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THE SOLVABILITY OF NON L2 SOLVABLE OPERATORS

NILS DENCKER

1. INTRODUCTION

Lerner proved in [4] that there are first order pseudodifferential operators of principal
type satisfying condition (^), that are not solvable in L2 in any neighborhood of the
origin. This was quite unexpected, since for first order differential operators of principal
type, condition (^) is equivalent to local L2 solvability.

In this paper, we shall show that the counterexamples in [4] are locally solvable in (7°°,
and that we lose at most one derivative in the estimate for the adjoint operators. In some
cases we only lose e derivatives in the estimate, for any e > 0.

By local solvability in L2 we mean that the equation Pu = f has a local solution
u G ^(R^) for any / G -^(R71) satisfying a finite number of compatibility conditions.
We say that P is locally solvable in C°° if the equation has a solution u G T>1 for any
/ 6 C°° satisfying a finite number of compatibility conditions. Recall that an operator
is of principal type if the Hamilton field Hp of the principal symbol p is independent of
the Liouville vector field.

Condition (^) means that the imaginary part of the principal symbol does not change
sign from — to + along the oriented bicharacteristics of the real part, see Definition
26.4.6 in [2]. This condition is invariant under multiplication of the principal symbol by
non-vanishing factors.

It was conjectured by Nirenberg and Treves [5] that condition (^) was equivalent to
local solvability for operators of principal type, and they proved this in several cases.
The necessity of (^) for local solvability in the C°° category was proved by Moyers in
two dimensions and by Hormander in general, see Corollary 26.4.8 in [2]. In the analytic
category, the sufficiency of condition (^) for solvability of microdifferential operators
acting on microfunctions was proved by Trepreau [6]. The sufficiency of (^) for local L2

solvability for first order pseudodifferential operators in two dimensions, was proved by
Lerner [3].

For differential operators, condition (^) is equivalent to condition (P), which rules out
any sign changes of the imaginary part of the principal symbol along the bicharacteristics
of the real part. The sufficiency of (P) for local L2 solvability for first order pseudodiffer-
ential operators was proved by Nirenberg and Treves [5] in the case when the principal
symbol is real analytic, and by Beats and Fefferman [1] in the general case.

2. STATEMENT OF RESULTS

We shall consider the following type of operators, which includes the operators Lerner
used in his counter-examples. First, let (<, x) G R x R71, n ^ 2, and

(2.1) P = Df + z ^ Q^{t, x^ D,) + R(t, x, A,)
^ez+

where R{t,x,D^} G C^(R, ̂ (^R71)) and ^Qv{t,x^D^ G C^R.^o) is on the
form

(2.2) Q^t, x^ D^) = a,(t){D^ + H^W^x^^D^}, v G Z+.
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/ NILS DENCKER

Here 0 ^ a^{t) € C'°°(R) uniformly, such that 0 ^ suppo, and a,(t)H(t} is non-
decreasing with H{t) the Heaviside function, 0 ^ IV(a-i) e C'°°(R) and k > 0 We
also have 0 < ^(Q e ^°o(r*R") uniformly, having non-overlapping interiors of the
supports and 0 < c ^ \^2-t/ < C in supp ̂ ,. Since 0 ^ suppo, we may write
a^t)H(t) == a^t)/3^-t), where f3^{t) € (7°° (but not uniformly) such that 0 ^ f3M) ^ 1
and 0 ^ 9 .̂ We find that E. ̂ W(^i)^(A-) € C'°°(R, ̂ ), for any e > 0. Since
0 ^ Q-^(f) and H^a-i)^^) > 0, it is clear that P satisfies condition (^*), i. e., the
adjoint P* satisfies condition (^). In what follows, we shall suppress the t dependence
and write S"1 instead of C'°°(R, 5'7") for example. We shall use the classical calculus
of pseudo-differential operators, but with the general metrics and weights of the Weyl
calculus. For notation and calculus results, see chapter 18 in

We define the norms

(2.3) IMI^) = j It^l^Oog^) +1)2^ s, k e R,
where {(}2 = 1 + |^|2. Then ||u||(,,o) ^ |H|(,), the usual Sobolev norm, and V^, k £ R
we have

(2-4) C^|H|(,_,) ^ \\u\\^k) ̂  CkM(^) Ve > 0.

