Journées ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Mohamed S. BaOUENDI
 Linda P. Rothschild
 CR mappings and their holomorphic extension

Journées Équations aux dérivées partielles (1987), p. 1-6
<http://www.numdam.org/item?id=JEDP_1987 \qquad A23_0>

CR MAPPINGS AND THEIR HOLOLOMORPHIC EXTENSION

M. S. BaOUENDI

Purdue University
West Lafayette, IN 47907

Linda Preiss Rothschild
University of California, San Diego
La Jolla, CA 92093

If M is a smooth manifold of real dimension $2 n+1$, we say that M is a $C R$ manifold of codimension one with $C R$ bundle \mathcal{V}, if \mathcal{V} is a subbundle of $\mathbb{C} T M$, the complexified tangent bundle of M, satisfying

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{V}=n, \quad \mathcal{V} \cap \overline{\mathcal{V}}=0
$$

Any smooth real hypersurface M in \mathbb{C}^{n+1} is a $C R$ manifold of codimension one, where \mathcal{V} is the subbundle of antiholomorphic tangent vectors to M.

Let (M, \mathcal{V}) and (M^{\prime}, V^{\prime}) be two $C R$ manifolds of codimension one. A smooth mapping from M into M^{\prime} is called $C R$ if for all $p \in M$

$$
H^{\prime}\left(\nu_{p}\right) \subset \mathcal{V}_{H(p)}^{\prime}
$$

We recall the following definition introduced in Baouendi-Jacobowitz-Treves [3]. If M is a real analytic hypersurface in C^{n+1} containing the origin and defined locally by $\rho(z, \bar{z})=0, d \rho \neq 0$, we say that M is essentially finite at 0 if for any sufficiently small $z \in \mathbb{C}^{n+1} \backslash\{0\}$, there exists an arbitrarily small $\varsigma \in \mathbb{C}^{n+1}$ satisfying: $\rho(z, \varsigma) \neq 0, \rho(0, \varsigma)=0$.

Our main result is the following:

THEOREM 1. Let M and M^{\prime} be real analytic hypersurfaces in \mathbb{C}^{n+1} and $H: M \rightarrow$ M^{\prime} a smooth $C R$ mapping, defined near $p_{0} \in M$ with $H\left(p_{0}\right)=p_{0}^{\prime}$, and satisfying

$$
\begin{equation*}
H^{\prime}\left(\mathbb{C} T_{p_{0}} M\right) \nsubseteq \mathcal{V}_{p_{0}^{\prime}}^{\prime} \oplus \bar{\nu}_{p_{0}^{\prime}}^{\prime} \tag{1}
\end{equation*}
$$

where \mathcal{V}^{\prime} is the $C R$ bundle of M^{\prime}. If M and M^{\prime} are essentially finite at p_{0} and p_{0}^{\prime} respectively then H extends as a holomorphic mapping from a neighborhood of p_{0} in \mathbb{C}^{n+1} to \mathbb{C}^{n+1}.

Theorem 1 was first proved for $n=1$ by S. Bell and the authors (see [1], [2]). It generalizes the result in the diffeomorphic case proved in [3]. We refer to the references of [2] and [3] for earlier works on holomorphic extendibility of $C R$ mappings under stronger conditions.

The following is a key ingredient in the proof of Theorem 1 . If j is a smooth $C R$ function defined on M then there exists a unique formal (holomorphic) power series $J(z)=$ $\sum a_{\alpha} z^{\alpha}, a_{\alpha} \in \mathbb{C}$, such that, if $U \ni u \mapsto Z(u) \in \mathbb{C}^{n+1}\left(U \subset \mathbb{R}^{2 n+1}, Z(0)=0\right)$ is a parametrization of M, then the Taylor series of $j(Z(u))$ at 0 is given by $J(Z(u))$. On the other hand it is clear that a $C R$ mapping between two hypersurfaces M and M^{\prime} in \mathbb{C}^{n+1} is given by $(n+1) C R$ functions $\left(j_{1}, \ldots, j_{n+1}\right)$. Such a mapping is called of finite multiplicity at 0 if

$$
\operatorname{dim}_{\mathbb{C}} O[[Z]] /(J(Z))<\infty
$$

where $\mathcal{O}[[Z]]$ is the ring of formal power series in $(n+1)$ indeterminates and $(J(Z))$ is the ideal generated by $\left(J_{1}(Z), \ldots, J_{n+1}(Z)\right)$. Here the dimension is taken in the sense of vector spaces. We have the following:

THEOREM 2. If M and M^{\prime} are essentially finite at p_{0} and p_{0}^{\prime} respectively then a $C R$ mapping $H: M \rightarrow M^{\prime}$ is of finite multiplicity at p_{0} if and only if condition (1) of Theorem 1 holds.

