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FUNCTIONS OF THE LAPLACE-BELTRAMI OPERATOR

Yu. SAFAROV

King^s College London

May 1996

Let M be a closed n-dimensional Riemannian manifold, C°°{M^1^2) be the space
of smooth half-densities on M, L^[M\^1^} be the Hilbert space of half-densities with
the natural inner product (u,v) = f^u(x)v{x)dx, and AT^M;^1/2), s e R1, be the
corresponding Sobolev spaces. We shall always deal with operators acting in the spaces
of half-densities. This is just a technical assumption, using the natural isomorphism

C°°(M; ̂ 1/2) 3 u -> g-^u e C°°{M)

one can easily reformulate all results for the operators acting in the space of functions.
The Laplace-Beltrami operator A on M is defined in any local coordinates by

AnOr) = g-^^x) ̂  9^ (g{x}g^{x}Q^ (fT1/2^)^))) ,
^j

where g13 is the metric tensor and g :== | det{^}|~1/2 is the the canonical Riemannian
density. Clearly, A is a symmetric negative operator in L^{M\ n1/2).

Let v be a symmetric first order differential operator. Set

Ay = \/-A+^, Ao = V-A

(we retain the same notation for the self-adjoint extensions of the operators A and ^). It
is well known that A^ is a pseudodifferential operator ('0DO) of Hormander's class ̂ o
with principal symbol

/__. v 1/2î  := (E^'^)^^) ' (^O€T*M
i j

(see definitions below). The main aim of the paper is to show that under some restrictions
on uj G (7°°(R1) the operators o;(A^) also belong to appropriate classes of '0DOs.

Throughout the paper we shall use some elementary notions and results from differ-
ential geometry which can be found, for example, in [KN],
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2 YU. SAFAROV

1. Hormander's classes of pseudodifferential operators. Let (<^ = \/\^ + 1.
We say that a function a € C°°(My x T*Mr) belongs to Hormander's class S^ if in any
local coordinates

\9^a{y,x^)\ ^ const,,̂  (̂ -PÎ IWH (i)

for all multiindices a, /3 and 7.
Let A : (7°°(M;n1/2) -> ^^(M;^1/2) be a linear operator with Schwartz kernel

A{x, y). The operator A is said to be a ^DO of the class ^m^ if
(1) A(x^ y) is smooth outside the diagonal in M x M ;
(2) in each coordinate patch U xU C MxM the kernel A{x^ y) is represented modulo

a smooth function by an oscillatory integral of the form

(27^)-ny>e^-^a(y^,0^, a e S^ .

If 1 — p ^ 6 < p then there exists a function dm e (7°°(r*M) such that

0(^,0 = a^.O (rnodSy-^)

for all the local amplitudes a. The function dm is determined modulo Sm^6~~p by the
^DO A and is called the principal symbol of A (see [H], [Sh], [T], [Tr] for more precise
definitions).
2. Classes of functions a;. Let 0 < p ^ 1. We denote by S^(R1) the class of functions
uj € C'°°(R1) such that

10/^(5) | ^ consul+151)^^, V f c = 0 , l , . . . ,

where o;̂  stands for the kth derivative 9^. It is easy to see that for any function
LJ € S^(R1) we have t^t) € CNk{Rl}, where ̂  -^ +00 as k -> +00 (in other words,
tku}{t) gets smoother and smoother as k —^ +00). Therefore the Fourier transform uj{t)
of a function a; 6 S^R^ coincides with a smooth rapidly decreasing function outside
any neighbourhood of the origin t = 0.
3. The cases p > 1/2 and p < 1/2. It has been already proved [T, Ch. XII.3] that
o;(A^) is a ^DO of the class ^i-^p with principal symbol o;(|^) if a; € S^(R1) with
p > 1/2. In [T, Ch. XII.3] the author conjectured that for 0 < p ^ 1/2 the operators
uj{Av) can also be included in some classes of ^DOs. In particular, this would imply
that all such operators are pseudolocal, that is, sing supp (uj{Ay}u) C sing supptA for all
u € L^{M\ n1/2). Note that the latter may not be true if we only assume the function uj
to be bounded with all its derivatives (this corresponds to p = 0). For example, e1^ is
a Fourier integral operator which is not pseudolocal.

