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GDR 1151 (CNRS)

Analytic Regularity for the Bergman Kernel

Gabor Francsics Nicholas Hanges

Abstract

Let Q C R2 be a bounded, convex and open set with real analytic bound-
ary. Let 7h C C2 be the tube with base Q, and let B be the Bergman kernel
of Tn. If Q is strongly convex, then B is analytic away from the boundary
diagonal. In the weakly convex case this is no longer true. In this situation,
we relate the off diagonal points where analyticity fails to the Treves curves.
These curves are symplectic invariants which are determined by the CR struc-
ture of the boundary ofTh. Note that Treves curves exist only when Q has at
least one weakly convex boundary point.

1. Introduction.

Let U C C" be open. Let L2^) denote the Hilbert space of complex valued
functions defined on [/, which are square integrable with respect to Lebesgue mea-
sure. Let H(U) == {/ G ^(U) : 9f = 0}, the closed subspace of holomorphic
functions on (7. We denote by B

B : L\U} -^ H(U)

the orthogonal projection, which is known as the Bergman projection. If {yj}
denotes an orthonormal basis for H(U\ then it is well known that B has kernel,
which we also denote by j8,

B{z, w) = ̂  Vj{^Vj{w), z, w G U.

The above series is uniformly convergent on compact subsets of U x £7. B is holo-
morphic in z and anti-holomorphic in w. In particular B is real analytic on U x U.

In case U is strictly pseudoconvex, the boundary behavior of B is well understood.
If z° G 9U, then it follows that

lim B ( z ^ z ) = +00.
z-^z°
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See Hormander [16] for a more precise statement.
We now assume, in addition to strict pseudoconvexity, that the boundary of U is

real analytic. If we have z°^ w° 6 9U^ with z° -^ w°, then it follows that B extends to
a full neighborhood of (^°,w°) € C1 x C1 as a function holomorphic in z and anti-
holomorphic in w. In particular B is real analytic near (,z°,w°). This follows from
the analytic hypoellipticity of Db, a consequence of results of Treves [27], Tartakoff
[25]. Also see Kashiwara [17].

Our main interest here is the weakly pseudoconvex case where QU is real analytic.
Here off-diagonal singularities may occur. For example, Christ and Geller [5] have
shown that the Bergman kernel for the domain

u = {z e C2: 0^2 > (^i)"}
is not analytic at certain points away from the boundary diagonal, when m is even
and m > 4.

We now continue the study begun in [10]. Our goal here is to state recent results
we have obtained concerning the Bergman kernel for tubes. We assume these tubes
are convex with bounded base and analytic boundary. We show that off-diagonal
singularities are described by the characteristic lines. These lines are contained in
the boundary and are projections to the base of the Treves curves. These curves are
symplectic invariants which are determined by the CR structure of the boundary.
Treves curves exist exactly when the base of the tube has at least one weakly convex
boundary point.

Treves introduced these curves in [27], where he conjectured that the existence
of such curves should prevent analytic hypoellipticity, for certain partial differential
operators with double characteristics. Recently Treves has extended his conjecture,
[28]. The reader should note that in the case of tubes, the two conjectures are
essentially the same.

We have been motivated by several important results on analytic regularity.
These include, besides those already mentioned, Chen [2], Christ [3], [4], Derridj
[6], Derridj-Tartakoff [7], Geller [II], Grigis-Sjostrand [12], Hanges - Himonas [13],
Helffer [14], Metivier [20], Sjostrand [23], Tartakoff [24], Trepreau [26]. The reader
may consult our survey, [9] for more references.

In section 2 we discuss the notions of convexity that we need. In section 3 we
discuss the Treves curves and characteristic lines for tubes. In section 4 we state
recent results. In sections 5 we discuss the formula of Boutet de Monvel, [1]. In
sections 6 and 7 we discuss some of the proofs.

