JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Monique Combescure
 A generalized coherent state approach of the quantum dynamics for suitable time-dependent hamiltonians

Journées Équations aux dérivées partielles (1992), p. 1-13
<http://www.numdam.org/item?id=JEDP_1992 \qquad A16_0>

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www. math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

A GENERALIZED COHERENT STATE APPROACH OF THE QUANTUM DYNAMICS FOR SUITABLE TIME-DEPENDENT HAMILTONIANS

M. Combescure
Laboratoire de Physique Théorique et Hautes Energies* Université de Paris XI, bâtiment 211, 91405 Orsay Cedex France

[^0]
1. Introduction

The remarkable properties of inverse square potentials in the quantum mechanical treatment of the one- or many-body problem is known for a long time [1, 2]. Furthermore, the quantum dynamics for harmonic oscillators with a frequency which is variable in time is known to be exactly solvable in terms of the classical motion (see review [7] and references therein contained). The fact that these properties can be combined to solve the quantum dynamics for Hamiltonians of the form

$$
\begin{equation*}
H(t)=\frac{P^{2}+Q^{2} f(t)}{2}+\frac{g^{2}}{2 Q^{2}} \tag{1.1}
\end{equation*}
$$

g being a constant, has also been discovered recently [3, 9], and exploited for example by myself for the study of the quantum dynamics of two or three ions in a quadrupole radio-frequency trap (also called Paul trap) [4, 5].

In this letter, I want to show that a very simple solution of the quantum mechanical dynamics for Hamiltonians (1.1) is obtained by the use of the so-called "Peremolov's generalized coherent states" of the Lie algebra of $\operatorname{SU}(1,1)$ [9]. A privileged role is played by the classical solutions for the quadratic Hamiltonian

$$
\begin{equation*}
\mathrm{H}_{\mathrm{q}}(\mathrm{t})=\frac{\mathrm{P}^{2}+\mathrm{Q}^{2} \mathrm{f}(\mathrm{t})}{2} . \tag{1.2}
\end{equation*}
$$

We note in passing that these classical solutions also determine the classical trajectories for Hamiltonian (1.1).

2 - Quantum dynamics for Hamiltonians linear in the

 generators of $\operatorname{SU}(1,1)$ Lie algebraLet K_{o} and $\mathrm{K}_{ \pm}$be generators of the Lie algebra of $\operatorname{SU}(1,1)$. They satisfy the following commutation rules :

$$
\begin{equation*}
\left[K_{o}, K_{ \pm}\right]= \pm K_{ \pm} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\left[K_{-}, K_{+}\right]=2 K_{0} \tag{2.2}
\end{equation*}
$$

and in addition,

$$
\begin{equation*}
\mathrm{K}_{+}=\mathrm{K}_{-}^{*} \tag{2.3}
\end{equation*}
$$

Let $H(t)$ be a quantum Hamiltonian given by

$$
\begin{equation*}
H(t)=\lambda(t) K_{+}+\bar{\lambda}(t) K_{-}+\mu(t) K_{0} \tag{2.4}
\end{equation*}
$$

where $t \rightarrow \lambda(t)$ is a complex valued function, whereas $t \rightarrow \mu(t)$ is real valued.

Let $\mathrm{U}(\mathrm{t}, \mathrm{s})$ be the unitary evolution operator generated by $\mathrm{H}(\mathrm{t})$, namely solution of the Schrödinger equation

$$
\begin{equation*}
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{U}(\mathrm{t}, \mathrm{~s})=\mathrm{H}(\mathrm{t}) \mathrm{U}(\mathrm{t}, \mathrm{~s}) \tag{2.5}
\end{equation*}
$$

with

$$
\mathrm{U}(\mathrm{t}, \mathrm{t})=\mathbb{1} \quad \text { (identity operator) }
$$

for any t. Then we have the following result :

Proposition 1

For any complex number β with $|\beta| \leqslant 1$, define unitary operators $T(\beta)$ as :

$$
\begin{equation*}
T(\beta)=\exp \left(\delta K_{+}-\bar{\delta} K_{-}\right) \tag{2.6}
\end{equation*}
$$

with $\quad \delta=\frac{\beta}{|\beta|}$ Argth $|\beta|$.

