JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

DIMITRI R. YAFAEV

On resonant scattering for time-periodic perturbations

Journées Équations aux dérivées partielles (1990), p. 1-8

http://www.numdam.org/item?id=JEDP 1990 A4 0>

© Journées Équations aux dérivées partielles, 1990, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

On resonant scattering for time-periodic perturbations

D.R. YAFAEV

LOMI, Fontanka 27, Leningrad 191011 USSR

1. The energy of a quantum system described by a time-dependent Hamiltonian H(t) is not conserved. However, if a dependence of H(t) on t is periodic, it can be changed only by some integer number. In other words, the quasi-energy, i.e. the energy defined up to an integer, is a conserved quantity.

Here we discuss scattering of a plane wave by a time-periodic potential. Due to the quasi-energy conservation such a process is described by a set of amplitudes $S_n(\lambda)$ where λ is energy of an incident wave (in other terms, of a quantum particle) and n is arbitary integer. We always decompose λ as $\lambda = m + \theta$ where $m \in \mathbb{Z}$ is the entire part of λ and $\theta \in [0,1]$. Each $S_n(\lambda)$ corresponds to a channel when energy is changed by n-m. Actually, amplitudes $S_n(\lambda)$ for $n \ge 0$ correspond to outgoing waves and amplitudes $S_n(\lambda)$ for n < 0 correspond to exponentially decaying modes. In some sense these modes play the role of bound or quasi-bound states for time-independent Hamiltonians. It means that they represent states which can have long though finite time of life. Thus exponentially decaying modes are essential for a detailed picture of interaction of an incident wave with a quantum system but they do not contribute to the scattering matrix of this process. Our aim is to study the transformation of exponentially decaying modes into proper bound states as a time-periodic perturbation is switched off.

In fact, we shall consider the following situation. Suppose that $H(t) = H_1 + \epsilon V(t)$ where the Hamiltonian H_1 has a negative eigenvalue λ_1 and the coupling constant ϵ is small. Physically, it is natural to conjecture that the bound state of the system with the Hamiltonian H_1 will give rise to some kind of long-living state

for the family H(t). Due to the quasi-energy conservation this state is insignificant if energy λ of an incident particle and λ_1 do not coincide by modulus of \mathbb{Z} . However, if energy λ is resonant, that is $\lambda - \lambda_1 = K \in \mathbb{Z}$, then an incident particle can strongly interact with this quasi-bound state. Therefore the corresponding amplitude $S_{m-K}(\lambda.\epsilon)$ is expected to be very large for small ϵ . Below we will show at the example of zero-range potentials that this physical picture is correct.

The problem of resonances for time-periodic perturbations was studied earlier by K. Yajima [1] in a different, more mathematical, framework. Our approach is closer to physical papers [2]-[5]. In particular, in [5] an attempt was made to study the amplitudes S_n for small time-periodic perturbations. However, the appearence of resonant energies seems to be neglected in this paper.

2. The Hamiltonian H_1 corresponding to a zero-range potential well of a "depth" h_1 is defined as $H_1 = -\frac{d^2}{d\,x^2}$, $x \in \mathbb{R}_+$, with the boundary condition $u'(0) = -h_1 u(0)$, $h_1 = \overline{h_1}$. The operator $H_1 > 0$, if $h_1 \le 0$, and it has (exactly one) negative eigenvalue $\lambda_1 = -h_1^2$ with the eigenfunction $\exp(-h_1\,x)$, if $h_1 > 0$. Let $H_0 = -d^2/dx^2$ with the boundary condition u(0) = 0 be the "free" Hamiltonian. The scaltering matrix $S^{(1)}(\lambda)$ for the pair H_0 , H_1 at energy λ equals

$$S^{(1)}(\lambda) = (h_1 - i \lambda^{1/2}) (h_1 + i \lambda^{1/2})^{-1}.$$
 (1)

We shall consider zero-range potential well whose depth depends periodically on time. Mathematically this problem is governed by the equation

$$i\frac{\partial u}{\partial t} = -\frac{\partial^2 u}{\partial x^2}, x \in \mathbb{R}_+,$$
 (2)

with the time-dependent boundary condition

$$u'(0,t) = h(t) u(0,t), \overline{h(t)} = h(t), h(t+2\pi) = h(t)$$
 (3)

We will look for solutions of equation (1) which have a representation of the form

$$u(x,t) = \sum_{n=-\infty}^{\infty} u_n(x) e^{-i(n+\theta)t}$$
(4)

where the parameter $\theta \in [0,1]$. Such solutions describe a stationary process in the sense that for any $\tau \in \mathbb{R}$

$$(2\pi)^{-1} \int_{\tau}^{\tau+2\pi} |u(x,t)|^2 dt = \sum_{n=-\infty}^{\infty} |u_n(x)|^2$$
 (5)