We find that |H|(^) is equivalent to E^^Oog^) + l^^D^u}}2 if { ^(^) }^ is a
partition of unity: ̂  |^[2 = 1 such that (^) ;% (^) only varies with a fixed factor in
supp^.

THEOREM 2.1. Let P be given by (2.1). Then, for any s <E R there exists positive T,
and Cs such that

(2-5) /ii^iiM^^^^^ynpuii^^A
if z/ e <? has support where \t\ <T <,Ts.

Thus, we obtain for any s 6 R that

(2-6) f \\u\\^(t} dt < C^T2 J \\Pu\\2^ ds Ve > 0

if u G S has support where \t\ < T <, Ts. This shows that P* is locally solvable in C°°,
with loss of e derivatives, \/6 > 0.

We shall also consider the following operators, which includes the operators Lerner
used in his counter-example with homogeneous symbols. Let

(2.7) P = Df + z ̂  Q^t, x, D^) + R{t, x, D^)
^j

where J is a subset of Z+ and ̂  Q^(t, x, D^) G ^f\ o is given by

(2.8) 0^,rr,D,) = a^t)C(D^{x,){D^ + H^W^x^D^) v £ J.

Here we have the same conditions on o^, W and R as before. Also, 0 < C{^) is homo-
geneous, supported where |<fi[ ^ C^ and 0 ^ X^(^2) € 5'(L(fo^) uniformly with non-
overlapping supports. In fact, there exists a function fJ.(i/) on Z+ such that ^(z/) < CN^\
for some JV > 0, and there exists ̂  G ^(l,^2^)^!) uniformly, with disjoint supports
such that 0 ^ X^( lr2) < 1 and ^^ = 1 on supp-)(^. As before, we find that P satisfies
condition (^*).
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SOLVABILITY 3

THEOREM 2.2. Let P be given in (2.7). Then, for every s G R we find Ts > 0 and C, > 0
such that

(2.9) f |HV<) dt ^ (7,r2 y ||Pn||̂ ) dt V5

if n 6 S has support where |<| < T < Ts.

Thus P* is locally solvable in <700, with loss of one derivative. The theorems are going
to be proved in the next sections.

3. PROOF OF THEOREM 2.1

Clearly, by conjugating with {Dx)8 we may assume that 5 = 0 , which only changes
R{t^x^D^ € ^o (dependingly on s). Next, we shall eliminate R(t.x^D^). We choose
E ^ ( t ^ x ^ D ^ ) G ^?o with principal symbols

(3.1) e±(^,0=exp(± fiR{t,x^}dt},
Jo

such that E-^4. = E+E'- = Id modulo ^"(x). Then by conjugating with £± we obtain
^ ^ ^r,^ but this changes Qy into

(3.2) (9^, ,r, D^) = a,(<) ((^ + H^W^x^^D^ + ̂ (t, x, D^))

where { Q y ( t ^ x ^ ) }^ G 6^0. Since we may skip terms in ^-1 in P in the estimate (2.5),
we may assume that supp Qy C supp ̂ .

We shall localize in 5°^o in order to separate the different Qv terms. Let { <?!>j(<^) } G
^?/20 ^e a Partition of unity such that (f)j is supported where |<^ — ^-| < c(^) l / /2, and
supp<^. is connected, Vj. Let J C Z-(- be the set of those j for which supp ̂  intersects
f^Csupp^. Since the principal symbol of ̂  Q^ G ^^o vanishes of infinite order
somewhere in supp (f)j when j G J, and <?S)j(<0 € ^2,0? we ^n(^ ̂ ^

(3.3) (}>,{D^)PU = <f),(D^DtU+R^t,x,D^u

with { ̂  } .̂  € ^^o (with ^lues in £2). We have

(3.4) J \\^{D^u\\\t} dt < CT2 J \\D^Wu\\\t} dt

^ CT2 f \\W^Pu\\\t} + \\R,u\\\t) dt

for j € J . Since ^Ej^j \\RjU\\2 < C\\u\\2, we get the result for small enough T, providing
that we also have an estimate for the other terms.