2. Geometric Preliminaries.
In this section we recall the notions of convexity that we use. We begin by

discussing 0, the base of the tube Tn. Let U C R71 be open. Let r : U —^ R be real
analytic. The base Sl is defined as follows:

n = {y e U : r(y) < 0}.

We assume that dr(y) ^ 0 whenever r(y) = 0. Furthermore, we assume that

n cc u, (i)
»\
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that is, we assume that the closure of 0 is a compact subset of U.
Throughout we will assume that f l . is convex. This means that for each y 6 9ft,

the boundary of H, we have

s^^"^0 <2)j,/c—i

whenever aj 6 R and

_ /^ip
E^^)-0- (3)j=i "J

Note that it follows from (2) and (3) that f! is geometrically convex. This means
that if y ^ y f € ^, then the segment connecting y to y' is contained in fL See for
example [19], Proposition 3.1.8, page 102. If strict inequality holds in (2) whenever
(ai , . . . ,a^) ^ 0 satisfies (3), we say that y € Q^l is a strongly convex boundary
point.

3. Symplectic geometry and Treves curves.

Our goal in this section is the calculation of the Treves curves for the tube
TQ,. These curves are determined by the symplectic geometry associated to the CR
structure of 37h. We begin with a general definition.

Let (M, uj} be an analytic symplectic manifold with symplectic form LO, If E C M
is a submanifold with p G S , we denote by TpS the tangent space to E at p. We
denote by (TpS)1 the orthogonal of TpL with respect to a;. Let / C R be an open
interval containing 0. We have the following :

Definition 1. Let S C M be an analytic submanifold and let 7 : I -^ E be a
non-constant analytic curve. We call 7 a Treves curve for S if

^) e (^)S)1 (4)

for all t e J.

We now discuss the characteristic set of the CR structure of 9T^. Let x =
(a;i, . . . , Xn) € R71, y == (yi , . . . , Vn) € ̂ n be natural coordinates. We think of C71 as
the space R71 x R71 equipped with the complex structure generated by the functions
Z j = X j + i y j f j = 1,... ,n. This then induces coordinates { x ^ y ^ ^ r j ) € T^C1. Since
7h = {z € C1 : r(y) < 0}, we have T\QT^) C r*(C1) is defined by two equations;
that is we have

_ rjv*

T(c^) = {(x,y,^r,) € r(C) : r(y) = 0 and ̂ rj^(y) = 0}. (5)
'9y].?"=i
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We now study the CR structure on 9T^. We will work near a point z = x + iy € 0
such that r(y) = 0 and ^-(y) 7^ 0 for some fc, 1 < k < n. The following n — 1 vector
fields form a basis for the natural CR structure on the boundary of TQ, near z

. 9r Q Qr 9 . , ,.
Lj-^—^—-^—-^—,j^k. (6)

" Q z k Q z j 9zj9zk

Then S C T*(C71), the characteristic set of the CR structure, is defined by 2n
equations. Indeed, we have ( x ^ y ^ ^ r j ) 6 S if and only if ( x ^ y ^ ^ r j ) satisfies the two
equations of (5) along with the following 2n — 2 equations:

Qr 9r

^-^Wr0' 3+k (7)

V^^r0' ̂  (8)

It follows immediately from (7) and (8) that we have the following

Lemma 1. Let S be the characteristic set for the natural CR structure induced on
the boundary o/Tn. Then we have

S={(^,^)cr-(C»):r(y) =0,^=0, ̂ =±^}.

