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RESONANCE FUNCTIONS OF TWO-BODY SCHRODINGER OPERATORS

Erik Balslev and Erik Skibsted

Aarhus University.

We consider the Schr8dinger operator -A +V in L2(IRn), n>3,
where V is a short-range, dilation-analytic potential in an angle
Sa . A resonance AO appears as a discrete eigenvalue of the com-
plex-dilated Hamiltonian [2], a pole of the S-matrix [3] and as a
pole of the analytically continued resolvent, acting from an expo-
nentially weighted space to its dual [4,5]. In [2] resonance func-
tions are obtained as square-integrable eigenfunctions of the com-
plex-dilated Hamiltonian, corresponding to the eigenvalue XO , in
[5] they are defined as certain exponentially growing solutions £
of the Schrddinger equation (-A +V -xo)f =0 . In [6] it is proved
that for a dilation-analytic multiplicative potential V with re-
sonance AO ; the resonance functions of [2] and [5] are simply the

n-1

restrictions of one analytic, L2(S ) -valued function £ on S

o
to rays elq)IR+ with 2¢p > -Arg) and to IR+, respectively.

0
ikoz
Moreover, the precise asymptotic behaviour £f(z) = e
1-n
z 2 (T +0(|z|-5)) with T €L2(Sn—1) , where kg = xo , 1s esta-
blished together with asymptotics for £'(z) . These imply expo-

nential decay in time of resonance states, defined as suitably
cut-off resonance functions, as proved in [8].
In this note we shall give a brief account of results on

resonance functions, referring for details to [5] and [6].
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1. Analytic continuation of resolvent and S-matrix

We introduce the weighted L2—spaces L2 =L (IR") for

§,b €EIR by

2 _ 2 _ 2 2,8 _2br
Lsp = (£ 10EN% ) = | TEGIT(14r%)Te ™ dx <)

IRn

where x €IRn,r =|x| . The weighted Sobolev spaces are defined by

2

2 o 2
H = {f |IEl = ) ID7fll <}
§,b 2,6,b laf<2 §,b
2 _ .2 2 - _ +2,.n"1 n-1 _
We set L5,0 = L(S ’ HG,O = H and h = L7 (S ) , S =
{x €IR®™ | Ix| =1} . We assume that the dimension n >3
¢t = (kex | Imk>0} , & = c*<{o0} .

B(H1,H2) and C(H1,H2) denote the spaces of bounded and compact

operators from H1 into H2 , respectively.

The free Hamiltonian H0 in L2 is defined for u EDHO = H2
; 2, -1 2
by Hou = -Au with resolvent Ro(k) = (H0 -k%) €B(L”) for
x ea’ .

The interaction Q is assumed to be a symmetric, short-range,

Sa—dilation—analytic operator in L2 . Thus, Q EC(HE(S ,Lg )
0 0
is the dilation group on L

for

some 60 >% , and if {U(p)}

defined by

o emt

o]

(U(p) £) (x) = p2f(px)

1

then the function Q(p) = U(p)QU(p ') on IR* has an analytic,

C(HE(S ,Lg ) -valued analytic extension to the angle
0 0
S, = {pe™® | p>0 , 1ol <a}
Moreover, Q(z) €C(H26 b ,Lg b) for all b €IR. (This follows
%0’ 0’

' 2 2
from Q €C(H_6 ' L5 )

0 0

if Q is local).
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The Hamiltonian H = H0 +Q 1is self-adjoint on DH = H2 , and

associated with H 1is a self-adjoint, analytic family of type A ,

H(z) , given by

H(z) = z'2H0 +0(z) .

and H(pel® = u(p)H(ei®Uu(p”]

z = peltp .

) , so o(H(z)) = o(H(eim)) for o >0,

We define the operators HZ and their resolvents Rz(k) by

_ 2 _ 2 a _.2,-1
Hz = H0 +2°Q(z) = 2z"H(z) , Rz(k) = (Hz k™) .
_ =2 2, -1
We note that Rz(zk) = 2z “(H(z) -k7) .
_ =2ip__+
We have oe(H(z))— e IR and 04(H(2))~IR c{]A | =2¢ < Arga
<0} .
We define R(¢) by R(®) = {k |0 > Argk > -0 , k2 €o (H(z)},
R = U R(9) . The points A =k2 , Kk €R , are called resonances.