Thus we only have to consider the case when supp (f>j does not intersect f^ u supp ̂ ,
i. e. j 4 J . Since supp <f)j is connected, we find that supp (j)j is contained in the interior of
supp ̂  for some unique v = vj when j ^ J . Observe that this gives |^| ^ 2^ in supp <^.
Clearly, since supp Q^ C supp ̂  we have P(f>^D^u = P^(f)^(D^)u where we define

(3.5) P^=Dt+iQ^t,xz,D^.

Now we use the following

Lemma 3.1. Let Py be given by (3.5). Then we find

(3.6) / IHI2^^2^) + 1) dt <_ CT2^ f IIP^II2^2^) + I)-1 dt

uniformly in ;/, if u 6 S has support in \t\ < T, for T small enough.
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4 NILS DENCKER

By substituting (j)j(D^)u, taking v = ^ in (3.6), and replacing P^ by P, we obtain for
j ^ Jthat

(3.7) y||^(Z?,)u||2^)^ ^ CT^f f\\P^{D^u\\\t}dt

< CT^f f\\W.}Pu\\\t^\\[P^,{D^}u\\\t)dt.

Now {^[P.^AO]} e ̂ y with values in £2, Ve > 0. In fact, we find that

E.^(^i)^(Ar) G C'°°(R,^o) and { ^<MO }̂  <= ^2,0, Ve > 0, since <^,(0
is supported where \^\ w TJ when j ^ J . Thus by summing up (3.4) and (3.7) we
obtain (2.5) for s = 0 and small enough T. This completes the proof of Theorem 2.1.

Proof. [Proof of Lemma 3.1] We may assume v is fixed in what follows. In the proof, we
are going to localize in |^i| ^ v^'. For that purpose we use the metric

(3.8) ^ = ^\dx\2 + Wl^ + ^2) v e Z+

which is uniformly slowly varying, a temperate and

(3.9) g./g: = hi = ̂ /(^ + ^2)

which makes A;2 = l^i)2^-^ + ^2fc ^ 2|^i|. We find that Q^ 6 Op^/i;2,^) but
^iy(^a-i) (E S(h^\g^) uniformly.

Now we localize with ^o(^i) = ^(^i^"'^) £ 'S'(l,^) where ^ G C^° is equal to 1 near
0, and with x±(^i) = H{±^)(1 - Xo(^i)) € 5'(1,^) which has support where ±^i > cv^
so that ^o + X+ + X- = 1- We also choose non-negative x±(^i) and ^0(6) € 5(1,^)
such ^±,Y± = \± and ^0X0 = Xo- This can be done so that ^± have support where
±<^i > Co^, Co > 0, and \o has support where |^i| ^ C'^2^.

First we estimate the x±{D^}u terms by Lemma 5.1 with the operator

(3.10) -P± = A + Q.X±(AJ,
where

(3.11) ±ReQ^(D^)^^C on u € <?,

by the Fefferman-Phong inequality, where ReF = (F + F*)/2. In fact, the symbol of

(3.12) ±a^t)Re(D^+H{t^kW^kx,))^^)x±(D^

is bounded from below, modulo terms in 6'(1,^). Thus Lemma 5.1 gives (after changing
t to -Kor P_)

(3.13) fW^dt^CT^f^uf^dt

if u G S is supported where \t\ < T and T is small enough. Now, by substituting \±(D^ )u
into (3.13) and using that P±x±(AJ = P^X±{D^) and that [^,^±(1)^)] <= Op5'(l,^)
is uniformly -L2 bounded, we find