Substituting (4) into (2) we find that $u_n(x)$ should satisfy the equations

$$-u_n^n(x) = (n+\theta) u_n(x), \qquad (6)$$

whose solutions are linear combinations of exponentials. In particular, the solution corresponding to the incoming wave $\exp(-i\lambda^{1/2}x)$, $\lambda=m+\theta$, $m\in\mathbb{Z}$, $\theta\in[0,1[$, has the form

$$u_{n}(x,\lambda) = S_{n m} \exp(-i \lambda^{1/2} x) - S_{n}(\lambda) \exp(i(\theta+n)^{1/2} x),$$
where $S_{m m} = 1$, $S_{n m} = 0$, if $n \neq m$, and
$$i(\theta+n)^{1/2} = -|\theta+n|^{1/2}, n \leq -1.$$
(7)

The terms $S_n(\lambda)$ exp $(i(\theta+n)^{1/2}x)$ describe out going waves, if $n \ge 0$, and they are exponentially decaying, if n < 0.

Equations (6) are coupled by the boundary condition (3) which allows us to determine the amplitudes $S_n(\lambda)$. In fact, substituting (7) into (4) and then into (3) we obtain the equation

$$-i\lambda^{1/2} e^{-imt} - i \sum_{n=-\infty}^{\infty} (\theta + n)^{1/2} S_{n}(\lambda) e^{-int} = h(t) \left(e^{-imt} - \sum_{n=-\infty}^{\infty} S_{n}(\lambda) e^{-int}\right).$$
 (8)

Explanding h(t) in the Fourier series and comparing coefficients of e^{-int} we arrive at an infinite set of algebraic equations for the amplitudes $S_n(\lambda)$.

Note that functions $S_n(\lambda)$ are continuous in $\lambda \in [m, m+1]$ for every m=0,1,2,... Moreover, $S_n(m-0)=S_{n+1}(m+0)$ for all $n\in \mathbb{Z}$ and m=1,2,...,

3. Below we restrict ourselves to the consideration of the simplest case

$$h(t) - -h_i + 2\epsilon \cos t \tag{9}$$

Then equation (8) is equivalent to the following system of equations

$$(i(\theta+n)^{1/2}+h_1)S_n-\varepsilon(S_{n+1}+S_{n-1})=S_n^{(0)}, n\in\mathbb{Z},$$
(10)

where

$$S_{m}^{(0)}(\lambda) = h_{1} - i \lambda^{1/2}, S_{m-1}^{(0)}(\epsilon) = S_{m+1}^{(0)}(\epsilon) = -\epsilon$$
 (11)

and $S_n^{(0)} = 0$ for $|n-m| \geqslant 2$. We emphasize that the amplitudes $S_n = S_n^{(\lambda,\epsilon)}$ depend on energy λ of incoming wave and on the parameter ϵ in (9). It is convenient to rewrite the system (10) in vector notation. Set $s = \{S_n\}$, $s_o = \{S_n^{(o)}\}$, $n \in \mathbb{Z}$, and

$$\Lambda = diag\{i(\theta+n)^{1/2} + h_i\}, K = \Gamma + \Gamma^*,$$

where Γ , $(\Gamma 6)_n = 6_{n+1}$, is the shift operator. Then (10) is equivalent to the equation

$$(\Lambda - \varepsilon K) s = s_0$$
 (12)

which can be considered, for example, in the space $\ell_2^{}$ (Z).

In the case $\epsilon=0$ the function (9) does not depend on t so that equations (10) become independent and can be easily solved. In fact, $S_m(\lambda,0)=S^{(1)}(\lambda)$ and $S_n(\lambda)=0$, if $n\neq m$, $n\geqslant 0$. For negative n the amplitude $S_n(\lambda,0)=0$ in case

$$h_1 \neq \left|\theta + n\right|^{1/2} \tag{13}$$

and $S_n(\lambda,0)$ is arbitrary in case $h_i = |\theta+n|^{1/2}$. The latter equality is possible only if $h_i > 0$ and $\lambda - \lambda_i \in \mathbb{Z}$. In this case the function (4) is given by the relation $u(x,t) = (\exp(-i\lambda^{1/2}x) - S^{(1)}(\lambda) \exp(i\lambda^{1/2}x)) \exp(i\lambda t) + \gamma \exp(-h_i x + i h_i^2 t)$ (14) with arbitrary γ . The last term in (14) disappears (i.e. $\gamma = 0$) if $h_i \leq 0$ or $h_i > 0$ and $\lambda - \lambda_i \notin \mathbb{Z}$.