We will now study the Treves curves for S. Let p° = (x0^0^0^0) £ S and let
I C R be an open interval containing the origin. Assume that

7 : I -^ S

is a Treves curve such that 7(0) = pQ. If s G 7, we write

7(^)=(^),^),^),^)). (9)

We have the following

Proposition 1. Assume that 9^1 is real analytic. Suppose that 7 is a Treves curve
for S as described in (9). Then we have

y{^=y°, ^)=^°, ^)=o (10)
for all s 6 I. Furthermore we have

/Tj*
<^(^dr(y°)>=0 (11)

and

E&^w-o <")
for all s E I and I = l,...,n. Conversely, any non-constant curve 7 : 7 —>• S
satisfying (10), (11) ancf (12) is a Treves curve for S.
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Remark 1. If (;r°, y°, ̂ °, 0) and (*r1, y°, ̂ °,0) lie on the same Treves curve for E, then
define x(s) = sxl+(l-s)xo, s € R. It follows that the straight line (.r(,s), y°, ̂ °, 0), 5 €
R is a Treves curve for S. This follows because of (11) and (12). We will call the
projection to the base of this line a characteristic line. This is the set of points
x(s)+iy°e^.
Remark 2. Note that by definition, Treves curves are not constant. Hence it follows
from the Proposition that if a Treves curve passes through /9°, we must have x(s) not
constant. As a consequence we see that y° must be a weakly convex boundary point
of n. So we see that if 9SI is strongly convex, it follows that S contains no Treves
curves. Indeed, if 9^1 is strongly convex, it follows that TQ, is strongly pseudoconvex,
and hence S is symplectic.

4. Statements of Results.

Let f2 C R2 be open, bounded and convex with real analytic boundary. Let
7h = {z e c2: Qz e n}.

Assume that z° € 9T^ and let L be a vector field defined near z° that generates
the CR structure. Let g be the Lie algebra generated by L and L under the commu-
tator bracket. Since 9Cl is bounded and analytic, it follows that there exists X 6 0
such that L, L and X are linearly independent at z°. We say that z° is a point of
type m if the smallest possible commutator length for X is m. Note that m is even
and m >, 2; z° is a strictly pseudoconvex boundary point if and only if m = 2. Also
observe that if z° and w° can be connected by a characteristic line, then z° and w°
have the same type m > 4.

In the three theorems stated below we always assume that z°^w° e 57h, with
z° + w°.

Theorem 1. Assume that z° and w° do not lie on the same characteristic line.
Then 0, the Bergman kernel for Th, extends as an analytic function to a full neigh-
borhood of (^°, w°).

Theorem 2. Assume that z° and w° lie on the same characteristic line. Assume
that the type o f z ° is m. Then /?, the Bergman kernel for Tn, extends as a smooth
function, of Gevrey class m, to a full neighborhood of(z°^w°).

The next result is of primary importance.

Theorem 3. Assume that z° and w° lie on the same characteristic line. Let y° =
Qz0 = Sw°. Assume that (22) is satisfied at y°. Then 2?, the Bergman kernel for
7h, cannot be extended as an analytic function to any neighborhood of{z°^w°).

5. The Formula.

We give here a brief discussion of a result of Boutet de Monvel, [1]. See also Koranyi
[18], Vinberg [29], Faraut and Koranyi [8]. Let 0 C R71 be open, with 0 € Q. If H
is bounded and convex, then we have the following formula for the Bergman kernel
of 7n. Note that no smoothness assumptions on 9Q are necessary for the validity of
this formula.
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If we denote by B the Bergman kernel of Tn, then we have for z^ w G TQ,

B(z^w)= I ^—^A^-1-^ (13)
JR" (^r

where we define

A(0 = / e-^^dy. (14)
Jn

If the boundary of H is of class C2 we may use Greeks theorem to obtain

^-mL^^-w^"^ (15)
where r is a defining function for Q, and da{y) denotes the surface area on 9fL

6. Analytic singularities away from the boundary diagonal.

We now discuss some of the ideas used in the proof of Theorem 3. We use the
notation of section 3. Assume that z° -^ w° with z°^w° 6 9T^ Also assume that
z° and w° lie on the same characteristic line. It follows that there exists y° 6 9^1^
a weakly convex boundary point, such that Qz0 = y° = Sw0. Our assumption also
guarantees the existence of a vector a € R71, \a\ = 1 and to G R,<o 7^ 0 such that

^z° = »w° + <oa.

