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Journees Equations aux derivees partielles
Saint-Jean-de-Monts, 31 mai-4 juin 1999
GDR 1151 (CNRS)

The FBI transform, operators with nonsmooth
coefficients and the nonlinear wave equation

Daniel Tataru

Abstract

The aim of this work is threefold. First we set up a calculus for partial
differential operators with nonsmooth coefficients which is based on the FBI
(Fourier-Bros-Iagolnitzer) transform. Then, using this calculus, we prove a
weaker version of the Strichartz estimates for second order hyperbolic equa-
tions with nonsmooth coefficients. Finally, we apply these new Strichartz
estimates to second order nonlinear hyperbolic equations and improve the lo-
cal theory, i.e. prove local well-posedness for initial data which is less regular
than the classical threshold.

1. Introduction.

The first goal of these notes is to introduce a new approach for the analysis of
partial differential operators with nonsmooth coefficients, which is based on the FBI
transform. The idea is quite simple, namely to use the FBI transform to transform
the "principal" part of a partial differential equation into a scalar or a ordinary
differential equation in the "FBF space. Thus one needs to produce approximate
conjugates of pseudodifferential operators with respect to the FBI transform. This
in turn requires appropriate error estimates, which are described in the next section.

In the second part we show how this method can be used to obtain Strichartz type
estimates for second order hyperbolic equations with nonsmooth coefficients. In the
"FBI" space the problem reduces to a subelliptic ode away from the characteristic
cone and a transport equation along the Hamilton flow. Solving these ode's reduces
the problem nicely to certain oscillatory integral estimates which, at least in spirit,
are not far from the classical ones arising in the constant coefficient case.

Finally, we explain how these Strichartz estimates lead to improvements in the
local theory for nonlinear hyperbolic equations. This is a simple argument based on
the energy estimates.

The results presented here are contained in three articles of the author, [16], [18]
and [17].
Research partially supported by NSF grant DMS-9622942 and by an Alfred P. Sloan fellowship
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2. A calculus for operators with nonsmooth coefficients.

The FBI transform is, in a way, similar to the complex Fourier transform, in that
for each function in R" it provides a representation as a holomorphic function in
R271. However, in the case of the FBI transform we can identify naturally R271 with
the phase space T*^71. For a pseudodifferential operator with smooth symbol acting
on functions in R71 one can produce by conjugation a corresponding formal series
acting on functions in R271, for which the first term is exactly the multiplication by
the symbol. This series converges and has a nice representation in the Weyl calculus
provided that the symbol of the operator is analytic. This is how the FBI transform
has been used in the study of partial differential operators with analytic coefficients;
see [10], [II], where this machinery is developed. Here we do the opposite: we look
at operators with nonsmooth coefficients, approximate the conjugated operator bv
a partial sum of the formal series, and then we prove error estimates.

The calculus we develop is dependent on the frequency; thus, in order to use it
for general pseudodifferential operators one needs to start with a Paley-Littlew-ood
decomposition and then use the calculus for each dyadic piece separately. The
parameter A belowr represents the size of the frequency.

The FBI transform of a temperate distribution / is a holomorphic function in
C71 defined as

(T,f)(z)=\^2-^-^fe-^z-y)2f(y)dy (1)

To understand better how the FBI transform works, consider the L2 normalized
function

/^o(y) = ̂ TT-^e-^-^e1^-^

which is localized in a A~2 neighborhood of XQ and frequency localized in a Ai
neighborhood of A<^o.1 Then

(7V)(z) = A^T^e^2-^^2-^-^2 = A'^TT^e-^^-^^^^eil^l'e-^^-^05^2-^)

Modulo the common factor eil^l2 this is localized in a A~^ neighborhood of XQ-I^Q.
Hence, it is natural to introduce the notation

z = x — i^.

