JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Masatake Kuranishi
 The Nash-Moser inverse mapping theorem

Journées Équations aux dérivées partielles (1983), p. 1-6
<http://www.numdam.org/item?id=JEDP_1983 \qquad A11_0>
© Journées Équations aux dérivées partielles, 1983, tous droits réservés.
L'accès aux archives de la revue «Journées Équations aux dérivées partielles » (http://www. math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

by M. KURANISHI

To prove a local embedding theorem for strongly pseudo-convex CR structures (of dimension $3 q$) (cf. [2]) we used a variant of Nash-Moser inverse mapping theorem. We try to explain in general terms how it was done, wilhout bothering too much about technical details.

For a $\varepsilon_{0}>0$ we define $\varepsilon_{\nu}>0$ inductively by
(1)

$$
\varepsilon_{\nu+1}=\varepsilon_{\nu}^{a}, \quad a=3 / 2
$$

The Nash-Moser inverse mapping theorem (cf. [3]) is based on the following :

LEMMA :
Let $s, t \geqslant 0$ be given. Pick $\lambda, \mu>0$ so large that

$$
s+(a-2) \leqslant 0
$$

$$
\begin{equation*}
t+a^{2} \mu+(1-a) \lambda \leqslant-a \tag{2}
\end{equation*}
$$

Let $p_{\nu}>0$ be a sequence. Assume that for a constant $C^{*}>0$
$p_{\nu} \leqslant C^{*}\left(\varepsilon_{\nu}^{-s}\left(p_{\nu-1}\right)^{2}+\varepsilon_{\nu}^{\lambda} \varepsilon_{\nu-1}^{-\lambda-t}\right)$
(3)
$\varepsilon_{1} \leqslant 1 /\left(2 C^{*}\right)^{2}, p_{0} \leqslant \varepsilon_{1}^{\mu} / 2 C^{*}$.

Then
(4)

$$
p_{\nu} \leqslant\left(\varepsilon_{\nu+1}\right)^{\mu} / 2 c^{*}
$$

Proof goes as follows : we set $g_{\nu}=\varepsilon_{\nu+1}-\mu p_{\nu}$. Then
$g_{v} \leqslant C^{*}\left(\varepsilon_{v}^{-(s+(a-2) \mu)} g_{v-1}^{2}+\varepsilon_{v-1}^{-\left(t+a^{2} \mu+(1-a) \lambda\right)}\right)$.

Hence $g_{V} \leqslant C^{\#}\left(\left(g_{v-1}\right)^{2}+\varepsilon_{v}\right)$. We now prove $g_{V} \leqslant 1 / 2 C_{\#}$ by induction on ν.

We apply the above lemma in the following setting : we consider open sets F^{\prime}, G^{\prime} in Frechet spaces F, G and a map

$$
\Phi: F^{\prime} \rightarrow G^{\prime}
$$

Each of these Frechet spaces is assumed to be endowed with an increasing sequence of semi-norms $\left\|\|_{k}\right.$ which defines its topology. In practice, we consider the Frechet spaces of C^{∞} sections of vector bundles over a manifold M. $\left\|\left\|\|_{k}\right.\right.$ is defined by measuring the partial derivatives up to degree k of sections. Φ is given by a non-linear partial differential operator involving partial derivatives up to order, say r. This is translated into an assumption

$$
\begin{equation*}
\|\Phi(f)\|_{k} \leqslant C_{k}\left(1+\|f\|_{k+r}\right) \tag{5}
\end{equation*}
$$

For k sufficiently large any map with the above assumption is called tame (cf. R. Hamilton [l] for more details). We assume that Φ is infinitely differentiable and all partial derivatives are tame. In particular there is for each $f \in F^{\prime}$ a continuous linear map.

$$
\mathrm{d}_{\mathrm{f}} \Phi: \mathrm{F} \rightarrow \mathrm{G}
$$

such that with $\mathrm{R}_{\mathrm{f}}(\mathrm{h})=\Phi(\mathrm{f}+\mathrm{h})-\Phi(\mathrm{f})-\mathrm{d}_{\mathrm{f}} \Phi(\mathrm{h})$

$$
\begin{equation*}
\left|\left|R_{f}(h)\right|\right|_{k} \leqslant C_{k}\left(| | f| |_{k+r}| | h| |_{k_{o}}^{2}+||h||_{n+r}^{2}\right) \tag{6}
\end{equation*}
$$

for $k \geqslant k_{1}$. We also assume that there is a mollifier $M_{\varepsilon}(\varepsilon>0)$ with the standard properties : for $s \geqslant 0$

$$
\begin{equation*}
\left\|M_{\varepsilon} f\right\|_{k+s} \leqslant C_{k, s} \varepsilon^{-s}\|f\|_{k} \tag{7}
\end{equation*}
$$

$$
\left\|f-M_{\varepsilon} f\right\|_{k} \leqslant C_{k, s} \varepsilon^{s} \| f| |_{k+s}
$$