4. Our goal is to study the limit of the amplitudes $S_n(\lambda,\epsilon)$ as $\epsilon \to 0$. We first consider the non-resonant case when either $h_1 \le 0$ or $h_1 > 0$ and $\lambda - \lambda_1 \notin \mathbb{Z}$. Then condition (13) holds for all n = -1, -2,... so that the operator Λ is invertible and (10) is equivalent to the relation

$$(I - \varepsilon \Lambda^{-1} K) s = \Lambda^{-1} so$$

Since K is a bounded operator, for sufficiently small ϵ this equation can be solved by

iteration:

$$s(\varepsilon) = \sum_{p=0}^{\infty} \varepsilon^{p} \left(\Lambda^{-1} K\right)^{p} \Lambda^{-1} s_{0}(\varepsilon).$$
 (15)

Thus for non-resonant energies $\lambda,\lambda-\lambda_1\not\in\mathbb{Z}$, the asymptotic expansion of amplitudes is described by regular perturbation theory. In particular, (15) ensures that $S_n(\lambda,\epsilon)=0(\epsilon^{\lfloor n-m\rfloor})$ so that the probability of excitation of states with energies $\lambda+K$, $K\in\mathbb{Z}$, is proportional to $\epsilon^{\lfloor K\rfloor}$. The amplitude $S_m(\lambda,\epsilon)$ converges to the scattering matrix (1), i.e.

$$S_{m}(\lambda,\epsilon) = (h_{i} - i \lambda^{1/2}) (h_{i} + i \lambda^{1/2})^{-1} + O(\epsilon^{2}).$$
 (16)

The leading term of the corrections to the case $\varepsilon = 0$ is determined by the amplitudes

$$S_{m+1}(\lambda,\epsilon) = -2i\epsilon \lambda^{1/2} (h_1 + i (\lambda \pm 1)^{1/2})^{-1} (h_1 + i \lambda^{1/2})^{-1} + O(\epsilon^2).$$
 (17)

5. If $h_1>0$ and λ equals one of the resonant points λ_1+K , $K\in Z$, there arises a non-trivial interaction of the incident wave with the quasi-bound state of the time-dependent well. This interaction does not vanish in the limit $\epsilon\to 0$. From the mathematical viewpoint the problem is due to the appearence of zero eigenvalues of the operator Λ . The operator $\Lambda-\epsilon K$ is invertible for all $\epsilon>0$ but some of the matrix elements of $(\Lambda-\epsilon K)^{-1}$ tend to infinity as $\epsilon\to 0$. For definiteness we suppose that $0< h_1<1$ and λ approaches the point $\lambda_0=1-h_1^{-2}$. In this case the resonant interaction is the most significant. In fact, we shall obtain asymptotic formulas for $S_n(\lambda,\epsilon)$ which hold uniformly in $\lambda\in I_\delta=[\delta,1-\delta],\,\delta>0$, as $\epsilon\to 0$.

To bypass the problem of small denominators which appears now we distinguish equation (10) with n=-1

$$(h_1 - (1 - \lambda)^{1/2}) S_{-1} - \varepsilon (S_0 + S_{-2}) = -\varepsilon$$
 (18)

where all coefficients vanish as $\lambda \to \lambda_0$ and $\varepsilon \to 0$. First we consider only equations in (10) which correspond to $n \ge 0$. We shall solve this system with respect to amplitudes S_n , $n \ge 0$, with S_{-1} playing the role of a parameter. Since all diagonal elements $i(\lambda + n)^{1/2} + h_1$, $n \ge 0$, are separated from zero, this system can be solved by iteration which gives the relation

$$S_0 = (h_1 + i \lambda^{1/2})^{-1} (\epsilon S_{-1} + h_{-1} - i \lambda^{1/2}) (1 + 0(\epsilon^2)).$$
 (19)

We emphasize that quantities as $0(\epsilon^2)$ are uniform in $\lambda \in I_{\delta}$. Similarly, solving equations in (10) corresponding to $n \le -2$ with respect to S_n , $n \le -2$, we find that

$$S_{-2} = \varepsilon (h_1 - (2 - \lambda)^{1/2})^{-1} S_{-1} (1 + 0(\varepsilon^2)).$$
 (20)

Substituting expressions (19), (20) into (18) we obtain finally the equation for S_{-1} . It follows that

$$S_{-1}(\lambda, \varepsilon) = 2i\varepsilon \lambda^{1/2} \Omega^{-1}(\lambda, \varepsilon) (1 + O(\varepsilon)). \tag{21}$$

where

$$\Omega(\lambda, \varepsilon) = [-h_1 + (1-\lambda)^{1/2} + \varepsilon^2 (h_1 - (2-\lambda)^{1/2})^{-1}] (h_1 + i\lambda^{1/2}) + \varepsilon^2$$