Like the Fourier transform, the FBI transform has good L2 properties. Set

<S>(z) = e-^2

Then the operator T\ is an isometry from L2^71) onto the closed subspace of holo-
morphic functions in L^C^. One inversion formula is provided by the adjoint
operator:

f(y) = A^-ITT-^ f^z)e-^-y)\T,f)(z) dxd^

This is of course not the only possible inversion formula since the range of 7\ consists
only of holomorphic functions.

lD\le to the uncertainty principle this is the best one can do when trying to localize in both
space and frequency
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Let a(x,^) be a compactly supported symbol. Then

ax(x^)=a(x,-^)

is a symbol supported at frequency A.
What we want is to determine an approximate conjugate A\ of A\(y,D) with

respect to F\^
TxA),{y,D)^AxTx

It is useful to see what happens for some simple symbols. For instance

Uyf)(z)=(x+^(a^-\^T,f

The conjugate of -^ is of course D^, but we shall write it as

Tx(^f){z)=^+^9^\(i))T,f

Based on this, one can use a Taylor series expansion of the symbol to produce the
formal asymptotics

T^ D) » SX - ̂ ,g |̂(̂  - ̂

Now we want to make these asymptotics rigorous for (nonsmooth) symbols a
which are of class (7s with respect to x. Thus we define our candidate for the
conjugate of A\ with respect to T\ to be the partial sum

„. - v- ( r ) yv> c^foM .1. .̂
A ~ I^K^ - ° ̂ '(- ÎAÎ  - Ao

Then we need to obtain good estimates for the remainder

R^ = T,AA - a^

Our main result is

Theorem 1 Assume that a € C^(Co°°). Then

\\RU\L'^ ^ ̂ A-t (2)

In other words, this theorem shows that the order s approximation is precise up to
5/2 derivatives. Such an error estimate is sharp, as one can see from the following
straightforward bounds on the terms in the partial sum:
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Lemma 1 If u € L^ is holomorphic then

IK^-AOTI^C^IMI^

IK^-^O^HH^A^IHI^

If s > 2 then the conjugated operator has order 2 or higher, which makes the
analysis more complicated. The two simpler cases are 0 ^ s <, 1, when

a{ = a s < 1 (3)

and 1 < s < 2, when

a{=a+ ——a^ - AQ + \a^-Q^ - \^}
—%A A 1

Since we only consider this operator on holomorphic functions, the operators {9^ -
A^) and (4<9a. - A^) coincide. Then we can also rewrite it in a complex fashion as

yx=^+-^{9a)(9-i\^^ l < s ^ 2 (4)

Observe that there are two ways to match the factors in order to obtain real coeffi-
cients for the derivatives. Correspondingly we obtain two ode's along the gradient
flow of a, generated by

dx9x + a^
respectively the Hamilton flow of a, generated by

a^ - a^

3. Strichartz estimates for the wave equation with
nonsmooth coefficients.

The Strichartz estimates are Z^L9) estimates for solutions to the wave equa-
tion. These estimates have been very useful in the study of semilinear hyperbolic
equations. One form of the estimates applies to solutions to the homogeneous wave
equation,

Du=0, u{0)=uo, Ut(0)=u^
Then

IN|LP(L<Q < C[|uo||^ + hlH^P-i (5)

provided that 2 < p ^ o o , 2 ^ g ^ o o and

1 n n 2 n-1 n—1
p+^2-p• -p^-r^-r <6)

with the sole exception of the pair (1,2, oo) in dimension n = 3.
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In the sequel, call Strichartz pairs all the triplets (p,p,$) satisfying the above
relations except for the forbidden endpoint (l,2,oo) in dimension n = 3. If the
equality holds in the second relation,

1 n n 2 n-1 n - 1
p+^2-p- p+-^-=-^- (7)

then we call (p,p,q) a sharp Strichartz pair. The estimates for any Strichartz pair
follow by Sobolev embeddings from the estimates for sharp Strichartz pairs.

A special role is played in dimension n ̂  4 by the sharp Strichartz pair ( "+1 2, 2^-^
which we call the endpoint. Then all Strichartz estimates can be recovered from'the "~3

endpoint estimate and the energy estimate (which corresponds to (0, oo, 2)) by inter-
polation and Sobolev embeddings. The 3-dimensional correspondent is the forbidden
endpoint (l,2,oo).

The second form of the estimates applies to solutions to the inhomogeneous wave
equation,

Du = /, n(0) = 0, Ut{0) = 0
Then

IÎ -̂ IILW <. ||/||,̂  (8)

for all Strichartz pairs (p, p, q), (pi, pi, $1).
Estimates of this type were first obtained in [3], [14]. Further references can

be found in a more recent expository article [4]. The endpoint estimate was only
recently proved in [6] (n ^ 4).