We may restate Condition (1) in terms of local coordinates. We may assume $p_{0}^{\dot{0}}=$ $H\left(p_{0}\right)=0$ and M and M^{\prime} are given locally by

$$
\begin{equation*}
\operatorname{Im} w=\varphi(z, \bar{z}, \operatorname{Re} w), \quad \operatorname{Im} w=\psi(z, \bar{z}, \operatorname{Re} w) \tag{2}
\end{equation*}
$$

with $\varphi(z, 0, \operatorname{Re} w)=\psi(z, 0, \operatorname{Re} w)=0 ; z \in \mathbb{C}^{n}, w \in \mathbb{C}$. The map H is then given by $n+1$ $C R$ functions $\left(f_{1}, \ldots, f_{n}, g\right)=(f, g)$ defined on M. Therefore we have

$$
\begin{equation*}
\frac{g-\bar{g}}{2 i}=\psi\left(f, \bar{f}, \frac{g+\bar{g}}{2}\right) \tag{3}
\end{equation*}
$$

With this notation Condition (1) is equivalent to

$$
\begin{equation*}
\frac{\partial g}{\partial s}(0) \neq 0 \tag{4}
\end{equation*}
$$

with $s=\operatorname{Re} w$. (Here f_{j} and g are considered as smooth functions of z, \bar{z}, s).
Using Theorem 1 as well as Diederich-Fornaess [5], [6], Fornaess [7] and Bell-Catlin [4], we obtain the following

THEOREM 3. Let D and D^{\prime} be two bounded pseudoconvex domains in \mathbb{C}^{n+1} with real analytic boundaries and $H: D \rightarrow D^{\prime}$ a proper, holomorphic mapping. Then H extends holomorphically to a neighborhood of \bar{D}, the closure of D.

We give here an outline of the proof of Theorem 1. By solving (3) for \bar{g} we obtain a holomorphic function Q

$$
\begin{equation*}
\bar{g}=Q(f, \bar{f}, g) \tag{5}
\end{equation*}
$$

As in [3] by writing

$$
Q(f, \lambda, g)=\sum Q_{\zeta^{\alpha}}(f, \bar{f}, g) \frac{(\lambda-\bar{f})^{\alpha}}{\alpha!}
$$

we are reduced to showing that for $z_{0} \in \mathbb{C}^{n}$ fixed, $\left|z_{0}\right|<r$,

$$
Q_{\varsigma^{\alpha}}\left(f\left(z_{0}, \bar{z}_{0}, s\right), \bar{f}\left(z_{0}, \bar{z}_{0}, s\right), g\left(z_{0}, \bar{z}_{0}, s\right)\right)
$$

extends as a holomorphic function in $s+i t,|s|<r,-R<t<0$, for some r, R positive, and satisfies

$$
\begin{equation*}
\left|Q_{5^{\alpha}}\right| \leq C^{\alpha+1} \alpha!, \quad C>0 \tag{6}
\end{equation*}
$$

The main ingredients used in proving the above are the following.

LEmMA 1. If j is a smooth $C R$ function defined on M then the Taylor series of j in the coordinates (z, s) is given uniquely by

$$
\begin{equation*}
\left.j \sim \sum a_{\alpha k} z^{\alpha} w^{k}\right|_{w=++i \varphi(x, x, e)}, \quad a_{\alpha k} \in \mathbb{C} \tag{7}
\end{equation*}
$$

A basis for the $C R$ vector fields on M is given by

$$
\begin{equation*}
L_{j}=\frac{\partial}{\partial \bar{z}_{j}}-i \frac{\varphi_{\bar{z}_{j}}}{1+i \varphi_{s}} \frac{\partial}{\partial s}, \quad 1 \leq j \leq n \tag{8}
\end{equation*}
$$

Lemma 2. If $j(z, \bar{z}, s)$ is a $C R$ function on M, then for all multi-indices α

$$
\bar{L}^{\alpha} j(0)=\left(\frac{\partial}{\partial z}\right)^{\alpha} J(0,0)
$$

where $J(z, w) \sim \sum a_{\alpha k} z^{\alpha} w^{k}$ is as defined in Lemma 1.
Using the Nullstellensatz we may prove the following.

LEMMA 3. For $j=1, \ldots, n$ let $F_{j}(z, w)$ be the formal power series associated to f_{j} as in Lemma 1. Let I be the ideal generated by $F_{j}(z, 0), 1 \leq j \leq n$, the ring $\mathcal{O}[[Z]]$ of formal power series in the indeterminates z_{1}, \ldots, z_{n}. Then under the assumptions of Theorem 1,

$$
\begin{equation*}
\operatorname{dim}_{C} O[[z]] / I<\infty \tag{9}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial F_{k}}{\partial z_{j}}(z, 0)\right) \not \equiv 0 \tag{10}
\end{equation*}
$$

An immediate consequence of Lemmas 2 and 3 is that there exists a multi-index α such that

$$
\begin{equation*}
\bar{L}^{\alpha}\left(\operatorname{det}\left(\bar{L}_{j} f_{k}\right)\right)(0) \neq 0 \tag{11}
\end{equation*}
$$

LEmma 4. For every multi-index α and every $z_{0},\left|z_{0}\right|<r$ there exist functions $a(s)$, $b(s)$ holomorphic in the domain $R=\{s+i t ;|s|<r,-R<t<0\}$, smooth in \bar{R} such that

$$
Q_{5^{\alpha}}(f, \bar{f}, g)\left(z_{0}, s\right)=\frac{a(s)}{b(s)}
$$

Lemma 4 is proved by applying successively \bar{L}^{β} to (5) and using (11).