(3.14) f ||x±(A-, )u\\\t) dt ̂  CoT2 f \\P.u\\\t} + \\uf{t) dt

if u G S is supported where \t\ <; T and T is small enough.
Next, we shall estimate ||;co(jDa.i)'u||2. Let

(3.15)

£?, = A^,(.D,)xo(^) +W) (^m^i)^(^)xo(^) + e) e Op5'(V,^),
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SOLVABILITY 5

where Q > 0. Here ^ G C700 such that 0 < f3^(t) < 1, 0 < 9^ and a^t)H{t) EE
a^(t)f3^t). Since ^W^x^^D^^D^) e Op6'(^1,^) has positive principal sym-
bol, we find

(3.16) 9tB^ = Wt) (^lV(^i)^(Z^o(AJ +e)>0

for large enough Q. We also find By G OpS^^.g^) uniformly, thus \\By\\ <, C^. Ap-
plying Lemma 5.2 on ^0(^1)^, with Po = Dt+a^(t){B^+r^,r^ = Q^t,x,D^)(o{D^)-
f3^(t)g and M = Cv2^ we find

(3.17)

f ||xo(^)^||2(<)(^^(<) + l)dt ^ C^T2 f ||PoXo(^^||2(<)(^a,(^) + I)-1 ̂

i f u € < ? i s supported where \t\ < T and T is small enough. As before, we find PoXo(^a;i) =
P^Yo(^i) and we have [?„, Xo(D^)} = a^(t)f^, where /^ G Op 5(1,^) is uniformly L2

bounded. Since

(3.18) ^alW/^a^t) + 1) < ^a^t) + 1,

we obtain

(3.19) f llxo^NI2^)^2^) + 1) dt

^ C,T2 ( f ̂ P^t^a^t) + I)-1 dt + f IHI2^)^2^) + 1) dt)
\»/ J /

if u is supported where \t\ <^ T and T is small enough. Combining (3.14) and (3.19), we
obtain (3.6) for small enough T. •

4. PROOF OF THEOREM 2.2

First, we conjugate with (D^)5'^"1/2 to reduce to the case s = —1/2 (this only changes
R(t,x^D^) dependingly on s). We choose E ^ ( t ^ x ^ D x ) C ^% ^th principal symbols

(4.1) e±(^,0=exp(± / ' ' iR( t ,x^)dt) ,
Jo

such that £_£+ ^ £+£L ^ Id modulo ^-°°. As before, the calculus gives R e ̂  for
the new operator, but changes Qy into

(4.2)

Qy{t,x,D^ = a^t} (C{D^x.{x,){D^ + H^W^x^D^ + g ^ t ^ x ^ D ^ )

where Qy(t^x^} € S^Q uniformly, with supp Qy C supp^^. Thus, we may assume R = 0
since the term CT\\RU\\(^/^ can be estimated by the left hand side of (2.9) for s =- —1/2
and small enough T.

Next, we localize in x^ to separate the different Qy terms. By assumption there exists
X^(X2) € ^(l,^2^)^!) uniformly when v G «/, with disjoint supports, such that 0 <
X^(X2) <: 1 and \y\v = \^. We also localize in ^: let { ^j(^) } • and { ^j(^) } G 5^o (with
values in £2) such that ̂  ^(<^)2 = 1, <f>j{^) and ^j(<^) are non-negative, <^z/^ = ̂  and
^j, (f)j are supported where 0 < c <: |^|2~z' ^ C. We may also assume that for some fixed
N > 0 we have E|j-A;|<N ^J(<0 = 1 on supp ̂ -, Vj.
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6 NILS DENCKER

Since ̂  e ^(l,^2^)^) we find that { ^-(Ox^) Lj is not in a good symbol class.
Therefore, we put

(4-3) X0^2)=1- E X^2).
0<i^<j2

i/eJ
Since ̂  is supported where |<f| w V and ^(z/) < CN^ for some TV > 0, it is easy to see
that { X^2)^(0 }j9^-2 and { Xoj(^2)^(0 }^ € ̂  Vs > 0. Let

3

(4.4) a^(^)=^(<)+2^ V j e J , V^
in what follows. Now, we are going to use the following

Lemma 4.1. We find that

(4.5) f ^ ll^^)^^)^^)^!!2^)^-^!!^^)^
J3^<j2 J

J

<CTl S \\^]{t}x^)W^Pu\\\t}
J3^j2

3

+ E ̂ (^(D^Pu^it) + \\u\\^(t) dt.
j

if u 6 S has support in |<| <, T for T small enough.

