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Rectifiability of Defect Measures, Fundamental Groups
and Density of Sobolev Mappings

Fang Hua Lin

Courant Institute of Mathematical Sciences

Abstract

Here we study all possible weak-limits of a minimizing sequence, for the p-energy

functional, consisting of continuous maps between Riemann manifolds subject to a

Dirichlet boundary condition. We show that i fp is not an integer, then any such limit

is, in particular, a stationary p-harmonic map which is C1^ continuous away from a

closed subset of Hausdorff dimension <, n — [p] — 1. If p is an integer, then any such

limit is a weakly ^harmonic map along with a (n — p)-rectifiable Radon measure fi.

Moreover, the limiting map is C^ continuous away from a closed subset ̂  = sptfi U S

with Hn~'p{S} == 0. The same results valid for minimizing sequences in a homotopy

class.Some density properties of smooth maps in Sobolev spaces of mappings are also

implied by our measure theoretic results.

1 Introduction

Let M be a smooth, compact Riemannian manifold with smooth boundary <9M, and let N

be a smooth, compact Riemannian manifold without boundary. Suppose g: 9M —> N is a

Lipschitz continuous map, and 1 < p < n, n = dimM, we consider the variational problem:

(1.1) mmEp{u)= I ^ufdx
J M

among maps u: M —^ N such that U\QM = 9 '
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The first natural question one has to address is whether or not the set,

(1.2) W^(M, N) = {u: M -> N, U\BM = g , and Vu e ^(M)}

is nonempty.

For this we have the following:

Theorem [HL] IfN is [p - ̂ connected, then W^(M, N) ̂  0. In fact,

(1.3) mfU \^u\p(x)dx: ueW^(M,N)\

^ Cp(N)mfU ^v^dx: ve IV^(M.R^)}.

Here we assume that N is isometrically embedded in R^, and Cp{N) is a constant depending

only on N and p. In particular, if g is a trace of W1JP(M,RK) map on 9M, with g(9M)

contained in N , then W^(M, N) ̂  0.

In general, B. White [W] showed that W^P(M, N) ̂  0 if and only if g has a continuous

extension on M U AfM where M^ is a [pj-dimensional skeleton of M. The estimate (1.3)

may not be valid, however, in this general situation.

If under certain topological conditions that the space (7°(M, N) (continuous maps with

trace g) is not empty, then one is interested in the following spaces:

H}^{M, N) == the strong closure of C^°(M, N) in W^(M, N),

H^{M, N) = the weak closure of (^°(M, N) in W^(M, N).

One deduces from the definitions above that

(1.4) H^{M, N) C H^(M, N) C W^(M, N).

We also define ^^(M, N) to be the subset of W^P(M^ N) consisting of all such maps u that

are smooth away from a (n — [jo] — l)-dimensional skeleton of M. It follows from the proof
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of [HL, §6] that R^{M,N} is dense in W^(M,N) in the strong topology (cf. [CG]). Later,

Bethuel [B] showed that R^^M.N} is always dense in W^^M.N) without the assumption

of [p — l]-simply connectness of N . On the other hand, we have the following so-called

"Gap-phenomena^:

Theorem [HL2] There are smooth maps g from S2 = 9B3 into S2 of degree zero such that

min { I IV^Pf.rW.r: ^LRS = q\
l^2(J33^2) {Jy ' ' v ) WD ^J

< inf \ I ^u^x^dx: U\QB^ = 9\'
J7^2(B3,§2) UB3 1 ' v / 'OD 'J

This gap-phenomena implies, in particular, that ^^(JS^S2) 7^ ^^(B^S2). Some gener-

alizations were made in [GMS2], but the optimal result was shown by Bethuel in [B].

Theorem [B] C°(M^N) is dense in W^^^M^N) with respect to the strong topology on

W^(M, N) if and only if TT^(N) = 0.

As an easy consequence, one deduces for p-energy functional that no gap-phenomena for

any g 6 C°(9M, N) if and only if TT^{N) = 0.

This leads us to ask the second question: Is

inf ( f IV^a;)^, u € H^{M, N) with U\QM = 9\

achieved? (cf. [HL2]).

