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!• Introduction

For some time the general theory of elliptic boundary problems

for linear operators has been well-established (see for example Chazarain

& Piriou /i/, Grubb /S/)» This note is an outline of work in progress

on the properties of elliptic problems near characteristic boundary

components. Typically, such problems arise from the analysis of a

standard elliptic problem, say for the Laplace operator, on a space

which is & Bieftanxiian manifold (possibly with boundary) except for

singular points of simple conic type< If one makes the analytically

very restrictive assumption that the Riemann metric is of •product-

conic11 type near the singular points then the method of separation

of variables is available (see Cheeger /^/)« In general the natural

class of operators in which to work seems to be the totally characteristic

operator ring, as defined in /?/» it is this approach to the analysis

of conic points which is discussed "below.

The main type of result described below is the almost-hypoellipticity

for an elliptic boundary problem (as defined in Section 3) of this conic

type» That is, any solution with homogeneous data has only a classical

(graded conormal) singularity at the conic point. More specifically,

suppose that tiJS^———^ K is a C OD function such that<-
f(0)«0, df(0)^0, —?(0) has signature ^.••,+,-

o/x
and df(x)/0 if f(x)«0y x^O.

The domain ^^ » [ f< O J is therefore a C00 submanifold with boundary

of 3R except that it has a conic point at 0. Consider the problem

Au » 0 i& J2.̂ , ̂ n - 0



where u^<^ (Ay)) l«e« u is the restriction to ^2. of a distribution

on B • I t follows from the main result of this paper, see Section 5y

that u has an asymptotic expansion with C00 coefficients?

u ^ E ^p(^) ̂ +k logPr, ^pCC^xS11)

where a.—-^ oo as 3 —^ oo, (r»°0) are (any) polar coordinates in K11"^1

and the sum over p is finite for each jyk» The m. are singular values of
u

a certain associated •indicial1 problem^

Particular examples of this phenomenon have been observed by

many authors, especially in the product-conic case mentioned above,

It should be noted that the methods of this paper allow one to discuss

directly Fredholm properties and the finite order regularity of solutions

for such elliptic problems^ in terms of suitable weighted Sobolev norms

near the conic points* These matters^ together with generalizations

to •kinks1 and comers of lower codimension, will appear elsewhere,



2, Polar coordinates

Let Y be a G manifold, and. suppose Y\p carries a C00 Riemannlan

structure. We wish to impose conditions on the metric so that p is,

metrically, a conic point in Y, This is most easily done by considering

the standard cone in 3R :

(1) x2 +y 2 « t2, t>.0e

The introduction of polar coordinates,

(2) T 2 » 2 ( x 2 ^ 7 2 ) (r>0), co - r^x + iy)^ S1,

reduces this cone to the manifold with boundary

(3) X « B"̂  x S1.

On £ the metric from Y, induced by the Euclidean metric on K\ takes

the fora

(4) g » dr ^ r dxo

where do is a metric on S •

Generalizing this we shall consider that a manifold with boundary, X,

has a metrically conic boundary, crX, if X carries a C°° 2-tensor

«eG"(X, 3yian^TX)

such that

(5) g is positive definite (Riemannian) on X Wx»

(6) g has rank 1 at each point of aX.
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If ̂  C^CXfTX) is tangent to c^X then g(V^V) vanishes to

(7) second order on o'X and to precisely second order at each

point pCo^X where V(p)^0,

Clearly g in (4) satisfies these conditions^ In fact if r>0y y y^y21

are coordinates in X near p^-crX then g satisfying (5), (6), (7) takes

the form

(8) € « h dr2 + 2r ^ H^dr.dy3 + r2 £; b^dy1. dy0

j^l v j«l :LV

where the coefficients h , are G fzmctions of r^y» Moreover^

(9) h > ° -

The for® (8) follows easily from (6)^ (7)« For example the vector fields

D ,, are tangent to <yX^ leading to the factor r • Similarly setting
y .