Consider now a variable coefficient second order hyperbolic equation

P(x, D)u = 0, u(0) = uo, Uf(0) = ui (9)

where
P(x,D)=-^ig^J{x)^J

If the coefficients g'-i are smooth then the estimates hold locally, see [9] (except for
the endpoint). For time independent C1'1 coefficients, in dimension n = 2,3, the
estimates are proved in [12]. Furthermore, in [13] they are shown to fail for C8

coefficients, s < 2.
In what follows we assume that the matrices (^(.r)), (^'(a:))-1 are uniformly

bounded and of signature (l,n). Furthermore, we also assume that the surfaces
XQ = const are space-like uniformly in x, i.e. that g°° > c > 0.

Our first result shows that the full Strichartz estimates hold provided that D2Q ^
L\L°°}.

Theorem 2 Assume that D2g 6 L^L^). Let (p,p,q) be a Strichartz pair. Then

lll^r~^||LP(0,r;L<) ^ ^W\L^(L2)+^7\\P(x,D)u\\^(L^ (10)

provided that p, >_ 1 and

^ll^llLKoo) ^ ̂
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The estimates in Theorem 2 also lead to some weaker Strichartz estimates in
the case when the coefficients have less regularity. Following the terminology in [19]
define the microlocalizable scale of spaces Xs by

|H|x. =SUpA5||5A^||Ll(L-)
A

where
1= E-^A

A=2J

is a standard Paley Littlewood decomposition. Then we consider operators with
coefficients in the Xs spaces for 0 < s < 2.

Theorem 3 Assume that P is in divergence form and that g € Xs, 0 < s <2. Let
(p, p, q) be a Strichartz pair and

2-s
a=^

Then

IIPÎ '̂ ll̂ o.r^) ^ ^||Vzz||^(^) +/^|1PI~^1|L^2) (11)
for all p, > 1, T > 0 satisfying

niA^24-5

The estimates for solutions to the homogeneous equation follow easily from the
above theorems combined with the energy estimates. Uniform energy estimates for
a time T hold for instance if 1 ̂  s <^ 2 and

IIA^HLI(L-) < 1

Now7 let us turn our attention to the estimates for the inhomogeneous problem.
Our first result is a generalization of (10).

Theorem 4 Assume that the coefficients satisfy D2g e L1^00). Let ( p , p , q ) be a
Strichartz pair. Then

\\W^U\\LP(L.) < ̂ IIV^H^oc(^) + /^||/i||^2) + HIPÎ IL^) (12)

whenever

P(.r,D)n=/i+/2
and

rnz^llz^oc) ^ /z2, ^ ^ i

The analogue of this result in the case when the coefficients are in Xs, with 0 <_ s <, 2,
is
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Theorem 5 Assume that P is in divergence form and that g G Xs, 0 <, s < 2. Let
(p, p, g) 6e a Strichartz pair. Then

m'-^u^pw < ̂ ^iiv^^oo^+^-^iiipi-^iiiLi^+iiipr^^ii^^) (13)
whenever

P(:r,D)n=/i+/2
and

TW^ < ̂ s. ^ ̂  1

Applied to solutions for the initial value problem (9) this shows that the full Strichartz
estimates hold for operators with C2 coefficients.

Corollary 6 Assume that D2g 6 ^(O, T; L°°). Let (p,p, q), (pi, pi, q\) be Strichartz
pairs. Then the following estimate holds

lll^r-^llL^T^i) <: \WP{X,D}U\\^^L^ + INÎ i + |M|L2 (14)

The corresponding result for 1 < s < 2 is

Corollary 7 Assume that the operator P has Xs coefficients in [0, T] with 1 < s <
2. Let (p^p^q), (pi,pi,9i) be Strichartz pairs. Then

W-^U^P^W) < \\\D\^Pu\\^^^ + ||no||̂  + ||^i||L2 (15)

4. Proof of the Strichartz estimates.
Here we sketch the proof of Theorems 2,3. The rest of the results are proved in

a similar fashion.

Localization and truncation The first part of the proof of Theorem 2 involves
several localization type arguments. First we reduce the estimate to the case when
IJL = 1, T = 1, ll^^llL^L00) < 1 ̂ d u ls supported in a cube of size 1. Then we
use a Paley-Littlewood decomposition to reduce the problem to the corresponding
dyadic estimates at fixed frequency A,

A-II^H^L.) < \\SXU\\L^) + ̂ PSxu^w (16)

where S\ is the multiplier which selects the frequencies of size aproximatively equal
to A.