0<y<a

For our analysis we need the following result, proved in [5]:

Lemma 1.1. For & >0 let Sg = {k ESa | Im(ei(a-s)k) <e} .

There exists Sa—dilation—analytic interactions V8 and Wa with

8
Q = V8 +W8 , such that H0 +Ve has no resonances outside (Sa)2

and We decays faster than any exponential. This holds with

_ - —erP =
Wa =9, Qg8 , wWhere gs(r) = exp(-¢r”) , B T for ¢ small.

Using Lemma 1.1 one can prove all results for fixed ¢ >0
with Sa replaced by Sa -Sg , using the splitting Q = V8 +W8 '
and then let § +y0 . To simplify the presentation, we assume from
the outset (although this can strictly speaking not be obtained)
that H1 = Ho +V has no resonances and fix ¢, setting g = 9e
W=0Qg , V=0Q-gW. We denote by H1z"R1z(k) etc. the operators
obtained by replacing Q by V.
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Basic to our approach is an extended limiting absorption
principle proved in [7] and generalized in [5] to non-symmetric,
short-range potentials like Qz . The idea is to consider -A

and -A + Qz as operators Hab and H;b acting in the space

Lg -1 ! b > 0. The spectrum of Hab and the essential spectrum
’ -

of H;b coincide with the parabolic region Pb =

{k2 | 1Imk| < b}, and it is then proved that the resolvents

-b 1 -b

(H;P - (a +ib +ie))”"  and (H° - (a +ib +ie)%)”"  have boundary

2 1

. 2
values as ¢+0 in B(L(S'_b ’ H-d-b) for 5 <3 §60 , except at

the so-called singular points.

. c r

The singular sets ]~ , ],
i

pe(p,(D>0rbY

and )  are defined for z =

zC {k €¢+ | k2 = zz)\ r A GGd(H(Z))} ’

Iz = zRo®", [ =] ul,

and for @ < 0 by zg =-7° and similar for J° and 1, -
z z

For © =0, J =7%u7JF = {(kel" | K2 EGP(H)} .

The extended limiting absorption principle for HZ can then be

formulated as follows:

Theorem 1.2. For fixed =z Esa , 0 <6 §50 , there exists a

i 2, u? lued function R,(k) in @ , conti-
meromorphic B(L G,H_G)—va ued fun ”

r
nuous in m+\ZZ , such that for k €IR\ZZ u {0}

ikr

1}

- ikr . -
R, (k) e "R, (k +i0)e

where

Rz(k +10) lim Rz(k +ig)

ev0

2

2 .
in the operator-norm topology of BI(L G’H—S) , locally uniformly

in k .
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2 -ik r

For f €Ly , ,u=e rR;(k)elk f is the unique solution
[4

2 . “b .2, _ 2
in Ls _;, ©of the equation (H,” -k")u =f , such that Du €L 1 ,-p

where b = Imk and

Du = (D1u,...,Dnu) ’ Dj = : 2= k.- ik—d

(the radiation condition).

Proof. We refer to [5] for the proof of the Theorem. It uti-

lizes the result of [7] for H0 , analytic Fredholm theory and
control of the singular points using analyticity in k and =z .
The trace operators To(k) ’ Tz(k) €B(L26,h) are defined for

Z €Sa ’ by

(T (k) £) (k,-) = (F£) (k,r) , keR

where n
(F,£) (k,w) = (2m) 2 J eF KO X £y ax ,
+ IRn
_ _ . X
T, (k) = Ty(k) (1 - Q R (k+i0)) , k €RN] .
We set
_ ikr + _ ikr
T, (k) = T (k)e » T, (k) =T (kle .

The following result is proved in [5].