T « D A, + rD in (7) shows that the cross terms dr.dy" must have coefficients
y33 r

vanishing at r«0»

Next recall (from /S /) that on any manifold with boundary there

is a natural subrings

Diff,(X) C Diff(X)

of the (filtered) ring of all differential operators with C00 coefficients

on X^ Namely, Diff,(X) is the sub-C ̂ -module locally generated by the

vector fields tangent to o'X< In the local coordinates r^y this means

Mffk(X)^P = L, P^Cr^r^D01.
" l-<(+q<k 0<^ y

(10) Lemma The Laplace-Belt rajmi operator,. -4 , of a metric satisfying (5)»

(6)» (7) on X is such that
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2 A ^ ^^ 2,(11) r A € Diff^(X)e

Notice this means that, although its coefficients are not C°%

^ can be written me a G00 combination of vector fields D , r̂ D ••
r y3

We shall outline a more general computation than is needed to prove

this Lemma«

In fS I the notation TX (compressed tangent bundle) was used

fop the C OD vector bundle of vector fields tangent to c/X. Thus, TO

is locally spanned by r3) ^ D •• In view of (8) the metric g defines
y

a uniformly degenerate metric on fa: If rfrC^X) is a global defining
N 0

function for o/X, r>0 in X» then

T ^———>-r~1 | v |
e

is a C00 metric on the fibres of TX» The dual metric r( • ( on sections
f^^k v

of the dual bundle T X (compressed cotangent bundle) is therefore also
OD 1rC' and non-degenerate • In fact the symbol of any P6Diff- (X) can

oo ^*
be regarded as a C function on T X and then:

(12) <T(r2^) « r2!. |2

e

shows that

(13) Corollary r2^ € Diff^X) is elliptic.

In general ., let Ap » APTX be the p-fold exterior powers of
^

the compressed cotangent bundle, A C 0 0 section 0-̂  of A^ in local

coordinates is of the form»

(14) (̂  - ^ a (r,y) (̂ °A . . . . .-Ady"^,
|o/|«P at T



6 -

using -the canonical identification'T*X| a 'p*Xl
^ ° T x^

In particular,

d^^X,^) ————^C^X,/^)

is a well-defined COD differential operator. From (14) it follows
trivially that it is totally characteristic.

(15) derMff^X^.A1^1) »P.

Now, the adjoint S of d is defined by

(16) J<d(J,^ |dg| « J<^,^>gldg|

where^ to ensure convergence, it is certainly enough to require
/^ f\^

^CS^XtA1'), ^ € G^O(X,AP ), i.e. both vanish to all orders at
^/

the boundary^ The singular inner product on Ap is clearly of the form

<") < . >g - '•-^p<. ^
in terras of a smooth and non-degenerate inner product ^ . S •

0

Similarly^ as is usual in polar coordinates^

(18) |dg| ^r11!^!

1 ^ 1
in terms of a smooth non-v r̂nishing density ldg| on X» Thus, (16)

can be writtenx

(19) I<^->"J,<1 . J^.^'^i^l

if ^ t « r^ ^^and ^t =. ^n"'2p S^ . The important point is that (19)
rs/

shows <y to be the adjoint of d with respect to non-degenerate smooth

structures on fibre bundles and base^ so
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(20) ?€ Diff^A11"1^) » P.

Since o » r • ̂  •r the elementary properties of totally

characteristic operators show

r^ € Bif̂ W"1,/;1').

/s»

Now, on the bundles Ap

A « 5d + d J ,

so it follows easily that Lemma 10 holdsy in the more general setting

(21) r2^ € Mff^X^,.^) »p,

and Corollary 13 generalizes immediately too. Since A is the uszd.

Laplace-Beltrami operator with only minor changes on the G00 structures

of the "bundles these observations allow the results discussed below

to be applied to Hodge theory (of, Cheeger /A/),

Finally in this section we shall make another important generalisation.

