JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

OTTO LIESS LUIGI RODINO

A general class of Gevrey-type pseudo differential operators

Journées Équations aux dérivées partielles (1983), p. 1-8

http://www.numdam.org/item?id=JEDP_1983____A6_0

© Journées Équations aux dérivées partielles, 1983, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

A GENERAL CLASS OF GEVREY-TYPE PSEUDO DIFFERENTIAL OPERATORS

OTTO LIESS

FACHBEREICH MATHEMATIK, TECHNISCHE HOCHSCHULE DARM STADT, SCHLOSSGARTENSTR.7, D-6100 DARMSTADT, WEST GERMANY.

LUIGI RODINO

ISTITUTO DI ANALISI MATEMATICA, UNIVERSITÀ DI TORINO
VIA CARLO ALBERTO 10, I-10123 TORINO, ITALY

Recently much attention has been paid to the study of new classes of analytic and Gevrey-type pseudo differential operators; see for example Matsuzawa [8], Iftimie [5], Bolley -Camus-Métivier [2].

We shall consider here symbols $a(x,\xi)$ of general Gevrey type for which

$$(1) \quad \left| D_{\mathbf{x}}^{\alpha} D_{\xi}^{\beta} a(\mathbf{x}, \xi) \right| \leq C^{\left|\alpha\right| + \left|\beta\right| + 1} \alpha! \beta! \phi(\xi)^{m - \left|\alpha\right|} \phi(\xi)^{m' + \left|\alpha\right| - \left|\beta\right|}$$

if
$$C' |\beta| \leq \varphi(\xi)$$
.

The weight functions φ , ψ are continuous in R^n and satisfy for suitable positive constants ϵ , ϵ' independent of ξ , η ϵ R^n :

(2)
$$\varepsilon(1 + |\xi|)^{\varepsilon} \leq \varphi(\xi) \leq \varepsilon' \psi(\xi)$$

(3)
$$\varepsilon \leqslant \varphi(\xi) \varphi(\eta)^{-1} \leqslant \varepsilon'$$
, $\varepsilon \leqslant \psi(\xi) \psi(\eta)^{-1} \leqslant \varepsilon'$
if $|\xi - \eta| \leqslant \varepsilon \psi(\xi)$.

To these conditions, which are quite common for general pseudo differential operators, we add the technical assumption:

(4) for every δ there exists δ ' such that $\psi(\eta) \leqslant \delta |\xi - \eta|$ implies $\varphi(\eta) \psi(\xi) \leqslant \delta$ ' $|\xi - \eta| \varphi(\xi)$.

From the C^{∞} point of view our symbols can be regarded as elements of **a** class of Beals [1] S^{λ}_{\bigoplus} , with \bigoplus = ψ , $\theta = \phi/\psi$. The reason why we prefer here to refer to the function $\phi = \theta \psi$ for the estimates in (1) is that a peculiar property of the pseudo differential operator

(5)
$$a(x,D)f(x) = (2\pi)^{-n} \int e^{ix\xi} a(x,\xi) \hat{f}(\xi) d\xi$$

associated with $a(x,\xi)$ turns out to be the continuity from

 G_{ψ} to G_{ϕ} , where G_{ψ} , G_{ϕ} are the inhomogeneous Gevrey classes related to the weight functions ψ , ϕ , respectively.

Let us begin by giving a general definition of such classes in terms of Fourier transform. Let φ (or ψ) be a weight function as in (2), (3). More generally, let $\lambda\colon \operatorname{R}^n\to\operatorname{R}_+$ be Lipschitzian, in the sense that $|\lambda(\xi)-\lambda(\eta)|\leqslant C|\xi-\eta|$ for some constant C independent of ξ,η , and assume also $\varepsilon(1+|\xi|)^{\varepsilon}\leqslant\lambda(\xi)$ for some $\varepsilon>0$. Let X be open in R^n .

Definition 1. We say that $f \in \mathfrak{O}'(X)$ is of class G_{λ} at $x_0 \in X$ if there is a neighborhood U of x_0 , $U \subset X$, and a bounded sequence $f \in \mathscr{E}'(X)$ such that $f = f_1$ in U and

(6)
$$|\hat{\mathbf{f}}_{j}(\xi)| < \mathbf{c}(c\mathbf{j}/\lambda(\xi))^{j}, \qquad j = 1,2,...$$

We denote by $G_{\lambda}(X)$ the set of all $f \in \mathfrak{O}'(X)$ which are of class G_{λ} at every $X_{0} \in X$.