Next we observe that (16) remains unchanged if we truncate the coefficients of
P at frequency \/A. Thus, without any restriction in generality we can assume that

|Q|-2

II^HLI(L-) ^ ^A—-
which also gives

\9^g\^c^X^
The same steps apply for the proof of Theorem 3, with the only difference that

the coefficients are truncated at frequency /^A^. But then the corresponding
dyadic estimate follows directly from Theorem 2.
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Using the FBI transform The second stage of the proof of Theorem 2 is to
obtain good L2 estimates for the FBI transform of u. Conjugating the operator P
with respect to the FBI transform T\ we get two ode's in the "FBI" space. One
of these ode's is along the gradient flow of p(x, ̂ ) and provides an elliptic estimate
away from the characteristic cone. The other one is along the Hamilton flow of
p and corresponds to propagation of singularities. Exploiting the L2 information
coming from the two ode's we can reduce the dyadic inequalities to certain oscillatory
integral estimates.

Set
w = ^TxS^u

Then we try to get good L2 estimates for w. The function S\u can then be recovered
from

Sxu = T^w
Observe first that w is concentrated in the region

t 7 = { M ^ 2 , ^|^|<4}

Outside this region we have exponential decay,

|H|L2(^) ^-^115^1^2.

Hence it suffices to get good estimates for w in the region U. Set

{\p+2(9p)(0-i\^)w=g

where
g=^{R^Sxu+T^f)

Since <^~^w is holomorphic, we obtain in effect two pieces of information, namely

[{Px9^ - p^9x} - i>{p - P^ ' 0] w = g (17)

respectively
[(Px9x + P^) + A(p - zpx • 0] w == g (18)

The first equation is an ode along the Hamilton flow of p, while the second
equation is an ode along the gradient curves of p. Our strategy is now to use the
(17) to obtain good estimates for w on the characteristic cone K^ and then to use
(18) to obtain good decay rates away from the cone.

We use (18) to decompose w into two parts,

w = wi + W2

where w\ solves the inhomogeneous equation

[{px9x +p^) + x(p - i p x ' 0] ̂ i = g , W\\K = o (19)
and W2 solves the homogeneous equation

[{px9x + P^) + A(p - ipx ' 0] W2 = 0, W2|K = w (20)

Correspondingly split S\u into u\ + u^ with

u,=T^w,
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The estimate for Wi If we multiply (19) by wl and integrate by parts then we
obtain

2K<^,,>= AMP+||̂ ||.

which yields
AKII^clHI2 (21)

On the other hand if we just square (19) and integrate by parts then we obtain

|H|2 = A^iH2 + ||((pA +P^) - zAp, . Owi||2 - A||[Vp|wi||2 (22)

Summing up the last two inequalities we get

^ibwiiF+AKi^ibii2

If one uses appropriately the remainder estimate, on the other hand, we get a bound
for A~i||^|[2. Hence it remains to prove that

l|r;<^wi||^) < A^i(A^||pwi||2 + ||wi||2)

which is equivalent to

Kt^"——^
and further, by the "TT*" argument, to

AiQ2^) < \2P+1

" A ( l+A^b|)2 "LP(L9HLP(JL9) s

The weight inside is integrable across the level sets of p therefore we can foliate with
respect to the level sets of p and reduce this to

lir;^2^,^)^^!!^^)^^) < A2^1

which follows by standard interpolation arguments and oscillatory integral estimates.
One can compare the kernel arising here,

K(y^ y) = A3^ / a(^, ̂ e^-^e-^-v^e-^-^dx^ (23)
•f K

with the corresponding kernel arising in the constant coefficient case,

K^y^^X^ ( a^e^-^dH
J K

and observe that the Gaussians have at most a regularizing effect above the A~^
scale.
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The gradient flow The next step in our analysis is to estimate w^ using (20). To
achieve that we need to compute the regularity of the gradient flow of p. Suppose
we start with initial data (x^) on the cone K = {p = 0}. Denote by q the natural
parameter along the flow, chosen so that q = 0 on K. Set {xq, Q the image of (x, ̂ )
along the flow. Then (xq,^q) solve the equations

f 9qXq=p^(Xq,Q

\ Q^Q^P^q^g)

Since the first derivatives of p are bounded but the second derivatives are onlv
bounded by \/A, the gradient flow remains smooth on the scale of A~^ and becomes
exponentially "bad" afterwards. More precisely,

Theorem 8 Assume that P has C1 coefficients whose Fourier transforms are sup-
ported in B(0,^/\). Then

\9^xq\ < c^X^e^ |a|+|/3|>0

1^(^-01 < c^X^e^ H+|/3|>1

\9^p[x^Q\ < c^l+X^e^

However, the fundamental solution for (20) exhibits Gaussian decay on the same
scale which overrides the exponential growth corresponding to the flow.