If in place of the cone (1) one considers the solid cone:

(22) x2 +y2 ^ t2 t^LO

Q f\ 1\ V\

the introduction of polar coordinates as in (2), i,e» r = x + y + t etc.,

again reduces the metric to (4) where now du is a Riemannian metric
2on S and

(23) X « TS^ x S

o ^
where S C s is a C submanifold with boundary •

To study these more general manifolds with conic points, for
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which the local cross-section has boundary, we consider the following

class of manifolds* Let X be a manifold with (interior) comer. Thus,

each point of X has a neighbourhood diffeomorphic to either E" or

ITx E11 or 3Tx îTxIl̂  • The subset of points in the last two cases

is o'XC X the topological boundary (boundary as a topological manifold),

this consists of o ' X ^ o ' p X as locally X is a half-space or a quarter

space; 0^ X is the comer of Xe We further require that the boundary

of X has a decompositiont

(24) c)x « ^xOo^x, <^x « ^no^x

where e)1 X, c^ X <^> X are G00 submanifolds (of codimensioiXj 1) with

boundary, w(c) X) « o)( o' X) « o^X»

With respect to this decomposition we can consider a metric tensor

g on X which is non-degenerate throughout X \<y X and which satisfies

(5)».(6),(7) if yX is replaced by o rX . Thus, the case considered

above corresponds to ( y X » jtf - the absence of 'rear boundary as opposed

to blown-up conic points^ It is then a straightforward matter to see

that all the remarks above have immediate extensions to the new case
^ * ^w

provided TX^ Diff.jx), A etc» are constructed as though X is to be

extended across <y X to a manifold 5£ with boundary o/X extending or X^
Ml

In particular near of X loc l̂ coordinates will be taken with

(25) r^O, y f^.y11 and y ^0 if the base point P^O^X.

(26) Remark It is not time that r2^ € Biff^A^ for all p (see

Cheeger /A» ^•sr)/)^
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3. Totally characieristic problems

Following the analysis in the previous section it is natural, for

regularity questions, to drop the assumption on order and other geometric

properties of

(27) P » r2^

aad treat a more general case. Let X be a manifold with corner and

with boundary split as in (24) • We shall consider

(28) P fcMff^X^F)

a totally characteristic operator with respect to o 'X, from sections

of a complex vector bundle E to sections of another bundle ?• Naturally

we demand that P be elliptic;

(29) <r(P)ecoo(T*X»A,^*P) is invertible on^XXO.

^> ^
Here^ 1^ E^ T\ P are the vector bundles obtained by pulling back E^P from

x to rx.
We recall from /$"/ that the space A(X,E)C ^(X^E) of almost

regular or conormal sections of E can be characterized simply as the

space of Lagrangiaa sections of E associated to the conormal bundle

N (aX)^ Moreover, A is the residual space for the calculus of totally

characteristic pseudodifferential operators on X and elliptic operators

are A-hypoelliptic. Thus^ the results of /ST/ immediately give;

(30) Proposition If c^X. ft and P€-Diff (X»S>F) is elliptic then

(31) Pu6-A(X,F) s=> u6-A(X,E).
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This result will be considerably strenghtened in the next two

sections, but first we shall discuss the analogue of (31) when CK X ^ 0.
\ ( \ W

As noted in Section 2 the two parts^ o/ X arid o> X> of the boundary

should be regarded somewhat differently. In particular for an elliptic

boundary problem we should expect to impose boundary conditions in the

usual sense only at a X to get smoothness of solutions there» The space

A(X) of conorraal distributions is therefore defined by taking an

extension ? of X across cr X so X is a manifold with boundary or? extending

ff X f then setting

(32) A(X,E) « A(X,5)^ C ^(X^)

the space of distributional sections of E«
/^* ̂Now, the symbol of P^ (29)» restricts to a section over T 3B|^»«

% •N'
of the homormorphism bundle from TV E to 7T Py and is polynomial of

degree m in the fibres of ¥ XJ^1^^ In particular along the affine

fibratiow

^XI^^WX,. 6:^X^X

<y-(P) is a polynomial of degree m without singularities^ i.e» invertible

except at the zero section. If a choice ^ iy X-^M <y X of non-vanishing
.»

section of the conormal bundle of c X is made this defines an isomorphism
^ •K-

of 7T E to 7T P» hence a normalized symbol;