We now wish to show that an element $g \quad G^{\prime}$ is in the image of Φ. We may assume that $g=0$. We solve the problem by a successive approximation. Namely, for a_{ν} - th approximation f_{ν} we define $f_{\nu+1}$ as follows : note that $\Phi\left(f_{\nu}+h\right)$ is very closed to $\Phi\left(f_{\nu}\right)+d_{f_{V}} \Phi(h)$. Hence we solve the equation :

$$
\begin{equation*}
\Phi\left(f_{\nu}\right)+d_{f_{\nu}} \Phi(h)=0 \tag{8}
\end{equation*}
$$

However, in the process we usually lose derivatives. We compensate this by setting

$$
\begin{equation*}
\mathbf{f}_{v+1}=\mathbf{f}_{v}+\mathbf{M}_{\varepsilon_{\nu+1}} \mathbf{h}_{v} \tag{9}
\end{equation*}
$$

where h_{ν} is a solution of (8) and where ε_{ν} is given in (1). In fact, we assume that we can f ind h_{v} with

$$
\begin{equation*}
\left\|h_{v}\right\|_{k-r_{1}} \leqslant c_{k}\left\|\Phi\left(f_{v}\right)\right\|_{k} \tag{10}
\end{equation*}
$$

This estimate is essential for this method to work. In order to show that f_{V} converge to a solution f of our problem, it is enough to show that $p_{\nu}=\left\|\Phi\left(f_{\nu}\right)\right\|_{k}$ satisfy (3) in the lemma. If this is the case, p_{ν} has estimate (4). In view of (9) and (10) it then follows that f_{v} will also converge. Now :

$$
\begin{aligned}
& \Phi\left(f_{\nu}+M_{\varepsilon_{\nu+1}} h_{v}\right)=\Phi\left(f_{\nu}\right)+d_{f_{\nu}} \Phi\left(M_{\varepsilon_{\nu+1}} h_{v}\right)+R_{f_{\nu}}\left(M_{\varepsilon_{\nu+1}} h_{\nu}\right) \\
& =R_{f_{\nu}}\left(M_{\varepsilon_{\nu+1}} h_{\nu}\right)-d_{f_{\nu}} \Phi\left(h_{\nu}-M_{\varepsilon_{\nu+1}} h_{\nu}\right)
\end{aligned}
$$

Note (7) and (6). From the first term (resp. the second term) we obtain terms $C^{*} \varepsilon_{\nu+1}^{-s}\left(p_{\nu}\right)^{2}\left(\right.$ resp. $\left.\varepsilon_{\nu+1}^{\lambda} \varepsilon_{\nu}^{-\lambda-t}\right)$ for a choice of s and t.

The above shows that we can solve the equation $\Phi(f)=g$ for a given g provided we find a very good approximation f_{o} so that the last inequality in (30) is satisfied. In particular, we find that a small neighborhood of f_{0} is covered by Φ.

For a local embedding theorem mentioned in the beginning we have a following more general setting. Namely, we have a manifold M and for each open $U \subset M$ we have :

$$
\mathrm{F}^{\prime}(\mathrm{U}) \stackrel{\Phi}{\rightarrow} \mathrm{G}^{\prime}(\mathrm{U}) \stackrel{\Psi}{\rightarrow} \mathrm{H}^{\prime}(\mathrm{U})
$$

with $\Psi . \Phi=0$. They are related by compatible restriction maps. We are given $g \in G^{\prime}(M)$ with $\Psi(g)=0$ and a reference point p_{0} in M. We wish to show that the restriction of g to a suitable open neighborhood U of p_{o} is in the image of Φ. We may assume that $g=0$. The existence of Ψ means that we may not be able to solve the equation (8). We have to replace $\Phi\left(f_{V}\right)$ by its projection to the image of $d_{f_{V}} \Phi$. Moreover, we could find such projection only for U satisfying certain conditions which also depend on f_{V}. Namely, for each $f \in F\left(U_{1}\right)$, where $p_{0} \in U_{1}$, we have a way to define $r_{f}>0$ and a distance function t_{f} to p_{o} with the following properties : for $0<r<r_{f}$ set

$$
\begin{equation*}
U(f, r)=\left\{p \in U_{1} ; t_{f}(p)<r\right\} \tag{11}
\end{equation*}
$$

