~nu(x)ei{an'x}>. As an
example one can consider Schrodinger operators with periodic magnetic field with
"admissible" but not necessary vanishing flows over elementary cell.

1. Sketch of the proofs.

1.1 Reformulation of the problem
Let us notice first that N(<) is a number of eigenvalues of operator L == ir~^(A —
E)W~2 belonging to [0,t) and that L is a self-adjoint operator in L2(Rd,CD): this
is obvious for A = A and L == W~^(A - E)W~^ because A - E is invertible in
frames of theorem 0.1 and this is true for perturbed operator since W~^(A—A)W~^
is relatively compact in the sense that \\Lu\\ < e\\Lu\\ + Ce\\u\\ VWe > 0.
Furthermore, Specks L = 0.

Moreover, even if E is the extreme of a spectral gap, conditions of our theorems
assure that L is self-adjoint unbounded operator with compact inverse and therefore
all above statements (save that A — E is invertible) remain true.

1.2 Operator-valued operators
One can try to apply arguments of Chapters 8,9 of [Ivrl] directly but they lead to
sharp remainder estimates only if p^"1 e L1 even in frames of theorem 0.1. We
need to involve operator-valued theory (also developed in [Ivrl]) and we apply the
following transformation (also engaged by Birman-Suslina):

Let K = KO,{T} introduced above and let us define an unitary operator T
(Gelfand's transformation) from L2(Rd,CD) to L2{Qf,K):

Fu{^x} = (27^)-^(Vo\Q)^Tne-^{x-n^u(x-n). (1.1)
ner

One can see that

u{x) = (27r)-f f e^^u^x}^. (1.2)
JQ'

Obviously 7u{^,.) 6 K V^ € Q' and equality

iKw) = NII(R.) = / ^1^+A:)!^ t ||̂ (̂ ,.)|||̂  (1.3)
JQ' ^r JQ'

together with (1.1),(1.2) prove that T : L^R^C^) ^ L12{Qf,K) is an unitary
operator.
Proposition 1.1. Operator T transforms our operators in the following way:

yA^=AW(x-D^x^+D^^
^A^=AW{x^+D^^ (1.4)
FW^ = ̂ ^(x - D^ x^+ D^).

PROOF, is easy by direct calculations from (1.2). The only thing to notice is that
we can treat the fast copy of x in Rd in different w^ys than the slow one using
periodicity with respect to fast x.
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1.3 Proofs of theorems 0.1, O.I7
• JL • ^-f • .

Let L = W~2(A — f)!^"1? and let ei,(x,x,0) be the Schwartz kernel of spectral
projector of L. Let conditions (H1),(H2), (O.l)-(O.o) and (0.7)-(0.9) be fulfilled.

Now theorems 0.1, 0.1' are due to the following statement where here and below
ro(r) is defined as above from equation pr~m = 1:

Proposition 1.2. (i) Let ̂  be r-admissible function supported in B(x. -) with r =
>def(x}-^=(l + \x\2)^ ^ Cro(r). Then

^1= j ^(.r) (e^x, x, r) - e^x, x, -)-

W1 [^L(X,^T) - VL{X^, ̂ )d^)dx ^ Cr^p^p- "r"
(1.5)

where ̂  is the eigenvalue counting function of L(x,^) = W~'2(x)a(x,^]W~^.
Furthermore, for fixed r under standard bicharacteristic condition

<HI =o(T^r).

(ii) Moreover, for 2 < r <^ Cro(r)

^ -^(x){eL(x,x,r) -eL(x,x,0)-

W-^n^^r) -n^^d^dx <, Cr^r^-^-1^ p^r'1-1

(1.6)

(1.7)

where n^(:r,<^r) is the number of eigenvalues between 0 and r of operator L re-
stricted to the space K^{T} for fixed "slow" argument x.

(Hi) Let E ^ SpeCessA. Then for r ^> Coro(r) with large enough constant Co

^ ip(x) (e^(:r, x, r) - e^{x, x, -))dx <, Cr"^" (1.8)

with arbitrarily large s
(iv) Finally, let A be semibounded from above. Then estimate (1.8) holds for

r < eor^{r) with small enough constant CQ.

PROOF.
(i) Follows from standard local spectral asymptotics.
(ii) follows from spectral asymptotics for operators with operator-valued symbols

(theorem 4.3.6-4.3.8 [Ivrl]) with B = (J+A)^ in K with the same arguments as in
the proof of theorem 12.1.3 and similar statements in Chapter 12 [Ivrl].

(iii) follows from the fact that zones in question is classically forbidden for oper-
ators with operator-valued symbols (theorem 4.3.2 [Ivrl])

PROOF OF REMARK 0.2. Part (i) follows from proposition 1.2 including second part
of its (i) assertion. Part (ii) is due to proposition 1.2(i) only.
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Note that if r 6 < h = r m r ^ 1 then one can replace in proposition 1.2 (ii)
n by n. Combining with second part of proposition 1.3(iii) we get (v) and with
proposition 1.2(i) we get (iv).