Theorem 1.3. For % ) §60

. + . . ~+
function Tz(k) has a continuous extension to (€ \zz meromor -

, Z ESa , the B(Lza,h)-valued

phic in €' with poles at ZZ . The function T:*(F) defined
z

for k €E-\(—Zz) is analytic in E-\(—zz ) and continuous in

~

G-\(—Zz) as a B(h,HE ) -valued function.

$

We recall the following formulas from the stationary scatte-
ring theory:
. .. n=-2 +
R(k +i0) = R(-k +1i0) + wik T*(k)T(k) , k €IR \Zr (1.2)

XIV-5



T(k) = S(k)RT(-k) (1.3)

where (RT)(w) =1(w)  for T E€Eh .
Inserting (1.3) in (1.2), we obtain
R(k +i0) = R(-k +i0) + mik™ 2T* (k) S (k) RT (-k) (1.4)
The S-matrix S(k) of (H,,H) is given for k EIR+\zr by
S(k) = 1 - 7ik™ 2T (k) (Q - QR(k +10)Q) T} (k) (1.5)
and the S-matrix S1(k) of (HO'H1) by (1.5) with Q and R

replaced by V and R1 .

The following result is proved in [3].

Theorem 1.4. The S-matrix S(k) has a meromorphic extension

g(k) from IR+ to Sa with poles at R. The S-matrix S1(k) has
an analytic extension §1(k) from IR’ to Sa . Moreover, for

k>0, 0<yp <a , §1(ke—lw) = S . (k) , where S . (k) 1is the
1,e*® 1,

S-matrix of (HO,H . ) at the point k .
1,el(p

From (1.4) and Theorem 1.2 we obtain

2 2
o,b "Ho,-b

tion R(k) has a meromorphic continuation R(k) from ¢’ across

Theorem 1.5. For any b >0 the B(L ) -valued func-

+ .
IR to Sa,b = {k €S, | =b < Imk <0} , given by

n-2

R(k) = R(-k) + mik  “T*(k)S(k)T(-k) (1.6)

2

2
The B(Lo,b ’HO,—b

) -valued function R1(k) has an analytic

continuation §1(k) from ¢+\Z1c across TR' to S, p + 9iven by
’

(1.6) with R,T and S replaced by R1,T and S

1 1°
The functions R(k) and §1(k) are connected by the analyti-
cally continued symmetrized resolvent equation

1

R(k) = §1uq -§1ﬂdg(1+ W§1Udg)— w§1uq (1.7)
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The following result is proved in [5]:

‘Theorem 1.6. R(k) and S(k) have the same poles and of

the same order in S .
a,b
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2. Resonance functions

Let kg be a resonance, and fix b > -Imk0 . Then k0 is a
2 2

pole of R(k) €B(L s H ) , defined in Theorem 1.5. Let C be
O'b Ol-b

a circle separating k from other poles and let

0

S N A 2
P= -5 JC R, (k) dk

2

0,—b) is of finite

. ~ 2
be the residue of Rz(k) at k0 s P EB(LO,b  H

rank.
The space F of resonance functions associated with k0 is
defined by

- - v E o
F={f€R, | (-a+Q-kg)f = 0} .

The following result is prbved in [5]:

~ -

Theorem 2.1. F is the isomorphic image of N(S 1(ko)) and

of N(1 + w§1(k0)g) via the following maps:
NE (kg3 T » THE )T = f£EF

N(1+W§”k&g)3¢-+§”k&g¢= fEF

Remark. From the representation £ = T*(EO)T we conclude

by Theorem 1.3 and the uniqueness part of Theorem 1.2 that

2 ~ L2 for every ¢ >l and b, = -Imk, . A further
-6,—b0 6—1,—b0

f eH 5 0 0
analysis yields precise asymptotic estimates. We first establish

the analyticity properties, using the second isomorphism.