Here we have taken into account that

$$|\varepsilon^2 \Omega^{-1}(\lambda,\varepsilon)| \leq C.$$

Combining (19) with (21), we find also the asymptotics of S_o :

$$S_{0}(\lambda,\epsilon) = (h_{1} - i \lambda^{1/2}) (h_{1} + i \lambda^{1/2})^{-1} + 2i\epsilon^{2} \lambda^{1/2} (h_{1} + i \lambda^{1/2})^{-1} \Omega^{-1} (\lambda,\epsilon) + 0(\epsilon).$$
 (22) Clearly, $|S_{0}(\lambda,\epsilon)| = 1$ up to an error of order ϵ .

If λ is separated from the point λ_0 , we can replace $\Omega(\lambda,\epsilon)$ by $\Omega(\lambda,0)$ which is not zero. In this case we recover the relations (16), (17) (for m=0). In the particular case $\lambda = \lambda_0$ we have that

$$(\lambda_0, \epsilon) = \epsilon^2 (h_1 - (1 + h_1^2)^{1/2})^{-1} b_1$$

where

$$b_1 = 2h_1 - (1+h_1^2)^{1/2} + i (1-h_1^2)^{1/2}$$

There fore according to (21), (22)

$$S_{-1}(\lambda_{0},\epsilon) = 2i \left(1 - h_{1}^{2}\right)^{1/2} \left(h_{1} - \left(1 + h_{1}^{2}\right)^{1/2}\right) b_{1}^{-1} \epsilon^{-1} + O(1),$$

$$S_{0}(\lambda_{0},\lambda) = \overline{b_{1}} b_{1}^{-1} + O(\epsilon).$$

As could be expected, the amplitude $S_{-1}(\lambda_0,\epsilon)$ grows infinitely as $\epsilon \to 0$. By virtue of (5) it follows that for the corresponding function (4) and any r>0 the integral

tends to infinity as $\epsilon \to 0$. This is consistent with the decoupling of bound states and

scattering states in the stationary case $\varepsilon = 0$ when, by (14), the integral (23) has arbitrary value.

The amplitude $S_0(\lambda_0,\epsilon)$ has a finite limit $S_0(\lambda_0,0)$ which is, however, different from the scattering matrix (1) at energy λ_0 for the time-independent boundary condition $u'(0) = -h_1 u(0)$. Therefore, at energy λ_0 we find an additional resonant phase shift which does not vanish in the limit $\epsilon \to 0$.

6. In stationary problems resonances are usually defined as complex "eigenvalues" for which the Schrödinger equation has solutions satisfying the outgoing radiation condition at infinity. Similarly, a compex point λ can be called [3] resonant point for the problem (2), (3) if there exists its solution of the form

$$u(x,t) = \sum_{n=-\infty}^{\infty} A_n \exp \left[i(\lambda+n)^{1/2}x - i(n+\lambda)t\right]$$

It is easy to see that at such λ the homogeneous system of equations

$$(i(\lambda + n)^{1/2} + h_i) A_n - \epsilon (A_{n+1} + A_{n-1}) = 0$$

should have a non-trivial solution. This system can be studied by the method of section 5. In the case $0 < h_1 < 1$ there exist for sufficiently small ϵ resonant points obeying the relation

$$\lambda = n - h_1^2 - 2 \epsilon^2 h_1 ((1 + h_1^2)^{1/2} + i(1 - h_1^2)^{1/2}) + o(\epsilon^4)$$

where n is an arbitrary integer. In the limit $\epsilon \to 0$ these complex points approach real points differing from $\lambda_1 = -h_1^2$ by some integer.

References

- [1] K. YAJIMA, Resonances for the AC-Stark effect. Commun. Math. Phys. 87 (1982), 331-352.
- [2] A.N. KAZANSKII, V.N. OSTROVSKII, E.A. SOLOV'EV, Passage of low-energy particles through a nonstationary potential barrier and the quasi-energy spectrum, Soviet Physics JETP 48 (1976), N2, 254-259.
- [3] V.N. OSTROVSKII, many-photon ionization, resonance scattering on a

nonstationary potential, and complex poles of the S-matrix, Theor. Math. Phys. 33 (1977), N1, 923-928.

- [4] M. BUTTIKER, R. LANDAUER, Traversal time for tunneling, Physica Scripta 32 (1985), 429-434.
- [5] J.A. STØVNEG, E.H. HAUGE, The Büttiker-Landauer Model Generalized, Preprint, 1989, University of Trandheim.