To prove statement (iii) note that if r^r"^1"^ < r^- then one can replace
in proposition 1.2 (ii) n by n. On the hand, one can employ the theory of opera-
tors with operator-valued symbols for propagation of singularities only. This yields
standard Weyl asymptotics as in proposition 1.2(i) but with the remainder estimate
C^r^2^1-^-2^2) +0(T^r(1-^-1)) where the first part comes from the third
term in complete Weyl asymptotics. One can find r satisfying first condition and
making last expression less than 0(r~^1) iff 8 > 6o.

1.4 Proofs of theorems 0.3, 0.3'
To prove these two theorems (as well as theorem 0.5) we need only to treat zone
{\x\ ^ Coro(r)} where operator in question is no more elliptic (which was classically
forbidden before) and it is not even microhyperbolic here. To overcome this difficulty
one can use condition (H3) and applying arguments of the first paragraph of section
4.4 [Ivrl] one can basically reduce the operator in question to similar operator which
is scalar, with A and W replaced by A^p and Wp respectively while ^ is near ^p (zone
is still classically forbidden ifminp |^-^| > e). Now7, since Gp is non-degenerate, we
need no microhyperbolicity condition anymore - due to theorem 4.4.2 [Ivrl]. We can
see then that the contributions of the ball B(x, j) (r = \x\) to the remainder estimate
and to the principal part do not exceed C^T/^r2)^ and C{Tpmrfl}^ respectively
as soon as uncertainty condition (rp^^r > e holds. Moreover, in the case (a) after
rescaling this zone is classically forbidden and these contributions are ©((r^r2)"5)
and 0 respectively. Anyway, the total contribution of the zone {ro(r) ^ \x\ <, ri(r)}
to the remainder estimate doesn't exceed what we got for zone {\x\ < ro{r)} and
the contribution to the principal part is described by Weyl formula. Here and below
ri(r) is obtained from equality (rp^^r = e.

Now we need to consider zone [\x\ > ri(r)}. Note, that in the case (b) \k -E >
-cA and it is ^ ei|a;|~2 as d ^ 3 while in the case (a) A^p -E ^ 6A. This makes this
zone classically forbidden but effective Plank constant is x 1 there and to handle
this one can apply arguments of chapter 8 of [Ivrl]. I leave details for the reader.

1.5 Case d = 2. I
To prove theorems 0.3, 0.37 in the case (b) for d = 2 and to prove theorems 0.5, 0.6 we
need to analyze again zone {ro(r) ^ |:r| < ri(r)} (and even {Co ^ \x\ < ri(r)} and
sharpen remainder estimate there. For this purpose we need to consider long-term
propagation of singularities.

Introducing polar coordinates we obtain operator close to —9^+r~19r — r"2^ —
rW which we consider as operator-valued 1-dimensional operator for a sake of prop-
agation. Introducing z = logr we obtain the operator —<9j + 9^ — rWi where
Wi = r^l^c (we also made a transaction to operator in L2^) instead of oper-
ator in L2(R+ ,e2zdz)). Applying standard analysis like in [Ivrl], section 4.4 we get
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T\ = 1 + min(log rlm, log T^) for this operator and T = rTi for the original prob-
lem. Then we gain factor rT(r, r)~1 = in remainder estimate integral J* r2p2T~lrdr
which will be 0(r2) and even less than c(ro)r2 with e -^ 0 as ro —^ oo. On the other
hand, second (actually third) term in complete Weyl asymptotics is of magnitude
f r'^dr == logri(r) = o(r^).

1.6 Case d = 2. II
To prove theorems 0.5, 0.6 we need to study zone {|;r| >_ n(r)} which is no more
classically forbidden. In this zone we apply operator-valued theory completely. Let
us decompose ^(S) into eigenspaces of Dj and notice that all the eigenspaces save
the lowest one are classically forbidden and applying the same arguments as in [Ivr2]
we basically can reduce operators A — E and W to DrgDr and W. I leave details
to the reader. Let us omit index p for simplicity.

Introducing coordinate z as in theorem 0.5 we get over {z > z{r)} quadratic
forms J g\DzV\2^1dz and fr^V^f^dz where K, == d^1; this is equivalent to
f G^z^WY^^T^^^dz and f ^^dz. Operator associated with these two forms
is D^gD^ + ̂

g = Gp^^W-1 x 1,
^^G^S^-Q^G^S),

S = Q^r^rWr^^2 log2^ ., = dlo|̂

One can see easily that <E> x ^2(i-/i2)~1 ^^ <^ ^g ($^) admissible with 7 = j as
fi2 ^ (0,1) and (log.. . log<E>) x z^"^1) and <3> is (^>, 7) admissible with 7 = (log^)"^7

/-2times
as ^i = • • • = pi-i = 1, ^ € (—oc, 1) which leads to proofs of theorems 0.5, 0.6 and
remark 0.7.
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