Lemma 5. For each $j, 1 \leq j \leq n, f_{j}$ satisfies a polynomial equation of the form

$$
f_{j}^{N_{j}}+a_{N_{j-1}}^{j} f_{j}^{N_{j}-1}+\cdots+a_{0}^{j}=0
$$

where $a_{k}^{j}=a_{k}^{j}\left(L^{\gamma} \bar{f}, L^{\gamma} \bar{g}\right)$ is a holomorphic function of the $L^{\gamma} \bar{f}, L^{\gamma} \bar{g}$, for $|\gamma| \leq \gamma_{0}$.

The proof of Lemma 5 uses Lemma 3, as well as repeated applications of the Weierstrass Preparation theorem and the Nullstellensatz.

LEMMA 6. There exists N such that for each multi-index $\alpha, Q_{5^{\alpha}}(f, \bar{f}, g)(z, \bar{z}, s)$ is a root of a polynomial of the form

$$
\begin{equation*}
X^{N}+b_{N-1}^{\alpha} X^{N-1}+\cdots+b_{0}^{\alpha}=0 \tag{12}
\end{equation*}
$$

where the b_{k}^{α} are holomorphic functions of $L^{\gamma} \bar{f}$ and $L^{\gamma} \bar{g},|\gamma| \leq \gamma_{0}$, and satisfies

$$
\begin{equation*}
\left|b_{j}^{\alpha}\left(L^{\gamma} \bar{f}, L^{\gamma} \bar{g}\right)\right| \leq\left(C^{\alpha+1}|\alpha|!\right)^{N-j} \tag{13}
\end{equation*}
$$

at $(z, \bar{z}, s+i t)$ for $|z|<r,|s|<r$ and $-R \leq t \leq 0$.

From Lemmas 4 and 6 it follows, using the Lemma in [2], that each $Q_{s^{a}}(f, \bar{f}, g)$ extends holomorphically to R. Finally, the estimate (6) follows from (13).

For higher codimension, a slight modification of the proof of Theorem 1 yields the following.

THEOREM 4. Let M and M^{\prime} be real analytic generic $C R$ submanifolds of real codimensional ℓ in $\mathbb{C}^{n+\ell}$ and $H: M \rightarrow M^{\prime}$ a smooth $C R$ mapping defined near $p_{0} \in M$, $H\left(p_{0}\right)=p_{0}^{\prime}$, and satisfying

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}}\left(H^{\prime}\left(\mathbb{C} T_{p_{0}} M\right) / \nu_{p_{0}}^{\prime} \oplus \bar{\nu}_{p_{0}^{\prime}}^{\prime}\right)=\ell \tag{14}
\end{equation*}
$$

where \mathcal{V}^{\prime} is the $C R$ bundle of M^{\prime}. Assume that M and M^{\prime} are essentially finite at p_{0}, and that near p_{0}, H extends holomorphically to a wedge of edge M. Then H extends as a holomorphic mapping from a neighborhood of p_{0} in $\mathbb{C}^{n+\ell}$ to $\mathbb{C}^{n+\ell}$.

Complete details of the proofs will appear elsewhere.

REFERENCES

[1] Baouendi, M.S., S. R. Bell, and L. P. Rothschild, CR Mappings of Finite Multiplicity and Extension of Proper Holomorphic Mappings, Bull. AMS 16 (1987), 265-270.
[2] \qquad Mappings of three-dimensional CR manifolds and their holomorphic extension, (to appear).
[3] Baouendi, M.S., H. Jacobowitz and F. Treves, On the analyticity of CR mappings, Ann. Math. 122 (1985), 365-400.
[4] Bell, S. and D. Catlin, Boundary regularity of proper holomorphic mappings, Duke Math. J. 49 (1982), 385-396.
[5] Diederich, K. and J. E. Fornaess, Boundary regularity of proper holomorphic mappings, Invent. Math. 67 (1982), 363-384.
[6] Diederich and J. E. Fornaess, Pseudoconvex domains with real analytic boundary, Ann. of Math. 107 (1978), 371-384.
[7] FORNAESS, J. E., Biholomorphic mappings between weakly pseudoconvex domains, Pacific J. Math. 74 (1978), 63-65.