Similar questions were also posed by Schoen-Uhlenbeck and Schoen-Yau before the work

[HL2] for maps in a homotopy class. Indeed, in the case 9M == 0, it was shown in [SU]

that any map / € W^(M,N) induces f*: H^N.R) ^ Hk{M,R\ for any 0 ^ k ^

[p— I], a homomorphism between cohomology classes. We also note that Burstall [Bu] proved

H^'^M, N) maps induce conjugate classes of homomorphism 7Ti(M) —^ TTi(YV), and Schoen-

Yau [SY] showed one can define conjugate classes of TTn-i(M) -> 7Tn-i(N) for IV^M, N)

maps. In [W], White established the following results:
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Theorem [W],

{ [p] ifp is not an integer
(i) Let d = then each f G ^f^(M, N) has a well-defined

p — 1 if p is an integer,
d-homotopy type which is preserved under weak convergence;

(ii) If d = [p— 1]; then each map f 6 W^^^M^ N) has a well-defined d-homotopy type and it

is preserved under weak-convergence of maps;

(Hi) Each map f G H^^M^ N) has a well-defined [p]-homotopy type that is preserved under

the strong convergence of maps.

Examples show also that above results are optimal in general. This indicates also the

answer to the second question may be rather difficult. Indeed there is very little progress

being made toward the solution of the second question.

For the special case of maps from B3 into §2. Bethuel-Brezis-Coron [BBC] introduced

the so-called relaxed-energy:

(1.5) F(u)=EE(u)+87rL{u),

where E(u} = J^a \\7u\2(x)dx^

L(u) = -1- sup { / D(u) • V^ - / D(u) . n^da} ,
47T ^ ]R3_^ UB3 v 7 J8B3 v / J

jv^|<i

D{u) is the dual vector of the 2-form u*c<;, uj is the volume form on §2 (cf. [BBC] for a

geometrical interpolation of L(u)).

They showed that

a) \L(u} - L(v)\ < C7o||Vu - V^||^(53)([|Vu||^(B3) + HV^H^^)),

for a l lude W^{B\S2^

b) inf {E(u): u\QB3 = 9} = m^ ^(u)? and L{u} = 0 if and only if u 6
ue^1'2^3^2) uew^(B3^2)

H^{B\S2^
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c) F(-) is sequentially lower-semicontinuous with respect to weak convergence of maps in

W^(B\S2).
^From c) one sees that inf{F(u): u 6 IV1'2^3,^2)} is achieved. Moreover, the resulting

maps are not, in general, energy minimizing harmonic maps, (cf. [BBC]) though they will

always be weakly harmonic maps.

In a series of very general works, Giaquinta-Modica-Soucek studied an interesting object

so-called Cartesian current. As an application, they deduced the above result of [BBC].

Moreover, they showed that if u € W112^3^2) minimizes -F'('), then u is smooth away from

a closed rectifiable subset of finite T^-measure (see [GMS] for details). We should note that

both arguments in [BBC] and in [GMS] seems to work only for the special case the target

is §2 and the domain is B3. The arguments in [GMS] may be generalizable to the case the

target is 2-dimensional, but we do not know the exact statement. The third natural question

is that: are minimizers of F(u) continuous?

In [HLP], Hardt, Poon and the author showed that the answer to the third question is

"No" for general maps in the axially symmetric class. Indeed, we showed when F(-) is

restricted to the axially symmetric class of maps from B3 into S2, the minimizers of F(-)

may have isolated degree zero singularities. One does not know if this result remains true

for minimizers of F(-) among all maps in W^^B^S2).

Another question closely related to our discussions is the following:

The Fourth Question: How to characterize those maps in ^^(M, N)7

Some partial progresses were made in [B2], [BCDH] and [Z].

Now we can state our main results

Theorem 1 Suppose the space of continuous maps from M into N with trace g, C°(M^N)^

is not empty. Then any minimizing sequence for E(v), v G C7°(M, N), E(v) = fj^ ̂ v^^dx,

contains a subsequence converging to a harmonic map u: M —^ N, which is smooth away
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from a closed subset E of M with finite (n — 2) -dimensional Hausdorff measure. Moreover,

^ is rectifiable and the pair (z/, u) is stationary for the energy. Here v is the corresponding

defect measure lived on ̂ . //, in addition, TT^N) = 0; then v = 0 and u is an absolutely

energy minimizing map.

Remark. The above theorem can be viewed as a generalization of the early stated results of

[BBC] and [GMS]. The defect measure v is defined in the next section and for the stationarity

of the pair (y,u} see [L]. With the same proof as that for Theorem 1, one can deduce the

following results for p = integer.

Theorem 2 Suppose C^(M, N) ̂  0, then any minimizing sequence for Ep{') over the space

C^(M, mN) contains a subsequence converging to ap-harmonic map u (p is an integer) which

is C1101 smooth away from a closed subset ̂  of M of finite (n - p)-dimensional Hausdorff

measure. Moreover, ̂  is H^^ -rectifiable and the pair {y^u) is stationary for the p-energy.

If, in addition, ^p(N) == 0; then the defect measure v = 0; and u is an Ep(') minimizing

map.