The vector a also satisfies

< a,dr(y°) >= 0 and r\y°)a = 0.

All this follows from Proposition 1 and Remark 1. We now introduce the function
U(t) as follows :

U(t)=B{zo,wo+tdr{yo)). (16)

We will show that B has no analytic extension to any neighborhood of (z°^w°)^ by
proving that U is not analytic near {t = 0}.

We will begin by choosing convenient coordinates. Note that the formula (13)
is invariant under translations and real rotations. Hence we may assume that y° =
0. We may also assume that we have 8 > 0 and y real valued and real analytic
near |y'| < 8 such that r has the form r(y) = y?(y') - yn with dy(0) = 0. Here
y1 = (yi , . . . , 2/n-i). Hence dr(0) = (0, . . . , 0, -1). We may also assume that a =
(a7,0), |a'| = 1, a' G R71-1 with (^'(O)^ = 0. So we see that if ^ € R71 we have

< ^ ~ (w° + tdr(y°)), ̂  >== to < a\ ̂  > +^n.
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Hence it follows that we may assume that 0 G 9H and that for t G R, t near 0 we
have

^^^/^''^"^(O-1^ (17)

where to € R,<o 7^ 0 and a' £ R"-1, [a'l = 1.
Now that we have chosen convenient coordinates, we will discuss several local-

izing arguments. The main idea is that the important singularities of U arise near
the interior normal of f l i . Given M > 0, we define F as follows:

r = -^ e R" : ̂  ^ M|^|}. (i8)
As usual ^' = (^i,... ,^i_i). Note that F is a conic neighborhood of the vector
n = (0,. . . , 0,1), which is the interior normal to f l , at the origin. We define

and

Ss={y^9^:yn=y(yW\^8}.

A^=^/,e-2<"><-^^>^•
Now we introduce

U^At)=f/(tow>WA^rl-^.
^TTJ

We have the following

Lemma 2. Let 8 > 0 be given. Then there exist M > 0 such that

U - Ur^s

is an analytic function o f t ^ for t near 0.

We now focus our attention on Ur,s' Our goal is to show that this function is not
analytic near t = 0.

7. The two dimensional case.

We now begin our study of the two variable case. We assume that Sl C R2 is
open and convex with real analytic boundary. We may also assume that 0 € 9^1
and that we have S > 0 and y real valued and real analytic near |?/i| < 8 such that r
has the form r(y) = y?(yi) - y^ with y\0) = 0. Hence dr(0) = (0, -1). Our previous
work allows us to focus on Ur,s('t)- In the present case, we have

where

W =—— [ 8 e-2^2^))^, ̂ )ds (19)
^ K l J-8

"t^6^^. (20)
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Since we assume weak convexity, we have y"(0) = 0. We may assume that we have,
for | s\ < 5, a strictly positive analytic function u such that

y(s) = ̂ s^ (21)

where m > 4 is the type.
Now we make a technical assumption, which most likely can be removed. We

assume that

^'(0) = 0. (22)

We now introduce, for any constant a > 0,

1 r+°° 1 f+oo
A°(0 = — / e-^^^ds =— e^-^^ds

-^2 J-oo 2^2 J-oo

and v^t) = r r00 ̂ ^^^^-(o-1^!.
Jo J-oo (27r)2

The first step in our study is to show that V01 is not analytic at < == 0 for a
particular choice of the real number p. Indeed, we will obtain a precise estimate
that precludes analyticity. This is crucial. Then we must show that V01 is a good
approximation of Ur,8i for a particular choice of a.

The argument is based on that presented in [10]. In that paper, the study is
based on the function

/+00

A^) = e^-^ds.
•oo

A simple calculation shows that

Aaw = 2&(^^(^)- m
We know that AT is entire, even and has zeroes only when m >_ 4 and even.