Then we have

$$
\begin{equation*}
\mathrm{U}(\mathrm{t}, \mathrm{~s})=\mathrm{T}\left(\beta_{\mathrm{t}}\right) \exp \left[\mathrm{i}\left(\gamma_{\mathrm{t}}-\gamma_{\mathrm{s}}\right) \mathrm{K}_{\mathrm{o}}\right] \mathrm{T}\left(-\beta_{\mathrm{s}}\right) \tag{2.8}
\end{equation*}
$$

where the complex function β and the real function γ satisfy the following differential equations :

$$
\begin{align*}
& \mathrm{i} \dot{\beta}=\bar{\lambda} \beta^{2}+\mu \beta+\lambda \tag{2.9}\\
& \dot{\gamma}=-\lambda \bar{\beta}-\bar{\lambda} \beta-\mu . \tag{2.10}
\end{align*}
$$

Remark 1

$T(\beta)$ is the generator of "generalized coherent states" introduced by Perelomov [9], and reduces to the generator of "squeezed states" in the harmonic oscillator's case where

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{O}}=\frac{1}{4}\left(\mathrm{a}^{+} \mathrm{a}+\mathrm{aa}^{+}\right) \\
& \mathrm{K}_{+}=\frac{1}{2} \mathrm{a}^{+2} \\
& \mathrm{~K}_{-}=\frac{1}{2} \mathrm{a}^{2}
\end{aligned}
$$

(see ref. [6.8]). Therefore theorem 1 is essentially given in Perelomov's book ([9], § 18.2). However we give here a simple proof, for the sake of completeness. It relies on the following lemma:

Lemma 1

$$
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} \mathrm{t}} \mathrm{~T}\left(\beta_{\mathrm{t}}\right)=\left(\alpha \mathrm{K}_{+}+\bar{\alpha} \mathrm{K}_{-}+\rho \mathrm{K}_{\mathrm{o}}\right) \mathrm{T}\left(\beta_{\mathrm{t}}\right)
$$

with

$$
\left\{\begin{array}{l}
\alpha=\frac{i \dot{\beta}}{1-|\beta|^{2}} \tag{2.11}\\
\rho=\frac{i(\beta \dot{\bar{\beta}}-\dot{\beta} \bar{\beta})}{1-|\beta|^{2}}
\end{array}\right.
$$

for the proof of lemma 1, see [6], lemma 4. Now, differentiating the RHS of (2.8) with respect to t (a dot denotes differentiation w.r. to t) we obtain :

$$
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{U}(\mathrm{t}, \mathrm{~s})=\left[\alpha \mathrm{K}_{+}+\bar{\alpha} \mathrm{K}_{-}+\rho \mathrm{K}_{\mathrm{o}}-\dot{\gamma} \mathrm{T}(\beta) \mathrm{K}_{\mathrm{o}} \mathrm{~T}(-\beta)\right] \mathrm{U}(\mathrm{t}, \mathrm{~s})
$$

and since

$$
T(\beta) K_{0} T(-\beta)=-K_{+} \frac{\beta}{1-|\beta|^{2}}-K_{-} \frac{\bar{\beta}}{1-|\beta|^{2}}+K_{0} \frac{1+|\beta|^{2}}{1-|\beta|^{2}}
$$

a necessary condition for (2.5) to hold, with $\mathrm{H}(\mathrm{t})$ given by (2.4) is :

$$
\left\{\begin{array}{l}
\alpha+\frac{\beta \dot{\gamma}}{1-|\beta|^{2}}=\lambda \tag{2.12}\\
\rho-\dot{\gamma} \frac{1+|\beta|^{2}}{1-|\beta|^{2}}=\mu
\end{array}\right.
$$

Now combining (2.11) and (2.12) we easily get (2.9, 10).

