JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

J. J. Kohn
 Subelliptic estimates

Journées Équations aux dérivées partielles (1981), p. 1-7
<http://www.numdam.org/item?id=JEDP_1981 \qquad A3_0>
© Journées Équations aux dérivées partielles, 1981, tous droits réservés.
L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www. math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

SUBELLIPTIC ESTIMATES

by J. J. KOHN

Consider the mapping $Q: C_{o}^{\infty}\left(\mathbb{R}^{n}\right)^{m} \times C_{o}^{\infty}\left(\mathbb{R}^{n}\right)^{m}$ given by

$$
\begin{equation*}
Q(u, v)=\sum_{i, j=1}^{m} \sum_{\substack{|\alpha| \leqslant 1 \\|\beta| \leqslant 1}}\left(a_{\alpha \beta}^{i j} D^{\alpha_{u}}, D^{\beta} v_{j}\right) \tag{1}
\end{equation*}
$$

with $a_{\alpha \beta}^{i j} \in C^{\infty}\left(\mathbb{R}^{n}\right)$, here $($,$) denotes the L_{2}$-inner product on \mathbb{R}^{n}. We will assume that
(2)

$$
Q(u, v)=\overline{Q(v, u)}
$$

Definition $: Q$ is subelliptic at $\left(x_{0}, \eta_{0}\right) \in \mathbb{R}^{n} \times\left(\mathbb{R}^{n}-\{0\}\right)$ if there exist positive constants C, C^{\prime} and ε and a classical symbol $p(x, \eta)$ of order zero (i.e. $p \in C^{\infty}\left(\mathbb{R}^{n} \times\left(\mathbb{R}^{n}-\{0\}\right)\right.$ and $p(x, t \eta)=p(x, \eta)$ for $\left.t>0\right)$ such that $p(x, \eta)=1$ in a conic neighborhood of $\left(x_{0}, \eta_{0}\right)$ and

$$
\begin{equation*}
\|P u\|^{2} \leqslant C Q(u, u)+C^{\prime}\|u\|^{2} \tag{3}
\end{equation*}
$$

for all $u \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right)^{m}$, where P is pseudo-differential operator with symbol $p(x, \eta)$ and $\|f\|_{\varepsilon}^{2}=\Sigma\left\|f_{j}\right\|_{\varepsilon}^{2}$, denotes the Sobolev ε-norms.

It is shown in [1] that subelliptic estimates imply regularity of solutions of the satisfying

$$
\begin{equation*}
Q(u, v)=(f, v) \tag{4}
\end{equation*}
$$

for all $v \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right)^{m}$. Here we will outline a microlocal version of the method for obtaining sufficient conditions for subellipticity which is developped in [2]. The advantages of the present treatment is that it can be used to study $C-R$ structures and that it gives results, in at least some cases, when pseudo-convexity fails.

The principal example of the O comes from the $C-R$ structure described as follows. Let $n=2 k+1$ and let L_{1}, \ldots, L_{k} be complex valued vector fields on \mathbb{R}^{n} k
such that $\left[L_{i}, L_{j}\right]=\sum_{s=1}^{k} b_{i j}^{s} L_{s}$ and such that $L_{1}, \ldots, L_{k}, \bar{L}_{1}, \ldots, \bar{L}_{k}$ are linearly independent. We define $\Omega: C_{0}^{\infty}\left(\mathbb{R}^{n}\right)^{k} \times C_{0}^{\infty}\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{C}$ by

$$
Q(u, v)=\sum_{i<j}\left(\bar{L}_{i} u_{j}-\bar{L}_{j} u_{i}, \bar{L}_{i} v_{j}-\bar{L}_{j} v_{i}\right)+\underset{i}{\left.\sum L_{i} u_{i}, \sum_{j}^{-} L_{j} v_{j}\right) .}
$$

This quadratic form controls the regularity of the system $L_{i} W=f_{i}, i=1, \ldots, k$.
Another example of a 0 which can be treated by the methods which we describe below comes from the Hörmander operator $\sum_{j=1}^{k} x_{j}^{2}$, when the x_{j} are real first order pseudo-differential operators in \mathbb{R}^{n} and $Q: C^{\infty}\left(\mathbb{R}^{n}\right) \times C^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}$ is given by

$$
\begin{equation*}
Q(u, v)=\sum_{j=1}^{k}\left(X_{j} u, x_{j} v\right) . \tag{6}
\end{equation*}
$$

Here subellipticity of Q implies hypoellipticity of the Hörmander operator.