Since 2"772 ^ a^-, |<^| ^ 2-7 in supp ̂ -, the supports of \y are disjoint and Ej^<j2 i<^ +
^oj = 1, Vj, it is easy to see that the left hand side of (4.5) is greater that cf \\u\\J^(t) dt
for some c > 0, and the right hand side is less that CT f ||-P^||?i/2)(<) + IHlLi^)^)^-
Thus (4.5) implies (2.9) for the case s = -1/2 for small T, and completes the proof of
Theorem 2.2.

Proof, [Proof of Lemma 4.1] Since '^(1 — <f>j) = 0 V^', the calculus gives that we may
replace P by Pj = Dt + ̂ E^eJ Q^AD^) for the terms containing the factor ^j(D^)
in (4.5).

For the terms \\Xoj(^2)^j(D^u\\2 we use the fact that ^lV(^i)2-^,<^(^) e ^~°°
uniformly when (log |^|)2 w j2 < y . Thus we use Nirenberg-Treves estimate in [2,
Theorem 26.8.1] with B = D^^(D^ bounded, and 0 < A € ̂  such that

(4-6) A^ ^ ^(t)C(D^x^2) mod^.
J^v>j2

By perturbing this estimate with L2 bounded operators, and substituting the term
\Qj{x^j{D^)u^ we find for small enough T that

(4-7) / IIXo^)^,)^2^) dt ^ CT2 f ||P,xo,(^)^(^)n||2^) dt Vj

when |(| < T in suppn. Here

(4.8) P , = D t + i ^ a^t} (C(D^)x.(x^D^ + ^(t^.A.)) <MAc)
3^v>32

^Dt+i S Q^jW modulo^-00.
J^>j2

Thus P^ satisfies condition (P), i. e., the imaginary part of the principal symbol has no
sign changes for fixed {x^).
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SOLVABILITY 7

Since a^ <^ Ca^j and supp Qy C supp;^, the calculus gives that

(4.9) { [P^XoA^AD.)]}. ̂  [ E ̂ (t)f^(x^D^ \ mod ̂ -v2

J l^2 J,

where { fyj }^ e ^o with values in £2, and supp/^- C supp^^^. In order to estimate
these terms we need the following

Lemma 4.2. If { f^j(x, D^) }^ € ^o with values in (2, and supp /^ C supp \^^ V ̂ j ,
then

(4.10) ^ ||̂ (*)^(.r,D,)t.||2 ^ c( ̂  ||^(^)^(.r2)^(^)^||2

^eJ ^<j2j

+Ell^(a'2)^(^)"||+||u||^))j ^
for u G <?.

Since ^o, = 0 on supp ^i/ when J 3 v <: j2, we find that f, )(oj{x^j(Dj:)(Pj — Pj) } G

^-00, where as before P, = A + ? Ei/eJ Q^A0^ ^ ^l,o- Thus we find

(4.11) f^\\x^2)W^P,u\\\t)dt
J j

< CT lE\\X^2)W.)P,u\\2(t)+ \\u\\^(t)dt.
J 3

This gives the estimate (4.5) for the terms \\\oj(x'i)'^j(Ds;)u\\'2 for small T, providing we
can estimate the other terms.