3. The classical equations of motion for quadratic

Hamiltonians

A remarkable role for the solution of the problem of section 2 , which is shown to reduce to solving differential equations ($2.9,10$), is provided by the quadratic Hamiltonians, namely the timedependent Hamiltonians that are quadratic in the quantum operators $Q(=$ multiplication by $x)$ and $P=-i \frac{\partial}{\partial x}$. In some sense, the quadratic Hamiltonians, as we shall see, are the paradigm of the most general case of generators of $\operatorname{SU}(1,1)$ Lie algebra considered in section 3.

Assume K_{O} and $\mathrm{K}_{ \pm}$be the following operators in $\mathrm{L}^{2}(\mathbb{R})$:

$$
\begin{align*}
& K_{o}=\frac{P^{2}+Q^{2}}{4} \\
& K_{ \pm}=\frac{Q^{2}-P^{2}}{4}+i \frac{Q P+P Q}{4} \tag{3.1}
\end{align*}
$$

so that $\mathrm{H}(\mathrm{t})$ given by (2.4) is the following quadratic Hamiltonian :

$$
\begin{equation*}
\mathrm{H}_{\mathrm{Q}}(\mathrm{t})=\frac{\mathrm{P}^{2}}{2}\left(\frac{\mu}{2}-\operatorname{Re} \lambda\right)+\frac{\mathrm{Q}^{2}}{2}\left(\frac{\mu}{2}+\operatorname{Re} \lambda\right)+\operatorname{Im} \lambda \frac{\mathrm{QP}+\mathrm{PQ}}{2} \tag{3.2}
\end{equation*}
$$

The classical dynamics generated by (3.2) is given by the following Newton's equations, which are linear :

$$
\left\{\begin{array}{l}
\dot{q}=p\left(\frac{\mu}{2}-\operatorname{Re} \lambda\right)+q \operatorname{Im} \lambda \tag{3.3}\\
\dot{p}=-q\left(\frac{\mu}{2}+\operatorname{Re} \lambda\right)-p \operatorname{Im} \lambda
\end{array}\right.
$$

We shall see that such solutions generate the functions $\beta(t)$ and $\gamma(t)$ of section 2 , which allowed to construct the exact quantum evolution operator (2.8) of the general case.

Proposition 2

Let (q, p) be the classical complex phase-space trajectory given by (3.3), with initial data ($\mathrm{q}_{\mathrm{o}}, \mathrm{p}_{\mathrm{o}}$). Define :

$$
\left\{\begin{array}{l}
\beta=\frac{q+i p}{q-i p} \tag{3.4}\\
\gamma=-\frac{1}{2} \operatorname{Arg}(q-i p)
\end{array}\right.
$$

Then β_{t} and γ_{t} obey the differential equations $(2.9,10)$ respectively. Furthermore $\left|\beta_{\mathrm{t}}\right| \leqslant 1$ is true provided the initial data ($\mathrm{q}_{\mathrm{o}}, \mathrm{p}_{\mathrm{o}}$) satisfy $\left|\beta_{0}\right| \leqslant 1$.

Proof:

$$
|\beta|^{2}=\frac{|q|^{2}+|p|^{2}+i(p \bar{q}-\bar{p} q)}{|q|^{2}+|p|^{2}-i(p \bar{q}-\bar{p} q)}
$$

$\mathrm{W}=\mathrm{i}(\mathrm{p} \overline{\mathrm{q}}-\overline{\mathrm{p}} \mathrm{q})$ is easily seen to be constant along any trajectory (3.3). Therefore, in order that $\left|\beta_{o}\right| \leqslant 1, W$ must be negative real , which immediately implies that $\left|\beta_{t}\right| \leqslant 1$ for any t. Thus it is a good candidate for constructing the generator $T\left(\beta_{t}\right)$ of "generalized Perelomov's coherent states".

Now using (3.3) it is immediate to check that the differential equations ($2.9,10$) are satisfied by the functions β and γ defined by (3.4).