Definition $:$ If Q is given by (1) and if $p(x, \eta)$ is a C^{∞} function defined in a conic neighborhood of $\left(x_{0}, \eta_{0}\right) \in \mathbb{R}^{n}-\{0\}$) which is homogeneous of zero order in η (i.e. $p(x, \eta)=p(x, t \eta)$ for $t>0$), we say that p is a subelliptic multiplier for Q at (x_{0}, η_{0}) if there exists a pseudo-differential operator P such that the symbol of P equals p in a conic neighborhood of (x_{0}, η_{0}) and such that there exist constants C, C^{\prime} and ε so that (3) is satisfied for all $u \in\left(C_{o}^{\infty}\left(\mathbb{R}^{n}\right)\right)^{m}$. We say that two subelliptic multipliers are equivalent if they are equal on some conic neighborhood of (x_{0}, η_{0}). We denote the set of equivalence classes of subelliptic multipliers by $\mathscr{P}\left(Q ;\left(x_{0}, \eta_{0}\right)\right)=\boldsymbol{D} \quad$.
$\underline{\text { Proposition }}: \mathscr{P}=\mathscr{P}\left(Q_{i}\left(x_{0}, \eta_{0}\right)\right)$ has the following properties
(a) $\mathcal{P}_{\text {is }}$ an ideal in the ring \mathscr{R}. Where \mathscr{R} denotes the ring of real-valued C^{∞} functions defined in conic neighborhoods of (x_{0}, η_{0}) which are homogeneous of order zero.
(b) $\sqrt{\mathbb{R}} \sqrt{\mathscr{P}}=\mathscr{P}$. Here $\sqrt{\mathbb{R}}$ denotes the real radical of \mathscr{P}, that is if $g \in \mathscr{R}$ then $g \in \mathbb{R} \mathscr{P}$ if and only if there exists an integer m and $p \in \mathscr{P}$ such that $|g|^{m} \leqslant|p|$ in a conic neighborhood of (x_{0}, η_{0}).

Clearly subellipticity of 0 at $\left(x_{0}, \eta_{0}\right)$ is equivalent to $1 \in \mathscr{P}\left(2 ;\left(x_{0}, \eta_{0}\right)\right)$. The proposition given below shows how certain types of a priori estimates lead to conditions which imply that $1 \in \mathcal{P}$.

Theorem : Suppose that A_{1}, \ldots, A_{N} are pseudo-differential operators with symbols $a_{1}, \ldots, a_{N} \in \mathscr{P}\left(Q ;\left(x_{0}, \eta_{0}\right)\right)$ such that there exist C and C^{\prime} so that

$$
\begin{equation*}
\sum_{1}^{N}\left\|A_{j} P u\right\|_{1}^{2} \leqslant C Q(u, u)+C^{\prime}\|u\|^{2} \tag{7}
\end{equation*}
$$

for all $u \in\left(C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right)^{m}$. Suppose further that, for $i=1, \ldots, M_{i}: \quad C_{0}^{\infty}\left(\mathbb{R}^{n}\right)^{m} \rightarrow C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ are first order differential operators such that

$$
\begin{equation*}
\left\|B_{i} P u\right\|^{2} \leqslant C Q(u, u)+c^{\prime}\|u\|^{2} \tag{8}
\end{equation*}
$$