As before, we are going to use Lemma 5.2 with a(t) = o.v(t} and

(4.12) Bt = ReCWx^)(D^W +/?,(<) (^(i^i)2-^^(Z),) + ?)),

where g > 0. Here ^ € C00 such that 0 ^ ^(<) ^ 1, 0 ^ 5<^ and a^(t)H(t) =
a^(t)^(t). We have ||Bt|| <, CV, QfBt >. 0 for large Q and Rf G ^0. By substituting
Xr(x2)^f)j(Dx)u in this Lemma, we find for small T that

(4.13) f \\x.(x^{DMWa^t) + 1) dt

^ CT2^3 f ||(A + iQ^D^Ux^DM^t^a^t) + I)-1 ̂

when J 3 v <_ j2, providing \t\ < T in supp-u. This is equivalent to

(4.14) f \\a^{t)xA^,Wu\\\t} dt

^ CT2 f ||<(<)(A + iQ^(D.))UxMD.)u\\\t) dt.

Now, it follows from the asymptotic expansion that

(4.15) { [Q^{D^,xM^(D^} }j^2 ̂  {a^t)f^(t,x,D^}j^2
J 3

X-7



8 NILS DENCKER

modulo ̂ v2, where [f^{t,x,D^)} . G ^o with values in i2, supp^ C supp^^,
W. Thus, we may estimate the commutator terms by Lemma 4.2:

(4.16) E \\a^t)f^x,D^)u\\2

J3^<32

J

^ C E IK-X^H2 + E IIXo^H2 + IHIiLi/2) V^.
Wj2 3 j

Since the supports of \y are disjoint, and Ej9^ Q^j(D^) e ^^o umformly, we obtain
that

(4.17) x.(.r2)^(^) E ^^(^) ^ ,̂ e ^-°3

J3^ J

with values in ^2. Thus we may replace Dt + iQ^j{Dx} by Pj in the estimate, which
proves (4.5). •

Proof. [Proof of Lemma 4.2] Since E|j-A;|<N ^J(<0 = 1 on supp /^- and { f^ }^ 6 5^ we
may use the calculus to write

(4.18) ^\\a^t)f^(x,DM2^ ^ ^^e^x.D^W^+CM^
^J ^j

\k-j\^N

where { e^ }^^ € ^o wlt^ ^lues in ^2, and supper C supp/^-^. Since ^ofc +
E^^p X^ = ^ ^^e find

(4.19)

E ||^^)e^(^,^)^(D.)u||2 ^ 2 E ll^^)^^^.^)Xo^(^)^(^)^||2
^j

|A-j|<N
^^

|fc-j|<N

+2 E \Oi^(t}e^k{x,D^ E X/.(^2)^(^)^
^<A;2^^

\k-j\<N

By summing up in j and ?/ we find

(4.20) E ll^(<)^^^.^)Xo^(^)^(^)^||2
^J

\k-3\<N

< CN(^ \\Xok{x^MD.)u\\2 + |H|?-i/2))

since Q;̂  ^ c and { e^jk } ^ - £ ^% ^th values in ^2, uniformly in k. Now a^ ^ CaJ^ ,j ^ UC^^

when |j'} — k\ < N which similarly gives by the calculus

(4.21) E \\^)^k(x^D^ E UX^D^U
p,<k2^^J

1^-J'I^N

<C E l!^^)x^2)^(^)n||2+011^11^
^</!;2

since supp e^ C supp^^ Vj , fc.
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SOLVABILITY 9

5. SOME ESTIMATE LEMMAS

We assume that

(5.1) P=Df+zQt+R,

where Qt is a closed, densely defined operator on L2^) such that S C D(Qt) n D(Q^)
W, t ^—> l^QtU^u) is continous for u £ <?, and

(5.2) ReQt^-Cz onS V^

where 2ReQt = Qi + Q^ We also assume that ||^[| < Co on L2(Rn). Let ||u|| be the
L2 norm of u G Ty^R^ and {u^v) the corresponding sesquilinear form.

Lemma 5.1. There exists To > 0 and C > 0 such that

(5.3) f\\u\\\t}<CT2 f\\Pu\\\t}dt

if u G S has support where \t\ <, T ^ To. Here To and C only depend on Co and Ci.