When $\lambda(\xi) = (1+|\xi|)^{\rho}$, $0 < \rho \leqslant 1$, $G_{\lambda}(X)$ is the standard class $G^{1/\rho}(X)$ of all the functions $f \in C^{\infty}(X)$ which satisfy in every $K \subset X$ the estimates

(7)
$$\left| D^{\alpha} f(\mathbf{x}) \right| < C^{\left| \alpha \right| + 1} (\alpha!)^{1/\rho}$$

(cf. Hörmander [4], Proposition 2.4).

In particular for $\lambda(\xi)=1+|\xi|$ we have $G_{\lambda}(X)=\mathbf{Q}(X)$, the set of all the real analytic functions in X.

Classes G_{λ} (X) with inhomogeneous λ have been considered by several authors under different definitions; see for example Liess [6] and the references there. The advantage of the present definition is that it can be microlocalized in a natural

way, adapting the procedure used by Rodino [10] in the C framework. Fix $\Gamma\subset R^n_\xi$ and set for $\epsilon>0$

(8)
$$\Gamma_{\varepsilon \lambda} = \{ \xi \in \mathbb{R}^{n}, \text{ dist } (\xi, \Gamma) < \varepsilon \lambda(\xi) \}.$$

Definition 2. We shall say that f is G_{λ} - smooth at $\{x_{O}\}$ x Γ and we shall write formally WF $_{\lambda}$ f \cap ($\{x_{O}\}$ x Γ) = ϕ if the estimates (6) are satisfied in $\Gamma_{\varepsilon\lambda}$, for a sufficiently small ε > 0.

It is natural then to introduce the space of the "microfunctions" at $\{x_0\}x$ Γ .

Definition 3. We denote by $C_{x_0,\Gamma,\lambda}^{\infty}$ the factor space $C_{x_0}^{\infty}/_{\gamma}$, where $C_{x_0}^{\infty}$ is the set of the germs of $C_{x_0}^{\infty}$ functions defined near x_0 and $f \sim g$ in $C_{x_0}^{\infty}$ iff $WF_{\lambda}(f-g) \cap (\{x_0\}x_0\}) = \phi$.

It is convenient in certain applications to use also a different kind of microlocalization. Precisely, set for $\epsilon > 0$

(8)'
$$\Gamma_{[\epsilon\lambda]} = \{ \xi \in \mathbb{R}^n, \lambda(\xi-\eta) < \epsilon \lambda(\xi) \text{ for some } \eta \in \Gamma \}.$$

Definition 2'. We shall say that f in strongly G_{λ} - smooth at $\{x_O\}$ x Γ and we whall write formally WF_{λ}^* f \cap $(\{x_O\}$ x $\Gamma)$ = ϕ if the estimates (6) are satisfied in $\Gamma_{[\epsilon\lambda]}$, for a sufficiently small $\epsilon > 0$.

For example, if Γ is the halfray generated by $\xi_0 \neq 0$ and $\lambda(\xi) = (1 + |\xi|)^{\rho}$, $0 < \rho \leqslant 1$, then $WF_{\lambda}^* f \cap (\{x_0\} \times \Gamma) = \phi$ means that (x_0, ξ_0) is not in the Gevrey wave front set $WF_{1/\rho}^f$ of Hörmander [4].

Note that strong G_{λ} -smoothness at $\{x_o\}$ x Γ implies G_{λ} -smoothness there, but the converse is not true in general.

Let us now return to pseudo differential operators and give a precise definition of our classes from the microlocal point of view.

Assume φ and ψ satisfy the conditions (2), (3), (4). Let X be open in $R_{\mathbf{x}}^n$ and fix $\Gamma \subset R_{\xi}^n$.

Definition 4. We define $S_{\phi,\psi}^{m,m'}$ (X, Γ) to be the set of all $a(x,\xi) \in C^{\infty}(Xx\Gamma)$ which can be extended for some $\varepsilon > 0$ to functions in $C^{\infty}(Xx\Gamma_{\varepsilon\psi})$ such that (1) is satisfied with suitable positive constants C,C' independent of $x \in X, \xi \in \Gamma_{\varepsilon\psi}$. A symbol $a(x,\xi) \in S_{\phi,\psi}^{m,m'}(X,\Gamma)$ can be further extended to a function $a(x,\xi) \in C^{\infty}(XxR^n)$, by cutting off in the ξ variables, and $a(x,\xi) \in C^{\infty}(XxR^n)$, by cutting off in the ξ variables, and $a(x,\xi) \in C^{\infty}(XxR^n)$ is then defined as a map from $C_{0}^{\infty}(X)$ to $C^{\infty}(X)$. The continuity property can now be expressed in the following microlocal form.