Hence in this case, A^""1 has finite radius of convergence at the origin, which we
denote by R. We also know that AT has zeroes only on the imaginary axis, see [21],
hence the zeroes closest to the origin are ±iR. We then have the following

Lemma 3. Let m >_ 4 be even. Let R > 0 be the radius of convergence of Af~~1 at
the origin. Let a > 0 be arbitrary. Then there exists an even integer a depending
only on m, such that 0 <, a < m - 2 and a sequence of integers kj ~> +00 also
depending only on m such that i f p = a'"2m~l then we have

1(^^(0)1 ̂ ^^( '̂-(''W
We now must show that V01 is a good approximation of Ur,s' Rather than study-

ing [/r,<^ we introduce

VrAt)=f^'^A^)-1^, (24)

—s
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Note that Vr,5 is the image of Ur,s under the elliptic pseudodifferential operator
iDfp'^A"1. Here A is the Laplacian in the (to^t) variables. Hence it suffices to
prove that Vr,5 is not analytic at t = 0. (We have assumed here that the vector a of
section 6 has the form a = (1,0).)

We now must introduce

A?(Q = — r8 e-^^^ds = — f^e^-^^ds
1^ J^S 2^ J-8

and
^(<)=/^t•(^^t)^A?(0-l^ ^(<)=^et•(^^t)^A?(0-l^,

It follows that we have

Proposition 2. Let 6 > 0 and a > 0 be given. Then there exists an M > 0 such
that U is analytic near t = 0 if and only if

V0 + {Vr^s - Vr^)

is analytic near t = 0.

Since we already know that V01 is not analytic near t = 0, one would expect to
proceed to prove that Vr,s — V^g is analytic near t = 0. We have not been able to do
this. Instead we will estimate, from above, the derivatives of Vr,5 — V^s an<^ show
directly that there exist a > 0, 8 > 0 such that the function V01 + (Vr,5 — ̂ s) ls n0^
analytic near t = 0. We must study

^(^-^^^^^^^(^(O^-A^O-1)^. (25)

Note that the real number p has been fixed once and for all in Lemma 3. We must
estimate Q(0 which we define to be

0(f:\ - ^2 A-I (A^\-l _ ^A? ~ l^l2^ (^
^0-1^ ^(^) - \^A,A^ • (26)

To complete the proof, we must estimate Q(0 ^or ^ complex, so that a very
delicate contour deformation can be made in (25). The deformation depends on the
number of derivatives k. It also must avoid the zeroes of the denominator, A^A^. We
approximate these zeroes by those of At. However, to obtain the proper estimates
we must know that ±iR are simple zeroes of A f . We have succeeded in proving this
using a result of Polya [21] written in 1923 and its sequel Polya [22] written in 1968.
Complete details will appear elsewhere.

References
[1] L. Boutet de Monvel, Singularity of the Bergman kernel, Complex Geometry,

Lecture Notes in Pure and Applied Mathematics, Vol. 143, Marcel Dekker, Inc.
(1993).

V-9



[2] S.C. Chen, Real analytic regularity of the Szego projection on circular domains^
Pacific J. Math. 148 (1991), pp.225-235.

[3] M. Christ, A necessary condition f o r analytic hypoellipticity^ Mathematical Re-
search Letters, 1, pp.241-248, (1994).

[4] M. Christ, The Szego projection need not preserve global analyticity^ Annals of
Math. 143 (1990), pp.301-330.

[5] M. Christ and D. Geller, Counterexamples to analytic hypoellipticity for do-
mains of finite type^ Ann. of Math. 135 (1992), pp.551-566.

[6] M. Derridj, Analyticite globale de la solution canonique de 9b pour une classe
d'hypersur faces compactes pseudoconvexes de C2, Mathematical Research Let-
ters, 4, pp.667-677, (1997).