for all $u \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right)^{m}$ and

$$
\begin{equation*}
\left\|B_{i}^{\prime} P v\right\|^{2} \leqslant C \sum_{1}^{N}\left\|A_{j} v\right\|_{1}^{2}+C^{\prime}\|v\|^{2} \tag{9}
\end{equation*}
$$

for all $v \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right)$. Here P denotes a zero order pseudo-differential operator whose symbol equals one in a conic neighborhood of (x_{o}, η_{0}). The operators B_{i} can be written as

$$
\begin{equation*}
B_{i} u=\sum_{k=1}^{m} B_{i}^{k} u_{k} \tag{10}
\end{equation*}
$$

and B_{i}^{\prime} is then given by

$$
\begin{equation*}
B_{i}^{\prime} v=\left(\left(B_{i}^{1}\right)^{\prime} v,\left(B_{i}^{2}\right)^{\prime} v, \ldots,\left(B_{i}^{m}\right)^{\prime} v\right) \tag{11}
\end{equation*}
$$

where $\left(B_{i}^{k}\right)$ ' denotes the formal adjoint of B_{i}^{k}.
Suppose that $p_{1}, \ldots, p_{m} \in \mathscr{O}\left(Q,\left(x_{0}, \eta_{0}\right)\right)$ then for each i we have $\operatorname{det}\left\{p_{j}, \sigma\left(B_{i}^{k}\right)\right\} \in \mathcal{P}\left(Q,\left(x_{0}, \eta_{0}\right)\right)$, here det denotes the determinant of the $m \times m$ matrix, $\{p, q\}=p_{x} q_{r_{i}}-p_{\eta} q_{x}$ denotes the Poisson bracket and $\sigma\left(B_{i}^{k}\right)$ denotes the symbol of B_{i}^{k}.

Corollary : Suppose that Q satisfies the hypothesis of the theorem at $\left(x_{0}, \eta_{0}\right)$. Let $\left.\mathcal{P}_{0} \subset \mathcal{P}_{1} \subset \ldots \subset \mathcal{P}_{r} \subset \mathscr{P}_{(O ;}\left(x_{0}, \eta_{0}\right)\right)$ be the ideals defined as follows

$$
\begin{equation*}
\mathscr{P}_{0}=\sqrt[\mathbb{R}]{\left(a_{1}, \ldots, a_{N}\right)} \tag{12}
\end{equation*}
$$

where $\left(a_{1}, \ldots, a_{N}\right)$ denotes the ideal in \mathcal{R} generated by the a_{j}. For $r>0$ we define

$$
\begin{equation*}
\mathscr{P}_{r}=\sqrt[\mathbb{R}]{\left(\mathscr{P}_{r-1},\left\{\operatorname{det}\left\{p_{j}, \sigma\left(\mathbb{B}_{\mathrm{i}}^{\mathrm{k}}\right)\right\} \text { for all } \mathrm{p}_{1}, \mathrm{p}_{\mathrm{m}} \in \mathscr{P}_{\mathrm{r}-1}\right)\right.} . \tag{13}
\end{equation*}
$$

Then $1 \in \mathscr{O}_{r}$ implies that Q is subelliptic at $\left(x_{o}, \eta_{o}\right)$.

Returning now to the $C-R$ structures, with Q defined by (5), let γ be a differential form such that in a neighborhood of $x_{0} \in \mathbb{R}^{n}$ we have $\left\langle\gamma, L_{i}\right\rangle=\left\langle\gamma, \bar{L}_{i}\right\rangle=0$ with $\gamma=-\bar{\gamma}$ and $|\gamma|=1$. Then γ is determinated uniquely up to sign. Let $c_{i j}=\left\langle\gamma,\left[L_{i}, \bar{L}_{j}\right]\right\rangle$ this is the Levi-form and we say that the $C-R$ structure is pseudo-convex at γ if $\left(C_{i j}\right) \geqslant 0$.

