# JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

### J. J. KOHN

## **Subelliptic estimates**

Journées Équations aux dérivées partielles (1981), p. 1-7

<a href="http://www.numdam.org/item?id=JEDP">http://www.numdam.org/item?id=JEDP</a> 1981 A3 0>

© Journées Équations aux dérivées partielles, 1981, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.



#### SUBELLIPTIC ESTIMATES

by J. J. KOHN

Consider the mapping Q :  $C_{Q}^{\infty}(\mathbb{R}^{n})^{m} \times C_{Q}^{\infty}(\mathbb{R}^{n})^{m}$  given by

(1) 
$$Q(\mathbf{u}, \mathbf{v}) = \sum_{\substack{\Sigma \\ \mathbf{i}, \mathbf{j} = 1 \ |\alpha| \leq 1}}^{\mathbf{m}} \sum_{\substack{\alpha \beta \\ |\beta| \leq 1}} (a_{\alpha\beta}^{\mathbf{i}\mathbf{j}} D^{\alpha} \mathbf{u}_{\mathbf{i}}, D^{\beta} \mathbf{v}_{\mathbf{j}}),$$

with  $a_{\alpha\beta}^{ij}\in C^{\infty}(\mathbb{R}^n)$  , here ( , ) denotes the L\_2-inner product on  $\mathbb{R}^n$  . We will assume that

$$Q(u,v) = \overline{Q(v,u)}$$

 $\begin{array}{lll} \underline{\text{Definition}} &:& \underline{\text{Q}} \text{ is } \underline{\text{subelliptic}} \text{ at } (x_0,\eta_0) \in \mathbb{R}^n \times (\mathbb{R}^n - \{0\}) \text{ if there exist} \\ \underline{\text{positive constants C, C' and } \epsilon \text{ and a classical symbol } p(x,\eta) \text{ of order zero (i.e.} \\ \underline{p} \in \underline{\text{C}}^\infty(\mathbb{R}^n \times (\mathbb{R}^n - \{0\}) \text{ and } p(x,t\eta) = p(x,\eta) \text{ for } t > 0) \text{ such that } p(x,\eta) = 1 \text{ in a conic neighborhood of } (x_0,\eta_0) \text{ and} \\ \end{array}$ 

(3) 
$$\|Pu\|^2 \le CO(u,u) + C'\|u\|^2$$

for all  $u \in C_0^\infty(\mathbb{R}^n)^m$ , where P is pseudo-differential operator with symbol  $p(x,\eta)$  and  $\|f\|_{\varepsilon}^2 = \sum \|f_j\|_{\varepsilon}^2$ , denotes the Sobolev  $\varepsilon$ -norms.

It is shown in [1] that subelliptic estimates imply regularity of solutions of the satisfying

$$Q(u,v) = (f,v)$$

for all  $v \in C_0^{\infty}(\mathbb{R}^n)^m$ . Here we will outline a microlocal version of the method for obtaining sufficient conditions for subellipticity which is developed in [2]. The advantages of the present treatment is that it can be used to study C-R structures and that it gives results, in at least some cases, when pseudo-convexity fails.

The principal example of the O comes from the C-R structure described as follows. Let n = 2k + 1 and let  $L_1, \ldots, L_k$  be complex valued vector fields on  $\mathbb{R}^n$  such that  $[L_i, L_j] = \sum\limits_{s=1}^k \sum\limits_{ij}^s L_s$  and such that  $L_1, \ldots, L_k, \overline{L}_1, \ldots, \overline{L}_k$  are linearly independent. We define  $\Omega: C_0^\infty(\mathbb{R}^n)^k \times C_0^\infty(\mathbb{R}^n)^k \to \mathbb{C}$  by

(5) 
$$Q(\mathbf{u},\mathbf{v}) = \sum_{\mathbf{i} < \mathbf{j}} (\bar{\mathbf{L}}_{\mathbf{i}}\mathbf{u}_{\mathbf{j}} - \bar{\mathbf{L}}_{\mathbf{j}}\mathbf{u}_{\mathbf{i}}, \bar{\mathbf{L}}_{\mathbf{i}}\mathbf{v}_{\mathbf{j}} - \bar{\mathbf{L}}_{\mathbf{j}}\mathbf{v}_{\mathbf{i}}) + (\sum_{\mathbf{i}} \bar{\mathbf{L}}_{\mathbf{i}}\mathbf{u}_{\mathbf{i}}, \sum_{\mathbf{j}} \bar{\mathbf{L}}_{\mathbf{j}}\mathbf{v}_{\mathbf{j}}).$$

This quadratic form controls the regularity of the system  $L_i W = f_i$ , i = 1, ..., k.