Theorem 3 Suppose 9M = 0 and g: M —> N is a map in H^^M^N), p, is an integer.

Then there is a pair {v^u) stationary for the p-energy Ep{'). Here u is a C1'01, p-harmonic

map away from a closed, (n—p)'rectifiable set ̂  C M, and v is the defect measure supported

in Y,. Moreover, u has the same (p — 1) homotopy type as g. If, in addition, 7Tp{N) = 0,

then, for any map g G (7°(M, N), there is a energy minimizing p-harmonic map, u, in the

p-homotopy class determined by g. Furthermore u is smooth away from a closed subset of

M with Hausdorff dimension <^ n — [p] — 1.

Next we consider the case that p is not an integer. We have somewhat better results.
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Theorem 4 Under the same assumption as in Theorem 1. Let Up be a weak limit of a

minimizing sequence for {Ep(v): v £ C^(M^N)} with p -^ integer. Then Up G H}^[M^ N},

and hence Up achieves the value inf {Ep{v): v G ̂ ^(M, N)}. In particular, Up is a stationary

map. Furthermore, Up is C1'01 away from a closed subset of Hausdorff dimension <^ n—[p\—l.

Remark, a) If for some k € { 2 , 3 , . . . , n — 1} that p < k and k — p sufficiently small, then

the singular set of Up has Hausdorff dimension <, n — [p\ — 2. This follows from the global

energy bound and [HLW].

b) Note that there is no defect measure in case p is not an integer. Indeed such minimizing

maps Up obtained in Theorem 2 above form a compact family whenever their energies staying

bounded.This result is also closely related to the work [B] concerning the density of Sobolev

maps and its relation to the fundamental groups of the target N.

c) The regularity of limiting maps obtained in both Theorem 1 and Theorem 4 was an open

issue in the previous papers [B] and [W].

When 9M == 0, we have also the following.

Theorem 5 Let g: M —^ N be a continuous map between compact Riemannian manifolds

without boundary. Let [g] C C°(M, N) be the set of all maps homotopic to g. Then for any

minimizing sequence of maps in [g] for the p-energy Ep('), for some noninteger p 6 (1,^);

there is a converging subsequence such that the limiting map Up is a stationary p-harmomc

map. The map Up is C1^ away from a closed subset ̂  with Hausdorff dimension <, n -[?}-!.

Moreover, the map Up has the sum \p\-homotopy type as g.

Finally the following results may be known to several experts, but no proof has been

given. It is an easy consequence of Theorem 4.

Corollary. Let g: 9B4 =. S3 -> §2 be a smooth map with Hopf-invariant of 5, H{g) = 0.

There the mf{Ep{u): u C C°g{B\S2)} is achieved by a map Up € H^{B\S2), for 3 < p < 4.
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Moreover, Up is a stationary p-harmonic map which is smooth except at most finitely many

points { a ; i , . . . , x^} C B4 such that H(up\QBr(xi)) = 0, for i = 1, . . . , N , and for all sufficiently

small r > 0.

2 The Ideas of Proofs

We shall sketch the proof of the Theorem 1. Theorem 2 can be shown in the same way, and

Theorem 3 follows the corresponding statements in Theorem 2. For the proof of Theorem 4,

we shall only point out why p ^ integer is different from the case that p is an integer. In

fact, the reset of arguments are again similar to that in the proof of Theorem 1.

To show Theorem 1, we let H{ 6 C°(M^N) be a minimizing sequence for E ( ' ) over

C7°(M, N). Consider a sequence of Radon measures

fJ,i = IVi^l2^)^, i = 1,2 , . . . .

We may assume that U{ —- u in IV^^M, N) weakly, and ^ -^ fi = [Vu]2^ + v (as Radon

measures), here v ^ 0 is also a Radon measure.which will be called defect measure.

Lemma 1 (Monotonicity) For x G M, 0 < r < 4 EE dist(x,9M), the function ^{BW)

is monotone nondecreasing in r.

Remark. There is also a boundary version .

Proof.

,(B^))- ,(B.W) ^ , 1_
8 i JB^s\Bp(x) 8

1 r^5 ( r \
= -lim/ / IV^-I2^ }dr

6 * Jp \J8Br(x) )

, Him fP+s (n-2 [ . ., \ ,
^ 7~ / ——— / F^< ^ dr8 i J p \ r JBr(x) )
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„ n - 2 /^ (hm [ ,_ .2 , \ ,
< ——- / —— / V< P^y r̂- p + s J p \ z JBr(x)' " 'y

r z -21 /^
^ ~T77 / ^Wdr.p + o o J p

Here u* is the homogeneous degree zero extension of u on 9Br(x) into Br(x). The last in-

equality is valid because one can easily replace u^ by Ui which is equal to u^ on Br{x)\Br/2{x)

and which is continuous inside Br(x). Moreover, one may choose Ui so that

/ |Vu,|2^ < - + / \\7u^(y)dy, for z = 1, 2 , . . . .
JBr(x} Z J B r ( x )

The conclusion of the Lemma 1 follows as usual.