Corollary 1

$$
\text { Let } \quad \mathrm{H}(\mathrm{t})=\frac{\mathrm{P}^{2}+\mathrm{Q}^{2} \mathrm{f}(\mathrm{t})}{2}+\frac{\mathrm{g}^{2}}{2 \mathrm{Q}^{2}}
$$

where $f(t)$ is any real function, and g a real constant. Let ξ be a complex function solution of :

$$
\begin{equation*}
\ddot{\xi}+\mathrm{f} \xi=0 . \tag{3.5}
\end{equation*}
$$

Then the quantum evolution operator $\mathrm{U}(\mathrm{t}$, s) generated by $\mathrm{H}(\mathrm{t})$ is

$$
\begin{equation*}
U(t, s)=T\left(\beta_{t}\right) \exp \left(i K_{o}\left(\gamma_{t}-\gamma_{s}\right)\right) T\left(-\beta_{s}\right) \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{\mathrm{t}}=\frac{\xi+\mathrm{i} \dot{\xi}}{\xi-\mathrm{i} \dot{\xi}} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{\mathrm{t}}=-\frac{1}{2} \operatorname{Arg}(\xi-\mathrm{i} \dot{\xi}) \tag{3.8}
\end{equation*}
$$

where K_{0}, and $K_{ \pm}$defining $T(\beta)$ are the following operators

$$
\left\{\begin{array}{l}
K_{0}=\frac{\mathrm{P}^{2}+\mathrm{Q}^{2}}{4}+\frac{\mathrm{g}^{2}}{4 \mathrm{Q}^{2}} \tag{3.9}\\
K_{ \pm}=\frac{\mathrm{Q}^{2}-\mathrm{P}^{2}}{4}-\frac{\mathrm{g}^{2}}{4 \mathrm{Q}^{2}}+\mathrm{i} \frac{\mathrm{QP}+\mathrm{PQ}}{4}
\end{array}\right.
$$

with natural domains.

Proof :

Clearly, the operators K_{O} and $K_{ \pm}$defined by (3.9) obey the commutations relations (2.1, 2). Furthermore, $H(t)$ is of the form (2.4) with real functions λ and μ :

$$
\begin{aligned}
& \mu=1+\mathrm{f}(\mathrm{t}) \\
& \lambda=\frac{1}{2}(\mathrm{f}(\mathrm{t})-1)
\end{aligned}
$$

Therefore the Newton's equations (3.3) reduce to equation (3.5), and $(3.7,8)$ are nothing but (3.4). Corollary 1 is thus an immediate consequence of propositions 1 and 2 .

Remark 2

We note also that solutions of (3.5), namely of the classical equations of motion for $H_{Q}(t)=\frac{P^{2}+Q^{2} f(t)}{2}$ provide a solution of the classical equation of motion for $H(t)$: assume ξ be a complex solution of (3.5) with initial conditions

$$
\begin{aligned}
& \xi(0)=1 \\
& \ddot{\xi}(0)=\mathrm{ig}
\end{aligned}
$$

and let $\xi(\mathrm{t})=\mathrm{u}(\mathrm{t}) \mathrm{e}^{\mathrm{i} \theta(\mathrm{t})}$ be the polar decomposition of ξ. Then $\mathrm{u}(\mathrm{t})$ obeys

$$
\ddot{u}+f u=\frac{g^{2}}{u^{3}}
$$

with $u(0)=1$ and $\ddot{u}(0)=0$, and is therefore a real classical trajectory of Hamiltonian $H(t)=\frac{\mathrm{P}^{2}+\mathrm{Q}^{2} \mathrm{f}(\mathrm{t})}{2}+\frac{\mathrm{g}^{2}}{2 \mathrm{Q}^{2}}$. Namely we have

$$
2 \mathrm{i} \theta=\log \frac{\xi}{\bar{\xi}}, \quad \text { and therefore } \quad 2 \mathrm{i} \dot{\theta}=\frac{\dot{\xi} \bar{\xi}-\xi \dot{\bar{\xi}}}{|\xi|^{2}}
$$

But $\dot{\xi} \bar{\xi}-\xi \dot{\bar{\xi}}$ is constant and equals 2ig. Therefore $\dot{\theta}=\mathrm{gu}^{-2}$. This implies

$$
\dot{\xi}=\mathrm{e}^{\mathrm{i} \theta}\left(\dot{\mathrm{u}}+\mathrm{ig} \mathrm{u}^{-1}\right)
$$

and therefore

$$
\ddot{\xi}=\mathrm{e}^{\mathrm{i} \theta}\left(\ddot{\mathrm{u}}-\mathrm{g}^{2} \mathrm{u}-3\right)=-\mathrm{f} \mathrm{e}^{\mathrm{i} \theta} \mathrm{u}
$$

which was the claim.