Another example of a Q which can be treated by the methods which we describe below comes from the Hörmander operator  $\overset{k}{\Sigma} \overset{2}{x_{j}}$ , when the X are real first order pseudo-differential operators in  $\mathbb{R}^{n}$  and Q:  $\overset{\infty}{\mathbb{C}}(\mathbb{R}^{n}) \times \overset{\infty}{\mathbb{C}}(\mathbb{R}^{n}) \to \mathbb{C}$  is given by

(6) 
$$Q(u,v) = \sum_{j=1}^{k} (X_{j}u, X_{j}v).$$

Here subellipticity of Q implies hypoellipticity of the Hörmander operator.

Definition : If Q is given by (1) and if  $p(x,\eta)$  is a  $C^{\infty}$  function defined in a conic neighborhood of  $(x_0,\eta_0)\in\mathbb{R}^n$  -  $\{0\}$ ) which is homogeneous of zero order in  $\eta$  (i.e.  $p(x,\eta)=p(x,t\eta)$  for t>0), we say that p is a subelliptic multiplier for Q at  $(x_0,\eta_0)$  if there exists a pseudo-differential operator P such that the symbol of P equals p in a conic neighborhood of  $(x_0,\eta_0)$  and such that there exist constants C, C' and  $\varepsilon$  so that (3) is satisfied for all  $u\in (C_0^\infty(\mathbb{R}^n))^m$ . We say that two subelliptic multipliers are equivalent if they are equal on some conic neighborhood of  $(x_0,\eta_0)$ . We denote the set of equivalence classes of subelliptic multipliers by  $\mathcal{F}(Q;(x_0,\eta_0))=\mathcal{P}$ .

<u>Proposition</u>:  $\mathcal{S} = \mathcal{P}(Q; (x_0, \eta_0))$  has the following properties

- (a)  $\mathcal{P}$  is an ideal in the ring  $\mathcal{A}$ . Where  $\mathcal{A}$  denotes the ring of real-valued  $C^{\infty}$  functions defined in conic neighborhoods of  $(x_0,\eta_0)$  which are homogeneous of order zero.
- (b)  $\sqrt[R]{\mathcal{P}} = \mathcal{P}$ . Here  $\sqrt[R]{\mathcal{P}}$  denotes the real radical of  $\mathcal{P}$ , that is if  $g \in \mathcal{R}$  then  $g \in \sqrt[R]{\mathcal{P}}$  if and only if there exists an integer m and  $p \in \mathcal{P}$  such that  $|g|^m \leq |p|$  in a conic neighborhood of  $(x_0, \eta_0)$ .

Clearly subellipticity of 0 at  $(x_0,\eta_0)$  is equivalent to  $1 \in \mathcal{P}(Q;(x_0,\eta_0))$ . The proposition given below shows how certain types of a priori estimates lead to conditions which imply that  $1 \in \mathcal{P}$ .

Theorem : Suppose that  $A_1, \ldots, A_N$  are pseudo-differential operators with symbols  $a_1, \ldots, a_N \in \mathcal{P}(Q; (x_0, \eta_0))$  such that there exist C and C' so that

(7) 
$$\sum_{1}^{N} \|\mathbf{A}_{j} \mathbf{P} \mathbf{u}\|_{1}^{2} \leq CQ(\mathbf{u}, \mathbf{u}) + C'\|\mathbf{u}\|^{2}$$

for all  $u \in (C_0^{\infty}(\mathbb{R}^n))^m$ . Suppose further that, for  $i=1,\ldots,M$ ,  $B_i:C_0^{\infty}(\mathbb{R}^n)^m \to C_0^{\infty}(\mathbb{R}^n)$  are first order differential operators such that

(8) 
$$\|B_{i}Pu\|^{2} \leq CQ(u,u) + C'\|u\|^{2}$$

for all  $u \in C_{\Omega}^{\infty}(\mathbb{R}^n)^m$  and

for all  $v \in C_0^{\infty}(\mathbb{R}^n)$ . Here P denotes a zero order pseudo-differential operator whose symbol equals one in a conic neighborhood of  $(x_0,\eta_0)$ . The operators B can be written as

$$B_{\mathbf{i}} \mathbf{u} = \sum_{k=1}^{m} B_{\mathbf{i}}^{k} \mathbf{u}_{k}$$

and B' is then given by

(11) 
$$B_{i}^{!}v = ((B_{i}^{1})'v, (B_{i}^{2})'v, \dots, (B_{i}^{m})'v),$$

where  $(B_{\dot{\mathbf{i}}}^{\dot{k}})$  denotes the formal adjoint of  $B_{\dot{\mathbf{i}}}^{\dot{k}}$  .