We have o;(|^) € S^_p for all a; C S^(R1), 0 < p ^ 1. However, if p < 1/2 then
1 - p = 6 > p. The condition 6 < p plays the crucial role in the standard (coordinate)
theory of '0DOs; if it is not fulfilled then almost all classical results fail. Moreover, in
this case the principal symbol is not invariantly defined (it may depend on the choice
of local oscillatory integrals). We overcome this difficulty by dealing with symbols from
some special subclasses of S^^p and introducing ^DOs in an invariant (coordinate free)
way.
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FUNCTIONS OF THE LAPLACE-BELTRAMI OPERATOR 3

4'classes of symbols• we ^y that a function a e C^^M) belongs to the class
°p (g) " a admits an asymptotic expansion of the form

00

a(^o ~ E^^wi^)' 10.^00,
A;=0

where c^ e S^o, ̂  e S^(R1), Zo+mo = m, ̂ +m, ̂  ^+i+mfc+i, and ̂ +m, -. -oo
as A; -^ oo. Here and further on the sign ~ means that the asymptotic expansion is
uniform with respect to all the parameters involved and can be differentiated infinitely
many times.

Obviously, if a € S^(g) and b e S^'(g) with m' ^ m then ah e S^^g) and
a + b ejS^g). We also have S^(g) C S^, so in any local coordinates the functions
from S^(g) satisfy (1) (as these functions are independent of y, all the y-derivatives in
(1) vanish).

Given local coordinates x, let us denote

V^ = ̂  + E^)^' (2)
M

where F .̂ are the Christoffel symbols of the Levi-Civita connection. The first order
differential operator V^ is identified with a vector field on T*M which is called the hori-
zontal lift of the coordinate vector field 9^k. By definition of the Levi-Civita connection,
Va;*(|eia;) = 0 for all k. Therefore for any function a 6 S^g) we have

1^° V,., V,<, ... V,., a(x, 0| ^ const.,,,,... ̂  {^-pw (3)

for all multiindices a and indices ?i , . . . ,ip (cf. (1)).
The differential operators Va;* are not commuting; for example,

[V^,V.<] = ^>^(;r)^,,
i,J

where R^^ are the components of the curvature tensor. Let x be the normal (expo-
nential) coordinates with origin x and VA; be the operators (2) corresponding to these
coordinates. The symmetrization of the tensor V^Vo ... V^a(a;,0 with respect to the
indices ?i , . . . , ip is said to be the pth symmetric horizontal differential of the function a
at the point {x, ̂ ). We shall denote the components of this tensor by V^a(a;, ̂ ), where a
are the multiindices of length p.

Remark. One can define the classes ^o{T) of symbols on T*M assuming (3) instead
of (1) (here F stands for the Levi-Civita connection). For the corresponding classes of
^DOs all the classical results remain valid under condition p > 1/3 (see [S]).

5. Definition of ^DOs. Let V be some sufficiently small neighbourhood of the diagonal
in M x M. For {x,y) € V let ^y^(t) the shortest geodesic joining x and y such that
7i/,a;(0) = x and 7y,a;(l) = V- This geodesic exists and is uniquely defined.
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4 YU. SAFAROV

We define the global phase function (p{x, ̂ , y) by

^ ̂  y) = - (7,,.(0), ̂  , (^) e V , ^ e T;M

(similar phase functions have been considered in [D]). Obviously, the phase function y is
linear in ^. If y are the same coordinates as x then

V(x^^y) ~ Cr-yK-j Er5(rr)(^-^)(^-^)^+0(|^-y|3), y-.r. (4)
^j,A;

If rc are arbitrary coordinates and y are the normal coordinates with origin x such that
9 x k / 9 y : ) = (^ at the origin then

y{x,^y) = { x - y ) - ^ (5)

Remark, In the classical (coordinate) theory of ^DOs one deals with phase functions of
the form (5) assuming, however, that the coordinates y are the same as x.