Theorem 5. Let $a(x,\xi)$ be in $S_{\phi,\psi}^{m,m'}(X,\Gamma)$, and take $x \in X$, $\Lambda \subset \Gamma$. Then a(x,D) defines by factorization an operator

(9)
$$a(x,D) : C_{x_0,\Lambda,\psi}^{\infty} \to C_{x_0,\Lambda,\psi}^{\infty}$$

which depends only on a and not also on the extensions $\overset{\sim}{\text{a}}$ of a.

The symbolic calculus for the operators a(x,D) in (9) follows the lines of the calculus of the C^∞ -general pseudo differential operators (cf. Beals [1]), with some evident complications in the estimates due to the factor $C^{|\alpha|+|\beta|}+1$ algebraic which we expect in (1). From Theorem 5 and from symbolic calculus one deduces by means of a standard argument the following result on existence of parametrices. Theorem 6. Consider $a(x,\xi) \in S^m_{\phi}(X,\Gamma) = S^{O,m}_{\phi,\phi}(X,\Gamma) \subset S^{O,m}_{\phi,\phi}(X,\Gamma)$ and fix $x \in X$, $A \subset \Gamma$. Assume there exist a neighborhood U of $x \in X$, $X \in X$

such that

(10)
$$|a(x,\xi)| \ge c \varphi(\xi)^{m_1} \psi(\xi)^{m_1'} \underline{for} \quad x \in U, \xi \in \Lambda_{\varepsilon\psi} \underline{and}$$
 $|\xi| \ge C$

$$(11) \quad \left|D_{\mathbf{x}}^{\alpha} D_{\xi}^{\beta} a(\mathbf{x}, \xi)\right| \leq C^{\left|\alpha\right| + \left|\beta\right|} \alpha! \beta! \left|a(\mathbf{x}, \xi)\right| \varphi(\xi)^{-\left|\alpha\right|} \psi(\xi)^{\left|\alpha\right| - \left|\beta\right|}$$

for all α and all x, ξ , β with $x \in U$, $\xi \in \Lambda_{\epsilon \psi}$, $c' |\beta| \leqslant \varphi(\xi)$ and $|\xi| \geqslant C$.

Then there is $b \in S^{-m}_{\phi,\psi}^{-m'}_{1}(U,\Lambda)$ such that b(x,D)o a(x,D): $C^{\infty}_{x_{O},\Lambda,\psi}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda,\psi}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda,\psi}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda,\psi}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda,\psi}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda,\psi}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda,\psi}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda,\psi}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda,\psi}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda,\psi}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda,\psi}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda,\psi}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda,\psi}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda,\psi}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda,\psi}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda,\psi}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda,\psi}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D):$ $C^{\infty}_{x_{O},\Lambda}^{-m'}_{1}(U,\Lambda) = \frac{1}{2} \text{ such that } b(x,D)o a(x,D)o a(x,D)o$

When A = a(x,D) is a linear partial differential operator with analytic coefficients in X there are some obvious simplifications in the statement; namely, if for every KCCX we have for large $|\xi|$ and suitable costants $|a(x,\xi)| \geqslant c|\xi|^T$ and

(11)
$$|D_{\mathbf{x}}^{\alpha} D_{\xi}^{\beta} a(\mathbf{x}, \xi)| \leq C^{|\alpha| + 1} \alpha! |a(\mathbf{x}, \xi)|_{\varphi(\xi)}^{-|\alpha|} |\alpha| - |\beta|$$

then Af $\in G_{\phi}$ (X) implies $f \in G_{\phi}$ (X) for every $f \in \mathfrak{O}$ '(X); in particular all solutions of Af = 0 are in G_{ϕ} (X).

A simple example is given by the hyp coelliptic operators with constant coefficients P = p(D). Let $\delta(\xi)$ be the distance from $\xi \in \mathbb{R}^n$ to the surface $\{\zeta \in \mathbb{C}^n, p(\zeta) = 0\}$, and set $\psi(\xi) = 1 + \delta(\xi)$. It is well known that

(12)
$$|D_{\xi}^{\beta} p(\xi)| \leq C |p(\xi)| \psi(\xi)^{-|\beta|}$$

 An example of operator for which $\varphi \neq \psi$ (that means a loss of Gevrey regularity for the solutions) is given by

(13)
$$A = 1 + |x|^{2k} p(D) ,$$

where p(D) is hyppoelliptic and p(ξ) \geqslant 0; the estimates (11) are satisfied for $\psi(\xi)$ as in preceding example and any $\varphi(\xi)$ for which p(ξ) $< (\psi(\xi)/\varphi(\xi))^{2k}$.