Applying (1.4) to the operator H1Z at a point zk0 with

Arg zk0= 0 and noting that by Theorem 1.4, S1Z(zk0) = §1(k0)

we obtain
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n-2

R1z(ZkO +i0) = R1z(-zk +10) + ﬂi(ZkO)

0
L (1.7)
T1E(Zk0) S1(k0) RT1Z(—sz)

By Theorems 1.2 and 1.3 we obtain from (1.7)

2 5 —izkor
Theorem 2.2. The B(L ,H_d)-valued function e

-izk.r
R1z(zk0 +i0)e has an analytic extension from {z Ezk0 |IR+}*

to {z€s l Argzk, <0} , given by

-iszr~ —izkor —iszr —izkor
e R1Z(zk0)e = e R1z(—zk0)e +

(1.8)
. n-2 _x ,~—
ﬂl(Zko) T1z(sz)S1(ko)RT1z(—zk0)

By

Recalling that W, =Q, g(rz) , where g(rz) = exp{-¢(rz)

with B8 >1 , we obtain from Theorem 2.2

Theorem 2.3. The C(Lz)—valued function WZR1Z(zk0)g(rz)

has an analytic continuation from {z ESa | Argzk, >0} to

0
{z €S, | Argzk, <0} , given by WZR1z(zk0)g(rz) .

By standard dilation-analytic arguments O(WZ§1(zk0)g(rz) is
constant. Let C be a circle separating -1 from the rest of
o(WZR1(zk0)g(rz)) and set

1

P(z) = -507

JC (-2 +wz1”z1z(zko)g(rz))'1 ar .

Then P(z) 1is a dilation—analytic B(Lz)—valued function of
z , and P(z) 1is a projection on the finite-dimensional algebraic
null space of 1 +Wzﬁ1z(zk0)g(rz) . Let ¢ €EN(T1 + W§1(k0)g(rzn

and pick an Sa-dilation-analytic vector n in L2 such that
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¢ = P(1)n . Then ¢(z) = P(z)n(z) €EN(1 + Wz§1z(zko)g(rz) , and

¢(z) 1is dilation-analytic.

We now obtain, using the second isomorphism of Theorem 2.1,

Theorem 2.4. Let f €F . Then there exists an Sa-dilation—
analytic, HEG-Valued function x(z) , such that £ =elhﬂ‘x(1)and
for Arg z k.>0

0 .
ik ,.zr

f(z) = e 0 x(z)EN(H(z)—kg).

2 1
Moreover, x(2z) €L6—1 for all =z ESd, S >§ .

Proof. Define f£f(z) by

izk.r -izk.r

0 + 0
e RTZ(ZkO) e g(rz)¢é(z) , ImzkO >0
£(z) izk,r (—iszrN -izkor\izkor
e e R,,(zkg)e ] e g(rz)¢(z) ,
Imzk0 §0

where R:z(zko) is defined similarly to R;z(zko) , replacing -b

by b and eilar with e:L1ar in Theorem 1.2. Clearly, f£(z) is
‘ + -izkgr
continuous for zk0¢EIR . By Theorem 1.2 and 2.2, x(2) = e f(z2)

is an analytic HEG-valued function in S,

It follows from the uniqueness part of Theorem 1.2 that

x(z) (L§_1 for Imzk0 <0 . The fact that x(2) ¢L§_1 for Imzk0 20

then follows by the next Lemma, proved in [6]:

Lemma 2.5. Let x(z) be an gl-dilation—analytic vector, and

define h(yp) for ¢ € (-a,a) by

2

h(g) = inf{s | x(eiw) €EL_

b

Then either h(w) = = or h(p)>-~ and h is convex in
(-o,a) .
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Using this Lemma together with a recent result of Agmon [1],
giving the precise asymptotic behaviour of f£f(z) for Argzk0 >0 ,
we finally obtain the desired asymptotic estimates of f and f£'

We refer to [6] for the proof.

Theorem 2.6. Assume that Q is an %x—dilation—analytic mul-

tiplicative potential such that [Q(z) (x)] < C|x|—1-8 for =z ESu

and |x| 2 R . Let f€F . Then f is an analytic, h-valued func-

tion f(z,+) on Sa of the form

ik, z B
f(z,:) = e z g(z,-)
where
g(z,) =1 +0(1z17%)
g'(z,) = 0(lz1 178

uniformly in any smaller angle S& for some ¢ >0 . Moreover,

T enN(d? (ky) and £ = CT*(Ky)t ,
n-1 1-n 1
(2m) 2 .
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