(33) ^^(^(P^r1-^?) ^C^(T*x|^^E,7fp),

which is invertible except at 0. Thus^ for each ?fC/T <y X \0y \T is a

polynomial along C * ( ^ t ) without real singular points. The splitting
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of the zeros of dot V ^ according to the sî ns of the imaginary parts^

provides a natural splitting

(34) ^(ffi) S E(°) frE^,

where TT^E^ is the lift to "T^^Xof the vector bundle E11"7 ovor o)^ defined

in turn by its local Cflo sections

C^X^/x^^X^)

'( (m}where x is a defining function for of X in X« Thus, E" / is the bundle

of Cauchy data at <y X for P. In fact, E' / then corresponds to Cauchy

data of exponentially decreasing solutions of Pu?=0, E^0' to ezponeriially

increasing solutions,

By a boundary problem for P we mean a totally characteristic pseudo-

differential operator

(35) B^^13^010'0)

(or more generally of some filtered order in the sense of Friedrichs-Lax

with respect to a filtration of G) such that B has miorolocally constant

rank, i«e« near each ^6 -T <r X there exist elliytic pseudodifferential

operators A^^c^X fG^^E^^ ^^^(c^Xt G,C11), where N,M are the

ranks of E,G, with

(36) A».B,A » /Id 0 } modulo ^CD near ^ .
\0 0 ' D c

(37) Definition (P»B) is said to be an" elliptic boundary problem if B has

microlocally constant rank equal everywhere to the rank of E^ \ with

Cr(B) | E ' ^ injective. (This is the Lopatinskii-Schapiro condition.)
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(38) Proposition If (P^B) is an elliptic boundary problem and uG^^x^E)

then Pu<sA(XyF)y Bu^A^X^O) implies u€A(X»E)^

To prove this we use the method, of multi-layered potentials as

formalized By (3alder^n» One should first note that the following slight

generalisation of Peetre^ Theorem on partial hypoellipticity holdsx

(39)
Pu€A(X,F) implies that u is C °° up to o) X with boundary

data extendible across o^X^ <y X»

Then if one -takes an extension X for X, as abovey and an elliptic extension

F of P, still totally character! site with respect to <y3C (which extends

OK X )» the calculus of /S f provides a paraaetrix

(40) Q € ^^(X^E)

such that Id - P.Q, Id - Q»P (c^^\ so map all distributions into A»

Then any u ̂ ^(X^E) can be written

(41) u • Q^Ptt ^ Ru BueA(3E,B)^

Morover^ Q has rational symbol as a totally characteristic operator,

Now, p defines a map

(42) frtO^'X^) ———^C^X,?^).

Here Vf \ is the vector bundle over <y X defined by its global distribution al
(m)

sect ionst

(43) a'^'x,?^) = {fC-sWx^h ^t» 0}

where ^'(X^'X,?) is the space of distributional sections supported by

o)'X.
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The rationality of the symbol of Q means that the map C in

G^'X, î ) ̂ LC^X, F/J-^^X,?)

(44) -̂̂  ^

^ ^ G^o^E^)^ ^UE)

where the last horizontal map is the evaluation of Canc'iy data^ using

(39)» is well-defined.

(45) Lemma C^ ̂ ^(c)^ yE^^E^Q has moorolocaUy conBtant rank

and symbol the projection of T^E onto E along E • Moreover^ C is

independent of the choice of Q, as a parametrix for an extension ofp,

up to terms in j7^00*

The standard method of elliptic regularity now applies. From

(46) Pa « f € A(X,F)

it follows that

(47) G^^A^^E^

where u^^ is the Cauchy data of u. The ellipticity condition in
^» ^ <

Definition: 37 shows that near any point "hfcT y X one can use (36)

to find B1 ^^(c^X, E^^G"111), elliptic at ^ , such that

(48) Blu^ € A(<^X , Q^).