Suppose that  $p_1, \ldots, p_m \in \mathcal{P}(Q, (x_0, \eta_0))$  then for each i we have  $\det\{p_j, \sigma(B_i^k)\} \in \mathcal{P}(Q, (x_0, \eta_0)), \text{ here det denotes the determinant of the } m \times m \text{ matrix,}$   $\{p,q\} = p_x q_n - p_q q_x \text{ denotes the Poisson bracket and } \sigma(B_i^k) \text{ denotes the symbol of } B_i^k$ .

(12) 
$$\mathcal{F}_{Q} = \sqrt{\frac{\mathbb{R}}{(a_{1}, \dots, a_{N})}},$$

where  $(a_1,\ldots,a_N)$  denotes the ideal in  ${\mathcal R}$  generated by the  $a_j$  . For r>0 we define

(13) 
$$\mathscr{P}_{\mathbf{r}} = \sqrt[\mathbb{R}]{(\mathscr{P}_{\mathbf{r}-1}, \{\det\{p_{\mathbf{j}}, \sigma(B_{\mathbf{i}}^{k})\} \text{ for all } p_{\mathbf{j}}, p_{\mathbf{m}} \in \mathscr{P}_{\mathbf{r}-1})}.$$

Then 1  $\in \mathscr{P}_{r}$  implies that Q is subelliptic at  $(x_{o}, \eta_{o})$ .

Returning now to the C-R structures, with Q defined by (5), let  $\gamma$  be a differential form such that in a neighborhood of  $\mathbf{x}_0 \in \mathbb{R}^n$  we have  $\langle \gamma , \mathbf{L}_i \rangle = \langle \gamma , \mathbf{\bar{L}}_i \rangle = 0$  with  $\gamma = -\overline{\gamma}$  and  $|\gamma| = 1$ . Then  $\gamma$  is determinated uniquely up to sign. Let  $\mathbf{c}_{ij} = \langle \gamma , [\mathbf{L}_i, \mathbf{\bar{L}}_j] \rangle$  this is the <u>Levi-form</u> and we say that the C-R structure is <u>pseudo-convex</u> at  $\gamma$  if  $(\mathbf{C}_{ij}) \geqslant 0$ .

Let U be a neighborhood of  $x_0$  and  $V^+$  be a conic neighborhood of  $(x_0, [\gamma]_{x_0})$  such that  $V^+$  is also a conic neighborhood of  $(x, [\gamma]_x)$  for all  $x \in U$ . Let  $V^- = \{(x,\eta) \mid (x,-\eta) \in V^+\}$  and let U' be a neighborhood of  $x_0$  with  $\bar{U}' \subset U$ . Consider zero order pseudo-differential operators  $P^0$ ,  $P^+$  whose symbols  $P^0(x,\eta)$ ,  $P^+(x,\eta)$  and  $P^-(x,\eta)$  are zero for  $x \notin U'$  and  $P^0(x,\eta) = 0$  if  $(x,\eta) \in V^+$  U  $V^-$ ,  $P^+(x,\eta) = 0$  if  $(x,\eta) \in V^-$  and  $P^-(x,\eta) = 0$  if  $(x,\eta) \in V^+$ . We always have

(14) 
$$\|\mathbf{P}^{O}\mathbf{u}\|_{1}^{2} \leq CQ(\mathbf{u},\mathbf{u}), \quad \text{for all } \mathbf{u} \in C_{O}^{\infty}(\mathbb{R}^{n})^{k}$$

Furthermore if  $(c_{ij}) \ge 0$  on U then

(15) 
$$\sum_{\substack{j,j=1}}^{k} \|\bar{L}_{j} P^{+} u_{j}\|^{2} \leq CQ(u,u)$$

and

(16) 
$$\sum_{i,j=1}^{k} \|L_{i} P^{u}_{i}\|^{2} \leq CQ(u,u).$$

To apply our theorem at  $(x_0, [\gamma]_{x_0})$  we let

(17) 
$$A_{j} = \Lambda^{-1} \bar{L}_{j}$$
 for  $j = 1,...,k$ ,

where  $\Lambda$  denotes the square root of the Laplacian. We define

$$B : C_{O}^{\infty}(\mathbb{R}^{n})^{k} \rightarrow C_{O}^{\infty}(\mathbb{R}^{n})$$

(18) 
$$Bu = \sum_{i=1}^{k} L_{i}u_{i}.$$

The theorem then implies that  $\det(C_{ij}(x)) \in \mathcal{C}(Q,(x,[\gamma]_x))$  for  $x \in U'$ . Applying the corollary we define ideals of germs of  $C^{\infty}$  functions at x by

$$I_{1}^{+} = \sqrt{\frac{IR}{(\det(C_{ij}))}}$$

and inductively

(20) 
$$I_{r}^{+} = \sqrt{\left(I_{r-1}^{+}, \det(M_{r-1}^{+})\right)},$$

when  $M_{r-1}$  runs through all  $k \times k$  submatrices of the infinite matrix

(21) 
$$\begin{pmatrix} c_{11} & \cdots & c_{1k} \\ c_{k1} & \cdots & c_{kk} \\ c_{1} & c_{1} & \cdots & c_{k} \end{pmatrix}$$

$$\begin{pmatrix} c_{11} & \cdots & c_{1k} \\ c_{k1} & \cdots & c_{kk} \\ c_{11} & c_{11} & c_{11} & c_{11} \\ c_{11} & c_{11} \\ c_{11} & c_{11} & c_{11} \\$$

when f,g,... run through all the elements of  $I_{r-1}^+$ .