Let f^{\prime} be the restriction of f to $F(U(f, r)), f^{\prime}=f \mid U(f, r)$.
Then there is

$$
\begin{equation*}
V_{f^{\prime}}: G(U(f, r)) \rightarrow F(U(f, r)) \tag{12}
\end{equation*}
$$

such that with $h^{\prime}=V_{f}\left(\Phi\left(f^{\prime}\right)\right)$

$$
\begin{equation*}
-\Phi\left(f^{\prime}\right)=\left(d_{f}, \Phi\right)\left(h^{\prime}\right)+A\left(\Phi\left(f^{\prime}\right)\right) \tag{13}
\end{equation*}
$$

where $A(\Psi)$ is given by a composition.

$$
\begin{equation*}
\mathrm{A}(\psi)=\mathrm{A}_{1} \circ \mathrm{~A}_{2}(\psi) \tag{14}
\end{equation*}
$$

A_{1} is a linear map. A_{2} is a non-linear partial differential operator starting with quadratic terms. Since our error term $A\left(\Phi\left(f^{\prime}\right)\right)$ is of quadratic nature as R_{f} in (6) we may try to solve our problem by the same method as in the standard case.

We first find $f_{o} \in \mathcal{F}\left(U_{o}\right)$ such that :

$$
\left\|\Phi\left(f_{o}\right) \mid u\left(f_{o}, r\right)\right\|_{k} \leqslant 0\left(r^{N}\right)
$$

for all N. This is achieved by solving the differential equation $\Phi(f)=0$ as a formal power series centered at p_{o} whose Taylor series agree with the solution formal power series will satisfy our requirement. For $\alpha>\beta$ we set for $0<\mathrm{r}_{\mathrm{o}}<\mathrm{r}_{\mathrm{f}_{\mathrm{o}}}$

$$
\begin{equation*}
\varepsilon_{0}=r_{0}^{\alpha}, \quad \delta_{0}=r_{o}^{\beta} \tag{16}
\end{equation*}
$$

and define ε_{ν} and δ_{ν} as in (1). We then set

$$
\begin{equation*}
r_{\nu+1}=r_{\nu}-3 \delta_{\nu} \tag{17}
\end{equation*}
$$

Starting from $f_{o} \mid U\left(f_{o}, r_{o}\right)$ we construct f_{1} as in the standard case replacing h in (8) by h^{\prime} in (13). We the, show that, if $r_{f_{o}}$ is properly chosen, $r_{1}+\delta_{1} \leqslant r_{f_{1}}$ and $U\left(f_{1}, r_{1}+\delta_{1}\right) \subseteq U\left(f_{o}, r_{o}-\delta_{o}\right)$. We then consider $\mathrm{f}_{1} \mid \mathrm{U}\left(\mathrm{f}_{1}, \mathrm{r}_{1}\right)$ and proceed inductively. We do this construction for all r_{o} in $] 0, \mathrm{r}_{\mathrm{f}_{\mathrm{o}}}$.

Thus the success of our method depends essentially on the nature of V_{f}, in (12) which solves the equations (13) and how we could handle the new error term $A\left(\Phi\left(f^{\prime}\right)\right)$. In our case V_{f}, is obtained by using the solution mapping N_{f}, of generalized Neumann boundary value problem on $U(f, r)$ associated with $d_{f}, \Phi . N_{f}$ also enters in the construction of A_{1} in (14). The fact is we could only find N_{f} for $U(f, r)$ as in (11), where t_{f} satisfies certain conditions. This is the reason why we had to change U as each step of the successive approximation. On the other hand, since $U\left(f_{\nu+1}, r_{\nu+1}\right) \mathbb{C} U\left(f_{\nu}, r_{\nu}\right)$, we could use the interior estimate. In such estimate a factor $\left(\delta_{\nu}\right)^{-\ell}$ (cf. (17)) will come in the constant of the inequality. However, we can admit such factor in view of (3). Using estimates for N_{f} on $U(f, r)$ as well as interior estimate, we prove the first inequality in (3) for all r in $] 0, r_{f_{o}}\left[\right.$, provided $p_{o}, \ldots, p_{\nu-1}$ is sufficiently small. We now need the second and the third inequality in (3). In view fo (16) the second is satisfied for sufficiently small r_{o}. Similarly the third is satisfied in view of (15).

REFERENCES :

[1] : R. HAMILTON : "The inverse function theorem of Nash and Moser". Bulletin of the Amer. Math. Soc., vol. $7, \mathrm{~N}^{\circ} 1$ (1982) 65-222.
[2] : M. KURANISHI : "Strongly pseudoconvex CR structures over small balls". I. Ann. of Math. 115 (1982), 451-500, II. Ann. of Math. 116 (1982), 669-732, III. Ann. of Math. 116 (1982).
[3] : J. MOSER : "A new technique for the construction of solution of nonlinear differential equations". Proc. Nat. Acad. Sci. $47, N^{\circ} 11$ (1961), 1824-1831.