The oscillatory integral for u^ We have

^2 = T^W^

If we use the ode (20) to express w^ in terms of the trace of w on the cone and then
carry out the integration along the gradient flow of p then we obtain the following
representation for w^:

Theorem 9 Assume that P has C1 coefficients frequency localized in ||^[| < \/A.
Then we have

U2 = X~^V\W\K

where V\ is an integral operator,

V\w=X3^ f e^^x-y)G(x^^)wdxd^
• I K

with a kernel G satisfying

\9^G(x. t/, 0| <, c^e-^-^ (24)
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Then, using appropriately the error estimates, we need to prove an estimate of
the form

\\VXW\\LP(L.) < X^\\H,W\\^^)(K) (25)

for all w supported in K n U.
Given a pair (x,^) we denote by (xi,^) its image along the Hamilton flow. This

map is homogeneous of order 1 with respect to ^. Then, (25) is equivalent to

Theorem 10 Let a(x,^) be a smooth compactly supported function, which is 0 near
^ = 0 and 1 in 1/4 < |̂ | ̂  4. Then

\\Vxa(x,^L\\L2(Kn{^=o})-^LP(L^) ̂  A^? (26)

where L is the forward transport operator along the Hamilton flow given by

(Lw}(x 6) - [ ° xo < °
^^^-[w^,^ x,,=0, t<0

This is further equivalent to the corresponding bound for the operator

Z = {\\aL}{V),aLY = \\aLL^8^^aV^ , (27)

namely
WLP'^I'^LPW ^ ^2P+5 (28)

The operator LL* is an integral operator along ^characteristics, with kernel

l(t,s) = 1{(>0, s>0]

Using a standard complex interpolation argument this can be obtained from a
trivial L2 ->• L2 estimate and an L^'i) ->• L^L91) estimate. The -L^'i) -^
L^L91) estimate, in turn, reduces to a kernel bound for an operator which involves
a shift along the Hamilton flow,

Theorem 11 Denote by F1 the translation by t along the Hamilton flow, and by
H1 the kernel of the operator

Zi = VxaF^^aV^

Then the kernels H1 satisfy the following estimate:

\H\y,y}\ ̂  cA^e-^-^-^l + \\y - y\Y— (29)

The kernel H1 has the form

^(^^A^ / G^x^.^x^.^e^-^e-^^-^dxd^
J K

To estimate it we need to compute the regularity of the Hamilton flow.
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The regularity of the Hamilton flow Here we obtain precise bounds on the
derivatives of the flow map F1 with respect to ^. Observe first that if the coefficients
g13 satisfy

P^eL1^00)
and have Fourier transform supported in |̂ | <, V\ then the following relations hold:

II^P||^(£°°) ^ c^A^, |a| > 2 (30)
This implies that

Lemma 2 Assume that D^g e L^L00) with Fourier transform supported in B(0, \/A).
Then the following bounds hold

\9^Xt\<t(l+tV\)W-\ \a\^l
^^(l+^A)'0'-1 |a |>l (31)

We can use the above Lemma to produce an expansion of Xi,^ in terms of powers
of it:

Lemma 3 Assume that the coefficients of P satisfy D^g 6 L^L00) with Fourier
transform supported in B(0, \/rX). Then the following estimates hold:

Xt=x+tpf+t2g(t,x,^ (32)

^t=^+th(t,x,^ (33)
where p, h satisfy the following bounds:

\^h{ix^)\,\9^g^x,^\ ̂  (l+^/A)0-1, (34)

Another straightforward consequence of Lemma 2 is the following bound for the
exponents in the kernel G:

Lemma 4 Let G be as in (24). Then

\9^G(xt^t,y)\ < ̂ -^-^(l +tV\r,

In a similar manner we obtain the related result for the phase function in our
kernel:

Lemma 5 For ^ in a compact set and away from 0 we have

^ (^(^ - yW - (>{x -y)+ t^Xg^ x, 0) | < (1 + \{xt - y)2)^ + tV\) (35)
and

l<9p((^ - VW\ < c,(l + \(xt - y)2^! + t^\r. 1^1 ^ 2 (36)

This is essential since it allows us to replace the nonlinear phase function with a
linear one modulo a good factor.
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Oscillatory integral estimates Given the above results, for t < \~^ the Hamil-
ton flow stays smooth and we can represent the kernel H1 in the form

Ht(y,y)=\3-^ t e-^-y^e-^-^e^-^f^x^dx^
J K

where / is bounded, compactly supported away from ^ = 0 and has bounded deriva-
tives in ^. This behaves in the same way as the kernel in (23).