Hence 1  $\in$  I<sup>+</sup><sub>r</sub> implies subellipticity at (x<sub>o</sub>, [ $\gamma$ ]<sub>x<sub>o</sub></sub>). Similarly to apply the theorem at (x<sub>o</sub>,-[ $\gamma$ ]<sub>x<sub>o</sub></sub>) we set

(22) 
$$A_{j} = \Lambda^{-1}L_{j}$$
 for  $j = 1,...,k$ 

and  $B_{ij} : C_o^{\infty}(\mathbb{R}^n)^k \rightarrow C_o^{\infty}(\mathbb{R}^n)$  is defined by

(23) 
$$B_{ij}u = \hat{L}_{i}u_{j} - \hat{L}_{j}u_{i} \quad \text{for } 1 \leq i \leq j \leq k.$$

The theorem then applies only when  $k \ge 2$  (otherwise there are no B and subellipticity does not hold). We then define ideals of germs of  $C^{\infty}$  functions at x by

does not hold). We then define ideals of germs of 
$$C^{\infty}$$
 functions at  $x_0$  by
$$\mathbf{I}_1 = \sqrt[\mathbb{R}]{\left(\det\begin{pmatrix} \mathbf{C}_{i_1}i_1 & \mathbf{C}_{i_1}i_2 \\ \mathbf{C}_{i_2}i_1 & \mathbf{C}_{i_2}i_2 \end{pmatrix}} \quad \text{functions at } x_0 \text{ by}$$

and

(25) 
$$I_{r}^{-} = \sqrt[\mathbb{R}]{\left(I_{r-1}, \det(M_{r-1})\right)},$$

where the  $M_r$  run through the 2 × 2 submatrices of (21) with f,g,...  $\in I_r$ . Hence we see that 1  $\in I_r$  implies subellipticity at  $(x_0, -[\gamma]_x)$ .

I would conjecture that the conditions  $1 \in I_r^+$  and  $1 \in I_r^-$ , for some r, are also necessary for subellipticity, this is true in the case of real analytic C-R structures.

The method outlined above will also give sufficient conditions in case the Levi form ( $C_{ij}$ ) is a direct sum in all of U of a non negative semi definite and a non position semi definite form.

In the case of the Hörmander equation, where Q is given by (6). We set  $A_j = \Lambda^{-1} x_j$  and  $B_j = x_j$  and we obtain the Hörmander condition for subellipticity by applying the theorem.

An example which is related both to the Hörmander equation and to C-R structures is given by a first order pseudo differential operator L on  $\mathbb{R}^n$ . Here we consider  $Q:C^\infty(\mathbb{R}^n)\times C^\infty(\mathbb{R}^n)$  given by

(26) 
$$Q(u,u) = ||Lu||^2$$
.

The subellipticity of this Q was initiated by Nirenberg and Treves and then taken up by Egorov and Hörmander (see [3]). It is known that a necessary condition for subellipticity is that on the characteristic of L we have

(27) 
$$\{\sigma(L), \sigma(L^*)\} \geq 0.$$

Furthermore, Egorov has shown that if subellipticity holds at  $(x_0, \eta_0)$  than

(28) 
$$\|\mathbf{L}\mathbf{P}\mathbf{u}\| \leq C(\|\mathbf{L}\mathbf{u}\| + \|\mathbf{u}\|).$$

Hence, if (28) holds problem is reduced to the case of (6) with  $Q(u,u) = \|x_1u\|^2 + \|x_2u\|^2$  where  $L = x_1u + \sqrt{-1}x_2u$ .

#### REFRENCES

- [1] Kohn, J. J. and Nirenberg, L.: Non coercive boundary value problems, Comm. Pure and Appl. Math. 18, 443-492 (1965).
- [2] Kohn, J. J.: Subellipticity of the  $\bar{\partial}$ -Neumann problem on pseudo convex domain: sufficient conditions, Acta Math. 142, 79-122 (1979).
- [3] Hörmander, L. : Subelliptic operators, Annals of Math. Studies,  $n^{\circ}$  91, 127-208 (1979).

\*\*