4. The quantum N-body problem with inverse square

 interactionsWe now turn to the following N -body Hamiltonian in dimension one :

$$
\begin{aligned}
\tilde{H}(t)=-\frac{1}{2} & \sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}+\frac{1}{2 N} f(t) \sum_{j<\ell}\left(x_{j}-x_{\ell}\right)^{2} \\
& +\frac{g^{2}}{2} \sum_{j \neq k}\left(x_{j}-x_{k}\right)^{-2}
\end{aligned}
$$

As already suggested in ref. [9], it can be exactly solved along the lines described above.

If $X=N^{-1} \sum_{j=1}^{N} x_{j}$ is the center-of-mass coordinate, we define N (non-independent) variables ξ_{j} as

$$
\begin{equation*}
\xi_{j}=x_{j}-X \tag{4.1}
\end{equation*}
$$

and formal ξ_{j} derivatives :

$$
\begin{equation*}
\frac{\partial}{\partial \xi_{j}}=\frac{\partial}{\partial x_{j}}-\frac{\partial}{\partial X} \tag{4.2}
\end{equation*}
$$

where

$$
\frac{\partial}{\partial \mathrm{X}}=\mathrm{N}^{-1} \sum_{1}^{\mathrm{N}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{k}}}
$$

Then, clearly

$$
N^{-1} \sum_{j<k}\left(x_{j}-x_{k}\right)^{2}=\sum_{j=1}^{N} \xi_{j}^{2}
$$

so that our Hamiltonian $\widetilde{\mathrm{H}}(\mathrm{t})$ can be rewritten as

$$
\begin{align*}
& \tilde{H}(\mathrm{t})=-\frac{\mathrm{N}}{2} \frac{\partial^{2}}{\partial \mathrm{X}^{2}}+\mathrm{H}(\mathrm{t}) \\
& \mathrm{H}(\mathrm{t})=-\frac{1}{2} \sum_{\mathrm{j}=1}^{\mathrm{N}} \frac{\partial^{2}}{\partial \xi_{\mathrm{j}}^{2}}+\frac{\mathrm{f}(\mathrm{t})}{2} \sum \xi_{\mathrm{j}}^{2}+\frac{\mathrm{g}^{2}}{2} \sum_{\mathrm{j} \neq \ell}\left(\xi_{\mathrm{j}}-\xi_{\ell}\right)^{-2} . \tag{4.3}
\end{align*}
$$

Now defining for any $\mathrm{j}=1, \ldots \mathrm{~N}$:

$$
\left\{\begin{array}{l}
b_{j}^{+}=\xi_{j}-\frac{\partial}{\partial \xi_{j}} \tag{4.4}\\
b_{j}=\xi_{j}+\frac{\partial}{\partial \xi_{j}}
\end{array}\right.
$$

it is clear that

$$
\left\{\begin{array}{l}
{\left[b_{j}, b_{k}^{+}\right]=2\left(\delta_{j k}-N^{-1}\right)} \tag{4.5}\\
{\left[b_{j}, b_{k}\right]=\left[b_{j}^{+}, b_{k}^{+}\right]=0}
\end{array}\right.
$$

This allows us to define the following operators

$$
\left\{\begin{array}{l}
K_{o}=\frac{1}{4}\left(\sum_{j=1}^{N} b_{j}^{+} b_{j}+N-1\right)+\frac{V}{2} \tag{4.6}\\
K_{+}=\frac{1}{4} \sum_{j=1}^{N} b_{j}^{+2}-\frac{V}{2} \\
K_{-}=\frac{1}{4} \sum_{j=1}^{N} b_{j}^{2}-\frac{V}{2}
\end{array}\right.
$$

with

$$
\begin{equation*}
\mathrm{V}=\frac{\mathrm{g}^{2}}{2} \sum_{\mathrm{j} \neq \mathrm{k}}\left(\xi_{\mathrm{j}}-\xi_{\mathrm{k}}\right)^{-2} \tag{4.7}
\end{equation*}
$$

As for (3.9), it is not hard to check the commutation rules (2.1, 2) for K_{O} and $K_{ \pm}$defined by (4.6, 7), using (4.5).