We associate with a function a € S^g) the oscillatory integral

AQr, y) = (27T)-71 ff-172^) ̂ (y) / e^^a^ Q ̂ , (.r, y) € V. (6)

Under change of coordinates A behaves as a half-density on M x M and, in view of (4), in
any coordinate patch A coincides with the Schwartz kernel of a ^DO of the class ^^i-p •

We say that an operator A is a ^DO of the class ^^(g) if its Schwartz kernel is
smooth outside the diagonal and is represented in a neighbourhood of the diagonal by
the oscillatory integral (6) with some a € S^g). The function a is said to be the (full)
symbol of A and is denoted by <TA-

The Schwartz kernel of a '0DO A € ^^o can be represented by the oscillatory integral
(6) with a 6 S^o (see [S]). Therefore ̂ o C ̂ (g).
6. Composition of ^DOs and adjoint operators. Let

^}{x^\y,z) = {-fy,x^} - <7^^) - {^y,z^z,xCl .

where ^ G T^M and ^>z,x '' T^M —> T^M is the parallel displacement along the geodesic
7^. Let x be arbitrary coordinates and y and z be the normal coordinate systems with
origin x such that 9xk/9yj = 9 x k / 9 z j = 6^ at the origin. We define

p .̂o = ff-l(^(^+^(^) E ̂ f^7^)! _ ^ •i^i^i^- '-'-'
The functions Pp^ € C°°(T*M) are polynomials in ^; we denote their degrees by d^/y.
The coefficients of Pp^ are components of some tensors, which are polynomials in the
curvature tensor and its covariant differentials. One can prove (see [S]) that Po,o = I?
P^o = 0 for all (3 ̂  0, Po^ == 0 for all 7^0 , and

d^ ^ min{|/3|,|7|,(|/3|+|7|)/3}, V/3,7. (7)
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FUNCTIONS OF THE LAPLACE-BELTRAMI OPERATOR 5

Proposition 1 ([S]). Let A € ^o, B € S^g) or A € ^(g), B e S^. Then
AB e ̂ i+^g) and

Wa.0 ~ E ̂  -IT ̂  ̂ M ̂ ^O ̂ V^(^), |C|, ^oo. (8)
a,/?,7 '

Note that in view of (7) the terms in the right-hand side do form an asymptotic series.

Theorem 2 ([S]). If A € ^(g) then A* e ̂ (g) ararf

<TA.(.K,O ~ ^^,D^^70, l^.-^oo.
a

By Theorem 2, if A is a -0DO with symbol o;(|^|a;) then A — A* is an operator with
infinitely smooth kernel.

7. The operator c<;(A^). Proposition 1 implies the following

Lemma 3 ([S]). Let B € ^o and A be a ̂ Do with symbol uj(\^}, cj € S^(R1). Then

00

<%A(a-,0-<%(^0^(|^|.) ~ ^^(^,0^)(|e|.), 1^1. -^oo, (9)
j'^i
00

OAB(^0-aB(^0^(|C|.) - E^^^^d^l^- 1^ ^00- (10)
J=l

where bj C S^o1"1 an^ ̂  ^ S^o1 • 'J^^e functions bj and bj depend only on the operator B
and Riemannian metric g.

Remark. The asymptotic expansions (9) and (10) are easily obtained from (8); the only
difficulty is to prove that bj 6 S^1"1 (one would expect bj e S^o1)-

Theorem 4 ([S]). Ifuj € S^(R1) then o;(A^) C ^ '̂"(g) and

00

^/(A,)(^0 ~ ^(1^1^) + Y^ ̂ (X^)^^), \^ ^00,
J=l

where c^j G S^o • /J^^e functions c^j are determined recursively from the system of
equations

k

< ,̂o = î  + E (^^I^^M-
Zn particular,

^,1(^0 = ^ic^E^^^^^-2^)).?,fc
+ j i^i;1^^^) + ^ 1^1 . 2 E ̂ •^0 - | i^i^^^o (^od s,-o2)j
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6 YU. SAFAROV

C^(X^) = --^R^(x)^^
12 ,

3,k

^c'E^^^) + gi^2^-^ ("^si-o1), ^ic'E^^^) + 1

where ^ := 9^\^\x 7 Rjk ar^ the components of the Ricci tensor, S{x) is the scalar
curvature, and a^ is the symbol of the differential operator v as defined in section 5.