Thus, WF^u^^ ^ ̂  i,e. u^^A. Then it follows readily from (46)

that u €A(X,E) as claimed.
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4» Mellin transform

Let u ^ ^(Bp Ie a distribution on the open half line (0, oo)

which is zero near infinity and extendible across o. Then, there exists

uC^^ IT? extending u, i.e. u 6 §» (K) with

(49) u = u in K^, 3 «s 0 in B .̂

Of course, this choice of zero extension u is unique only up to an

arbitrary element of ^( B.^O^), the space of Dirac distributions

supported at Of

|B
(50) o ——>^( R^) <—.. €<( IET) ^ $»( S:) —^ o

is exacts

Now, such a distribution u is, for some k, in the space C (IT")

of finite sums of at most k-fold derivatives of continuous functions,

so

(51) 0^^ is defined for all yCC^HT),

the space of k times continuously different!able functions on E

supported in B^ The Mellin transform:

(52) ^(s) - r x^8'1 S(x) dx . < ,̂xi^l >

is therefore well-defined and holomorphic for Dtt(s)> k+l» Notice that

<v, x^-1) . 0 if v € ̂  (»^ot) lm(s) >7 0,

so that u—only depends oh u it self •
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(53) Lemma (Paley, Wiener, Schwartz) For ti^S^ST")? ^Svr380 ^^ ulBlo•

If vs^Im(s)>k^—^C is holomorphic then v « VL, for some u^:^ (3R )

iff v is of exponential type

(54) |v(s)| < C exp(Allte(s)|) (l^sp"

in Im(s) >k1 for some C.A.m.k^

Proof Reduce to the Fourier transform "by setting t s -log(x).

We are particularly interested in the Kellin transforms of

conormal distributions, u£A(3T").

(55) Proposition If v is holomorphic in a half-space lm(s)? k then

v » n for some u^A(]5^) iff it is of exponential type and is rapidly

decreasing as | Ite(s)[—^ oo t

(56) (v(s)| < C^ exp( A(lm(s)() (l+tsO"1 Im(s)>k»

for all m«

In terms of the Mellin transform we next introduce a large space

of classical1 conormal distributions^

(57) Definition A (IT) C A(ST') ^ the subspace of graded conaynal

distributions, consists of those ufcA(S"") for which (pu) a u1 has,

for each PfcC00^®), Mellin transfonn u1-extending meromorphically with

(58) Finitely many poles in any half-plane Im(s)>a

(59) Estimates (56) in Im(s)'>x», (Ee(s)( > d(r) for all m,r<

These graded conormal distributions are precisely those with
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complete asymptotic expansions;

(60) u ̂  Zc^x^ (^(x^

where m,-̂  oo with k, -the su» over p is finite for each k and (60) has

the usual meaning that the difference between u and a suitable truncation

of the sum is in any preassigned space 6^(y)» Of course, the elements

of A are just the usual 'classical* or ^polyhomogeneous* conormal
S^

distributions except that there are no integrality conditions on the

BL and arbitrary finite powers of log are permitted. We further remark

that A is coordinate free. It can be extended to higher dimensions
e^

in at least two distinct ways.

By the Mellin transform of u6A(Z)^ where Z » ST^x K^ we just mean

the partial Mellin transform:

(61) u^(s,y) « ^ x'18-1 u(x,y) dx.

Then. Proposition 55 extends easily^ with C00 dependence on y< We shall

define

A^(Z) C A(Z)

as consisting of those ueA(Z) for which (pu)^(syy) extends meromorphically^

as a function of Sy with values in G00 (7^)$ and with the obvious estimates

in any K^Ay

(62) |Dy\(s>y)| < €„ exp(A(lm(8)j) (l+lsl)" » «n,

in Im(s)> r, | Be(s)|^cL(r). In particular this means that the position

of the poles in s is independent of y. For boundary problems vith 'kinks*
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or comers of less than maximum codime: sion it is.* necescary to u^e a

more general notion of classicality, such a^ C °° (Bt^A ( E)).
v 0—

(63) Proposition A (Z)CA(Z) is coordinate free, so A (>f)<A(X) is
& ^r—

defined for any C manifold with boundary, and. similarly for sections

of any vector bundle.