Lemma 2 (small energy regularity) There is an CQ > 0 such that ̂ r^ ^ 60 implies

that u is smooth in Br/2(x) and v = 0 on B r / 2 ( x ) .

The proof of this lemma is somewhat long. It is done by an inductive argument. Starting

with n = dimM = 3. Here one uses an argument of Almgren-Lieb [AL]. Indeed, by choosing

a suitable p € (^ r) so that

/ V^uA^da < CQ (and £o sufficiently small),
J 9 B p ( x )

then Ui a map that minimizes E ( ' ) over Bp(x) with v,i = u on 9Bp(x) is smooth inside Bp(x)

(cf. [AL]). Therefore,

fi(B{x,p)) = lim / IVu^dy = /' |Vu|2^.
i JBp(x) JBp{x)

Here u = limu^ (one may assume this limit exists). Thus v = 0 and u -==- u on Bp. This

proves lemma for n = 3.

When n > 4 one needs the following:
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Sublemma (Schoen-Uhlenbeck type Lemma)

l^(B(x,r)) ^(B(x, 2r)) ^^^B^x)^ ' ^dy
7--2 - u (2r)-2 ' G( }—————r^—————'

for any 0 6 (0,1/2), whenever

l^(B(x,2r))
—, ._^— <, £1, for some positive £1.

\"r)

The proof of above lemma follows from a modified construction of Schoen-Uhlenbeck (cf.

[SU, §4]). This lemma combines with usual arguments yield the following important estimate:

( \ j?( \ ^M^l^l26^ . „ [ , _ ,2 ,
(*) E{U, r) = ——{——^-———— <Cf \U - U2r|2^/.

/ JB'2r(x)

Now the conclusions of Lemma 2 follows from (*) and a blow-up argument in the usual

regularity theory for harmonic maps.

In order to complete the proof of Theorem 1, we need the following.

Lemma 3 (Rectifibility Lemma) Let E == {x € M: Q^^.x) ^ £1 > 0}, then E is

rectifiable with respect to H^2-measure.

Here Q^^^x) = lim^^. By the monotonicity lemma we know Q^^.x) exists

for all x 6 M and is an upper-semicontinuous function of x 6 M. Moreover, whenever

O^2^, x) > 0, O^2^, x) >_ £o? via the small energy regularity lemma. Here we may assume

Co > e\ > 0. We note that the conclusion of Lemma 3 follows from a very deep theorem

of D. Preiss [P]. The latter also based on earlier works of J. Marstrand and P. Mattila (see

references in [P]).

But here we can give a direct, simple, self-contained proof of this result. It can be divided

into three steps.

Step I. Existence of weak-tangent {n — 2)-planes for v - a.e. x.
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That is for v - a.e. x £ M, and for any S > 0 there is a <^ > 0, such that, if 0 < r < ^,

then there is (n — 2)-plane Vr passes through x such that

v{B{x, r) - V/) ^ 6(r) ^0, as r -)- O^

Here V^ is the ^-neighborhood of Vr. The proof of this statement is to make a good use of

the monotonicity lemma.

Step II. Suppose E C E is purely unrectifiable, then [{^(Pv^E)) = 0 for any V €

GL{n^ n — 2). Here Py denotes the orthogonal projection onto the (n — 2)-plane V in R71.

The proof of above statement is to use the weak-tangent property of ^ and a covering

argument which is somewhat standard in the geometric measure theory.

Step III. lim sup ^"^ir^^ > 0 ton. - a.e. x C E.
r^0 vCGL(n,n-2)

The conclusion of Lemma 3 follows form Step II and III combined with the structure

theorem [F].

The proof of Step III is based on energy comparison argument. Here one needs to rule out

the so-called "Bar-Bell95 picture in the construction of [HL] for the "gap-phenomena". It is

the same construction but for exactly opposite purpose as we are now looking for minimizers

among continuous maps.

Finally we want to apply the following result of Marstrand in order to show v = 0 in the

statements of Theorem 4. Also the compactness of such p-energy minimizers follows.

Lemma 4 If ̂  >: 0 is a Radon measure with ^B^^ monotone nondecreasing in r , and if

for fi - a.e. x € spt^i, O^^^a;) >, £o for a positive number EQ, then n — p is an integer.

We refer the readers to [L] for more detailed proofs.
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