Proo/. We only need to prove the estimate (5.1) for Rt = 0, since we may perturb it with
L2 bounded terms for small T. We find

(5.4) {QtU.u} >_ -CM2 \/t

when u G <?. Since iP = 9t — Qt^ this gives

(5.5) \\u\\2(t)=-[ 2Re{9tU,u}(t)dt
j t

= - t 2Re{iPu,u}(t)~ f 2Re{QtU,u}(t)dt
vt J t

rT .T
<:- 2Re(iPu,u)(t)dt+2C\ W^dt

J t J t
when u 6 <?, and u = 0 when t > T.

By integrating in t we find

(5.6) / IHI2^) dt < 4T f lm{Pu, u){t) dt + W,T [T ^(t) dt
v—T J—T J—T

By using the Cauchy-Schwarz inequality we obtain

(5.7) 2{pu,u} ^AlHF/r+iip^i^r/A VAX).
This gives

(5.8) (1 - 4CT - 2A) [ |H|2 ^ 2T2/X f \\Pu\\2 dt,

which gives (5.3) when To < 1/16(7 and A <, 1/4. •

The next case we shall consider is

(5.9) P=Dt+za(t}(Bt+Rt)

where 0 < a(t) < Co, Bi and QtBf are self-adjoint and bounded, <9(B< > 0 and \\Rt\\ < C'i
on -L^R"'). We also assume that there exists a constant M > 0 such that

(5.10) ||B(|| <,M \ft
(5.11) \\[Bs,B^<M V5, t.

X-9
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Lemma 5.2. There exists To > 0 and C > 0 such that

(5.12) f \\u\\\t}{a{t) + M-^dt ^ CT2 f \\Pu\\\t}[a{t} + M-1)-1 dt

if u e S has support where |<| ^ T < To. Here Co and To are independent of M, and
only depend on Co and (7i.

Proo/. First we consider the case a[t) > M-1 > 0. Then (5.12) is equivalent to the
estimate:

(5.13) f \\u\\\t}a{t} dt ^ CT2 f \\Pu\\\t} dt/a(t)

if u € S has support where \t\ <, T is small enough. Introducing 5 == ^ a(t) dt as a new
time variable and PQ = Z), + ?'B(, we find that it suffices to prove

(5.14) /M2{s)ds<CT2f\\Pou\\2(s}ds

if u € <? has support where |<| ^ T, which implies \s\ < CT. In fact, we may then perturb
the estimate with the L2 bounded term iRfU for small T.

Now [Po,Po] = 29,Bt > 0, which implies

(5.15) \\Pou\\2 - \\P,u\\2 = {[Po,Po}u,u) > 0.

Since \\D,u\\2 ^ 2(\\Pou\\2 + \\PoU\\2), we find

(5.16) J\\u\\2{s)ds <CoT2J\\D,u\\2(s)ds ^ 4CT2 [ \\Pou\\2(s)ds

if u € <S has support where \s\ <^ CT. This proves (5.13) in the case a(t) > M~1.
Next we consider the case a(t) ^ 0. In order to reduce to the case a ^ M~1 we

conjugate with Ef solving

(5.17) W^-E^M
1^0= Id.

This gives bounds on \\Ef\\ and H^"1!! when t is bounded (independently of M), and the
conjugation transforms P into

(5.18) P = Dt + i{a(t} + M-^Bt + a{t)Rt = A + i{a(t) + M-^{Bt + Sf)

where Rf = iE^^t + Rt, Et} + iR^ and Sf = a(t)Rt/{a{t) + M-1) are uniformly bounded
on ̂ (B") for bounded t. In fact, if Fr = [Bt, Er}, Vr, then

(5.19) 5,F, = Er[B^ Bf]/M - F,B,/M

and Fo ^ 0, thus F< = [B(,£'(] is bounded on L2(Rn) for bounded t (independently of
M). By using (5.13) with P and a(t) + M-1, we obtain (5.12). •
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