In order to prove, inductively, that a distribution u^A(X) lies

in A (X) w^ introduce relative spaces. First consider some order filtration

such as:

(64) A^W ^ (ue A(X)» HX\) ^ L^^(X) V P^ Diff^(X)} .

So,

(65) A(X) ^ U ̂ \X).
^

Then define

(66) A^X) <:: A^W

as consisting of those u such that, after localization and in any

coordinate system, u.. is meroroorphic in Im(s) > r and satisfies (58) and

(59) tor that value of r» Clearly,

(67) A^X) -: A^OO,

(68) A^(X) - A^X^A^X) - A^X).

(69) Proposition A^(X) is a Diff.(X) -module (PutA^^^O ^ PtBiff.fX)^T -' ^ ^^^^^^«, ^r o r b

u^A^OO) and xaC A^^X) it x^O^OC, x=0 on ^ u^ .̂
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5» grading

To prove that any solution to the differential problems considered

in Section 3/ywe first recall some invariance properties of conormal
is graded

distributions* Any local coordinates (25) in X based at p ^Jx induce

an isomorphism between a neighbourhood of p in X and a neighbourhood

of 0 ^N o)x (N c? X when X has a real boundary) in No)x a T^ X/T^X ,

the normal bundle of o?X» Of course then,

(70) A^X) « A^I^X ) » p,r (in coordinates)

and there is a certain degree of invariance, since

(71) A^WA^^X) « A^^H^XVA^^^N^X)

is coordinate free} this is just a reinterpret at ion of the symbol

of a Lagrangian (conormal) distribution.

If P^Diff^^X) is totally characteristic with respect to aX

then there is a well-defined operator

(72) P £ MfAn^X ) totally characteristic with respect to 0 \

with constant coeficients in this sense^ i.e. P.. is invariant under

the E action on the fibres N «rX • In coordinates^

(73) PQ « ^ p ^(0,y) (rSjV
0 i4A<m ^K r y

if P is given by

(74) P » ^ p. ^r,y) (rDĵ  ,Ki+kia o<yK r y

How, for any u^A^ ^(X) i<: u1 is the coordinate image of u in A(N c?X )

then the coordinate image of Pu is
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(75) PQXI* + xP«u« = P^u* + xA^(o)x)

where, P'^ Diff ( X ) .

(76) Theorem SuppOE:-e X is a C°° manifold- with compact boundary and

P'4Diff^(X»J3,P) is elliptic then for any u, e^*(X,E),

(77) PufcA (X,F) ^> u (: A (X,E).
o* 6~

The proof of this rects on (75)< Prom Proposition 30 we already
fk)know that ix^A^ '(X^E) for some k< Proceeding by induction we can

suppose that

(78) u^^E).

Tben» toy (75)1 in local coordinates^

(79) Put » ?Q^ + xP^' » PQU» modulo A^(X,F).

Thus^ it suffices to prove the inductive result for P.. instead of ?•

(86) Proposition If u£A^(N^3^) and PO^A^(N^P) then u fe A^(H^X,E),

This in turn is a variant of well-known properties of elliptic

operators depending (elliptically) on a comnlex parameter,

(81) Proposition If P^ is of the form (73) and elliptic then

(82) P (s) - L. p (0,y) sV^ <, 3)iff(o)x (E,F)
0 K'+k.m ^k y

is elliptic for each s ^ C and defines ail isomorphism on Sobolev spaaes:

(83) P^s^H^^E) .-- Hk(c)x,F)
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for all except a discrete set speo(PQ)c f lying inside a set

(84) spec(Po) c [ae«f (Ke(s)|^ a|la(8)| + b)

for some constants a,b. Moreover, Po(8)^ l̂y ^s finite poles at

^^(Pp) and in any set |lm(fl)J>Tt ( »e(8)(^T, for each k in (83)>

(85) l)^8^1/! <i G^l^\B\)h for some b,

The exponents occurring in the asymptotic expansion of u come

from amongst the set •pec(P^) + H« Finally we remark that the proof

of the corresponding result for elliptic boundary problems is similar,

with Proposition 81 for exampley suitably extended to elliptic boundary

problems depending on a parameter•
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