For t > A""^, on the other hand, we get the representation

H\y,y} =A3^ / e-^-^^-^0^0-^^-^2^)^^^^
J K

where ^ depends only on x^ y, y and / satisfies

1^/1 ̂ (1+^/A)0 (37)

This is worse than before, but is compensated by the fact that the integrand is
localized in ^ on the same scale.

5. Quasilinear hyperbolic equations.

Consider a quasilinear second order hyperbolic equation in R71 x J?,

9ig^3{u)9jU=N(u,9u) (38)

with Cauchy data
u(0) = uo, Ut{0) = ^i (39)

Then the classical theory (see [5], and also [19] and references therein) says that this
problem is locally well-posed in H8 x H 8 ' 1 for s > | + 1. This condition insures
that the coefficients of the principal part are C1 and that Vn is bounded.

The question is whether the problem remains locally well-posed for initial data
which is less regular than that. This can only be possible if we restrict the class
of nonlinearities TV. Thus, we assume that the nonlinearity is at most quadratic in
VZA,

N{u, u) = G{u}Q(^u, V^) (40)

and that the functions G, g13 are smooth, bounded and have bounded derivatives up
to a sufficiently high order. Also we assume that the coefficients g13 are uniformly
hyperbolic in time. Then combining the new Strichartz estimates with the energy
estimates it is fairly easy to prove that

Theorem 12 The quasilinear problem (38)-(39) is locally well-posed in H8 x H8'1

for

n 5
s>^-^ , n=2

n 2
s > ^ + g , n ̂  3
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The first result in this direction, for

n 7
^^S ' n=2

n 3
5 > ^ + ^ , n^3

was independently proved in [16] and [2]. The above theorem is proved in [17]. We
have recently learned that Bahouri and Chemin were also able to improve their first
result in a second article [1]. Their new exponents (e.g. "̂ 1 + 4^3 for n ^ 3) are
only slightly larger than the ones in the theorem.

The idea of the proof is quite simple. From the energy estimates we know that
there is no blow up for as long as V^(u) remains in L1^00). Then in order to
close the argument we use the Strichartz estimates to show that this also implies
that Vu 6 L2(L00) (n ^ 3) respectively Vu € L2^00) (n = 2). In the constant
coefficient case this would require s ^ j + j (n ^ 3) respectively s > j + 3 (n = 2).
However, in our case we loose ^ derivatives in the Strichartz estimates, i.e. - (n ^ 3)
respectively ^ (n = 2). Thus we need

n 1 1
s > 2 + 2 + 6 n ^ 3

respectively
n 3 1s>^-^^2 n>3

Is is perhaps interesting to compare the results for the quasilinear equation with
those for the corresponding semilinear equation

Du = |Vn|2 (41)

The semilinear problem (41) The quasilinear problem (38)

n using only Strichartz ^est result "smg only Strichartz ^est result
estimates estimates

2 "+3 n+3 n+5

2 4 2 4 2 6
„ n I n I n 2
3 2^ 2+-^ i^ ?

. n 1 n 1 n 2
4 2 + 2 2^4 2 + 3 ?

5+ "+1 n n^2

2 2 2 2 3

One should note, though, that at this point the counterexamples for the quasi-
linear equation are no better than those for the semilinear equation, see [7], [8].

The same method can be used for second order hyperbolic equations of the form

^"(n, ̂ u}9i9ju = N(u, Vn) (42)

^his can be easily proved in the framework of the Xs'9 spaces
3see [15]
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Differentiating once we obtain equations which are essentially of the form (38),
therefore

Theorem 13 The quasilinear problem (42)-(39) is locally well-posed in H8 x H8-1

for

^ n+2 5

^>-T+Q - ^2
n+2 2

^>-2-+3 , n ^ 3
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