[7] M. Derridj and D. Tartakoff, Microlocal analyticity f o r the canonical solution
to 9b on some rigid weakly pseudoconvex hypersurfaces in C2, Comm. PDE 20
(1995), pp.1647-1667.

[8] J. Faraut and A. Koranyi, Analysis on symmetric cones^ Oxford University
Press, (1994).

[9] G. Francsics and N. Hanges, Analytic singularities^ Contemporary Mathemat-
ics, 205 (1997), pp.69-78.

[10] G. Francsics and N. Hanges, Treves curves and the Szego kernel, Indiana Uni-
versity Mathematics Journal, to appear.

[11] D. Geller, Analytic pseudodifferential operators for the Heisenberg group and
local solvability^ Mathematical Notes 37, Princeton University Press (1990).

[12] A. Grigis and J. Sjostrand, Front d'onde analytique et sommes de carres de
champs de vecteurs^ Duke Math. J. 52 (1985), pp. 35-51.

[13] N. Hanges and A. A. Himonas, Analytic hypoellipticity for generalized Baouendi
- Goulaouic operators^ Journal of Functional Analysis, 125 (1)(1994), pp.309-
325.

[14] B. Helffer, Conditions necessaires d'hypoanalyticite pour des operateurs invari-
ants a gauche homogenes sur un groupe nilpotent gradue, J. Diff. Eq. 44 (1982),
pp.460 - 481.

[15] L. Hormander, Notions of convexity, Birkhauser, 1994.

[16] L. Hormander, L2 Estimates and Existence Theorems f o r the 9 operator^ Acta.
Math. 113(1965), pp.89-152.

[17] M. Kashiwara, Analyse Micro-locale du noyau de Bergman^ Seminaire
Goulaouic-Schwartz 1976-1977, Expose VIII.

V-10



[18] A. Koranyi, The Bergman kernel function for tubes over convex cones, Pacific
J. Math. 12 pp.1355-1359.

[19] S. Krantz, Function theory of several complex variables, John Wiley, 1982.

[20] G. Metivier, Une classe d^ operateurs non hypoelliptiques analytiques, Indiana
Univ. Math. J. 29 (1980), pp.823 — 860.

[21] G. P61ya,.(9n the zeros of an integral function represented by Fourier^s integral,
Messenger of Math., 52 (1923), 185-88.

[22] G. Polya, Graejfe's method for eigenvalues, Numerische Mathematik, 11 (1968)
315-319.

[23] J. Sjostrand, Analytic wavefront sets and operators with multiple characteristics,
Hokkaido Mathematical Journal, 12 (1983) pp.392-433.

[24] D. Tartakoff, Gevrey and analytic hypoellipticity, Microlocal Analysis and Spec-
tral Theory, Kluwer Academic Publishers, L. Rodino, ed. (1997) pp.39-59.

[25] D. Tartakoff, On the Local Real Analyticity of Solutions to D^ and the 9 Neu-
mann Problem, Acta. Math. 145(1980) pp.117-204.

[26] J-M. Trepreau, Sur l^hypoellipticite analytique microlocale des operateurs du
type principal, Comm. PDE, 9 (11) (1984), pp.1119-1146.

[27] F. Treves, Analytic hypoellipticity of a class of pseudodifferential operators with
double characteristics and applications to the 9 - Neumann problem, Commu-
nications in PDE 3 (1978), pp. 475-642.

[28] F. Treves, Symplectic geometry and analytic hypo-ellipticity, preprint.

[29] E.B. Vinberg, The theory of convex homogeneous cones, Trudy Moscov. Mat.
Obsc. 12 pp.303-358; Trans. Moscow Math. Soc. 12 pp.303-358.

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, NEW
YORK 10027
francsic@math.columbia.edu

DEPARTMENT OF MATHEMATICS, LEHMAN COLLEGE, CITY UNIVERSITY OF
NEW YORK, BRONX, NEW YORK 10468-1589
nwhicflcunyvm.cuny.edu

V-ll