Theorem 6, as well as Theorem 5, can be restated in terms of strong G_{λ} -smoothness, according to Definition 2'. A relevant application is given by the choice $\psi(\xi) = (1+|\xi|)^{\rho}$, $\psi(\xi) = (1+|\xi|)^{\rho-\delta}$, $0 < \delta < \rho < 1$, which corresponds to the operators in [2], [5], [8]. Since the related Gevrey wave front sets are invariant under canonical transformations, geometric invariant statements are possible in this case; for example, let us consider a classical analytic symbol $\psi(x,\xi) = \int_{j=0}^{\infty} a_{m-j}(x,\xi) dx$ and assume the principal part $\psi(x,\xi)$ vanishes exactly of order $\psi(x,\xi)$, on an involutive manifold $\xi \in T^*X \setminus 0$. Noting $\psi(x,\xi)$ the subprincipal symbol, set for any $\psi(x,\xi)$ and for any $\psi(x,\xi)$ vector field $\psi(x,\xi)$ defined in a neighborhood of $\psi(x,\xi)$

(14)
$$I_a(\gamma, Y) = (k!)^{-1} (Y^k a_m) (\gamma) + a_{m-1}'(\gamma).$$

Theorem 7. Assume $I_a(\gamma,Y) \neq 0$ for every γ and γ . Then, writing s = k/(k-1), we have WF_s $a(x,D)f = WF_sf$ for all $f \in \mathcal{E}'(X)$. In particular $a(x,D)f \in G^S(X)$ implies $f \in G^S(X)$. In fact, after conjugation by a Fourier integral operator, a(x,D) becomes an operator to which Theorem 6 applies with $\psi(\xi) = \varphi(\xi) = (1+|\xi|)^{1/s}$ (cf. Parenti-Rodino [9], where C^∞ -

hyp oellipticity was proved under the same assumptions). Similarly we can prove a G^2 -hy poellipticity result for the operators in the classes of Boutet de Monvel-Grigis-Helffer [2].

Another application of Theorem 6 refers the choice $\mu(\xi) = \sum_{j=1}^{n} |\xi_j|^{1/M_j}$, where $\mu = (\mu_1, \dots, \mu_n)$ is a n-tuple of rational numbers $\mu(\xi) = 1$; the related hypoellipticity results can be expressed in terms of the anisotropic Gevrey wave front set $\mu(\xi) = 1$, Rodino [11]. Details and proofs of the results announced here will be found in Liess-Rodino [7].

REFERENCES

- [1] R.Beals, <u>A general calculus of pseudo differential</u> operators, Duke Math. J., <u>42</u> (1975), 1-42.
- [2] P.Bolley J.Camus G.Métivier, Regularité Gevrey et itérés pour une classe d'opérateurs hyp oelliptiques, Rend.Sem.Mat.Univ.Politecnico Torino, 40 (1982), to appear.
- [3] L.Boutet de Monvel A.Grigis B.Helffer, <u>Paramétrixes</u>
 d'opérateurs pseudo différentiels à caractéristiques
 <u>multiples</u>, Astérisque, <u>34-35</u> (1976), 93-123.
- [4] L.Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, C.P.A.M., 24 (1971), 671-704.
- [5] V.Iftimie, Opérateurs hy poelliptiques dans les espaces de G evrey, Bull.Soc.Sci.Math., Roumanie (1983), to appear.

- [6] O.Liess, <u>Intersection properties of weak analytically</u> uniform classes of functions, Ark. Mat., <u>14</u> (1976),93-111.
- [7] O.Liess L.Rodino, <u>Inhomogeneous Gevrey classes and</u> related pseudo differential operators, preprint (1983).
- [8] T.Matsuzawa, Opérateurs pseudo différentials et classes de Grevrey, Journées Equations aux derivées partielles, Saint Jean de Monts 1982, conf. n. 12.
- [9] C.Parenti-L.Rodino, <u>Parametrices for a class of pseudo</u> differential operators, Annali Mat.Pura ed Appl., <u>125</u> (1980), 221-278.
- [10] L.Rodino, <u>Microlocal analysis for spatially inhomogeneous</u>

 pseudo differential operators, Ann.Scuola Norm.Sup.Pisa,

 ser.IV, 9 (1982), 211-253.
- [11] L.Rodino, On the Gevrey wave front set of the solutions of a quasi-elliptic degenerate equation, Rend.Sem.Mat. Univ.Politecnico Torino, 40 (1982), to appear.
- [12] L.Zanghirati, <u>Iterati di operatori e regolarità G evrey</u> <u>microlocale anisotropa</u>, Rend.Sem.Mat.Padova, <u>17</u> (1982), 85-104.