Sketch of the proof. Let 0 < r < 1 and Ur[t} == exp(zfA^). The operator Ur{t) is the
unique solution of the Cauchy problem

DtUr(t) - A^ Ur(t) = 0 , Ur(0) = I . (11)

Using Proposition 1 and (9), we construct an approximate solution of (11) as a ^DO of
the class ^^^(g) (in this construction the fact that bj € S^1"1 ls of central importance).
Then, by well known a priori estimates, Ur(t) G ^{^(g). Finally, given uj € S^R1), we
take r € (1 — p, 1), set ujr{s) = u^s1/7') and apply the inversion formula for the Fourier
transform:

(A,) = (27r)-1 f^rWe^dt.JM:UJ(A^) == (Z7T) / ^

Theorem 4 immediately implies

Corollary 5. Let cj € S^(R1) and Q = o;(A^) - o;(Ao). Then Q € ^-^(g) and

^Q - iic^'d^)^ + ̂ ic^ic1^^)-^!^)) E^-^
j

- j l^l^2 (1C1 ^(1^1.) - ̂ (|̂ |.)) ̂  (mod S;"-3^)).

8. Operator series. The following lemma is a simple consequence of Lemma 3 and
Theorem 4.

Lemma 6. Let A be a ^DO with symbol b{x^}uj{\^\x), where b C S^o an^ (JJ ^ S^.
Then

00

A - Bo;(Ao) + ^^^(Ao),
A;=l

w/iere B e ^^o ^ </ie -^DO with symbol b(x^) and Bk € ^o~1- ^^e operators Bk are
determined by the function b and Riemannian metric g.

Here and further on (when we deal with operator series) the sign ~ means that the
difference between the left-hand side and the finite sum up to k == N in the right-hand
side becomes more and more smoothing operator as N —> oo.

Obviously, Theorem 4 and Lemma 6 imply
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Theorem 7. A € ^(g) ^ and only if there exist ^DOs Ck e ^o and functions
ujk G S^ such that

00

A ^ ^CA^(AO),
k=0

lo+rno = m, lk + m^ ^ ^+1 + m^i and Ik+rrik —^ -oo as k —> oo.
Theorem 4 and Lemma 6 also imply

Corollary 8. If uj e S^ ^en
00

o;(A,) ~ o;(Ao) + ^P^-a^)(Ao),
.?"=!

w/iere P^ e vE^o a"° some ̂ Z)0s depending only on the operator v and Riemannian met-
ric g. The symbols of P^j coincide with c^-coj modulo ̂ ^ (herec^j are the functions
introduced in Theorem 4 and CQJ are those corresponding to v = O/ In particular,

^,1(^0 = ll^l^1^^^) (modSi-J),

^,2(^0 = -^I^I^E^^^^^) + ilC^M (modSi-J).
.?'

9. Boundedness and composition of ^DOs of the class ^(g). Clearly, if u e
S^(R1) then o;(Ao) : H^M; ̂ 21/2) -. ̂ -"^(M; f21/2) for all s e R1. Therefore Theorem
7 implies

Theorem 9. A ^PO A e ^p"(g) is bounded from JP(M;n1/2) ^o HS-m{M•, ̂ 1/2) /or
a^s € R1.

Let ui € S^^R1), a>2 € S^R1), and A, 5 be the V>DOs with symbols cc>i(|^),
<^2(|e|a;) respectively. Applying Lemma 6, Theorem 4 and Proposition 1, we see that
AB € ^^^(g) and

00

w^o ~ E ̂ (^o^d^i^^d^i.), i^i.-oc,
J,A;=0

where the functions a^ € Si°o depend only on the Riemannian metric. Since o/(|^) =
^ ^ ̂ .o;(|^|^), this asymptotic expansion can be rewritten in the form (8) with some
functions P^ depending only on the Riemannian metric. By Proposition 1 the same
result remains valid for arbitrary operators A € ^^(g) and B G ^^(g). Finally, if for
all A and B (8) holds with some functions Pp^ independent of A and B then P^ = P^.
Thus, we have proved

Theorem 10. If A e ̂ (g) and B € ̂ (g) then AB e ̂ ^(g) and the asymp-
totic expansion (8) holds.

Remark. In the general case (7) does not directly imply that (8) is an asymptotic series;
it seems that (8) contains terms of growing orders. However, all the bad terms disappear
due to symmetries of the curvature tensor.
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