Furthermore $\mathrm{H}(\mathrm{t})$ is of the form

$$
\begin{equation*}
H(t)=[1+f(t)] K_{0}+(f(t)-1) \frac{K_{+}+K_{-}}{2} \tag{4.8}
\end{equation*}
$$

since

$$
\begin{aligned}
& K_{o}=\frac{1}{4} \sum_{j=1}^{N}\left(\xi_{j}^{2}-\frac{\partial^{2}}{\partial \xi_{j}^{2}}\right)+\frac{V}{2} \\
& \frac{K_{+}+K_{-}}{2}=\frac{1}{4} \sum_{j=1}^{N}\left(\xi_{j}^{2}+\frac{\partial^{2}}{\partial \xi_{j}^{2}}\right)-\frac{V}{2} .
\end{aligned}
$$

Therefore omitting the trivial uniform center-of-mass motion we get the following result :

Proposition 3

Let ξ be a complex solution of equation (3.5), and let β and γ be defined by $(3.7,8)$ respectively. K_{O} and $K_{ \pm}$being defined by $(4.6,7)$ let $T(\beta)$ be

$$
\exp \left(\delta K_{+}-\bar{\delta} K_{-}\right)
$$

with δ given by (2.7). Then the unitary evolution operator for the quantum Hamiltonian $H(t)$ is

$$
\mathrm{U}(\mathrm{t}, \mathrm{~s})=\mathrm{T}\left(\beta_{\mathrm{t}}\right) \exp \left[\mathrm{i}\left(\gamma_{\mathrm{t}}-\gamma_{\mathrm{s}}\right) \mathrm{K}_{\mathrm{o}}\right] \mathrm{T}\left(-\beta_{\mathrm{s}}\right)
$$

Proof:
Proposition 3 is an immediate consequence of proposition 1 , given (4.8). Here, as in the one-body case of corollary 1 , the solutions ξ of the classical equation of motion for the one-body quadratic Hamiltonian $H_{q}(t)=\frac{\mathrm{P}^{2}+\mathrm{f}(\mathrm{t}) \mathrm{Q}^{2}}{2}$ determine exactly the quantum evolution.

5. Conclusion

We have seen that, in great generality, the generators $T(\beta)$ of the "Perelomov's generalized coherent states" of the $\mathrm{SU}(1,1)$ Lie algebra allow to solve the time-dependent Schrödinger equation, when the Hamiltonian is a linear combination of the generators of this algebra, with time-dependent coefficients. Furthermore this approach outlines the prominent role of the solutions of classical linear equations of motion for constructing these generalized coherent states.

References

[1] F. Calogero, J. Math. Phys. 10 (1969) 2191-2196.
[2] F. Calogero, J. Math. Phys. 12 (1971) 419-436.
[3] S. M. Chumakov, V. V. Dodonov and V. I. Man'ko, J. Phys. A 19 (1986) 3229-3239.
[4] M. Combescure, Ann. Inst. H. Poincaré 44 (1986) 293-314.
[5] M. Combescure, Ann. Phys. 204 (1990) 113-123.
[6] M. Combescure, "The squeezed state approach of the semiclassical limit of the time-dependent Schrödinger equation", (Orsay, 1991).
[7] V. V. Dodonov and V. I. Man'ko, "Invariants and the evolution of nonstationary quantum systems", in : Proceedings of Lebedev Physics Institute, Acad. Sci. U. S. S. R., Vol. 183, ed. M. A. Markov (Nova Science Publishers, Commack N. Y. 1989).
[8] I. A. Pedrosa, Phys. Rev. D36 (1987) 1279-1280.
[9] A. Perelomov, "Generalized Coherent States and Their Applications", (Springer, Berlin 1986).

[^0]: * Laboratoire associé au Centre National de la Recherche Scientifique