Let U be a neighborhood of x_{o} and V^{+}be a conic neighborhood of $\left(x_{0},[\gamma]_{x_{0}}\right.$) such that V^{+}is also a conic neighborhood of ($x,[\gamma]_{x}$) for all $x \in U$. Let $V^{-}=\left\{(x, \eta) \mid(x,-\eta) \in V^{+}\right\}$and let U^{\prime} be a neighborhood of x_{0} with $\bar{U}^{\prime} \subset U$. Consider zero order pseudo-differential operators P^{0}, P^{+}whose symbols $p^{0}(x, \eta)$, $p^{+}(x, \eta)$ and $p^{-}(x, \eta)$ are zero for $x \notin U^{\prime}$ and $p^{o}(x, \eta)=0$ if $(x, \eta) \in V^{+} U^{\prime} V^{-}$, $p^{+}(x, \eta)=0$ if $(x, \eta) \in V^{-}$and $p^{-}(x, \eta)=0$ if $(x, \eta) \in V^{+}$. We always have

$$
\begin{equation*}
\left\|P^{o} u\right\|_{1}^{2} \leqslant C Q(u, u), \quad \text { for all } u \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right) k \tag{14}
\end{equation*}
$$

Furthermore if $\left(c_{i j}\right) \geqslant 0$ on U then

$$
\begin{equation*}
\sum_{i, j=1}^{k}\left\|\bar{I}_{j} P^{+} u_{i}\right\|^{2} \leqslant C Q(u, u) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i, j=1}^{k}\left\|L_{j} P^{-} u_{i}\right\|^{2} \leqslant C Q(u, u) \tag{16}
\end{equation*}
$$

To apply our theorem at $\left(x_{o},[\gamma]_{x_{0}}\right)$ we let

$$
\begin{equation*}
A_{j}=\Lambda^{-1} \bar{L}_{j} \quad \text { for } j=1, \ldots, k \tag{17}
\end{equation*}
$$

where Λ denotes the square root of the Laplacian. We define

$$
B: C_{0}^{\infty}\left(\mathbb{R}^{n}\right)^{k} \rightarrow C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

by

$$
B u=\sum_{i=1}^{k} L_{i} u_{i} .
$$

The theorem then implies that $\operatorname{det}\left(C_{i j}(x)\right) \in r^{\prime}\left(Q,\left(x,[\gamma]_{x}\right)\right.$ for $x \in U^{\prime}$. Applying the corollary we define ideals of germs of c^{∞} functions at x_{0} by

$$
\begin{equation*}
I_{1}^{+}=\sqrt{\mathbb{R}} \sqrt{\left(\operatorname{det}\left(C_{i j}\right)\right)} \tag{19}
\end{equation*}
$$

and inductively
(20)

$$
\left.I_{r}^{+}=\sqrt\left[\mathbb{R}^{\left(I_{r-1}^{+}\right.}, \operatorname{det}\left(M_{r-1}^{+}\right)\right)\right]{ }
$$

when M_{r-1} runs through all $k \times k$ submatrices of the infinite matrix
(21)

$$
\left(\begin{array}{c}
c_{11} \cdots \cdots \cdots c_{1 k} \\
C_{k 1} \cdots \cdots \cdots c_{k k} \\
L_{1}(f) \ldots \ldots L_{k}(f) \\
L_{1}(g) \ldots \ldots L_{k}(g) \\
\vdots
\end{array}\right)
$$

when f, g, \ldots run through all the elements of I_{r-1}^{+}.
Hence $1 \in \mathrm{I}_{r}^{+}$implies subellipticity at ($\mathrm{x}_{\mathrm{o}},[\gamma]_{\mathrm{x}_{0}}$). Similarly to apply the theorem at $\left(x_{0},-[\gamma]_{x_{0}}\right)$ we set

$$
\begin{equation*}
A_{j}=\Lambda^{-1} L_{j} \quad \text { for } j=1, \ldots, k \tag{22}
\end{equation*}
$$

and $B_{i j}: C_{o}^{\infty}\left(\mathbb{R}^{n}\right)^{k} \rightarrow C_{o}^{\infty}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\begin{equation*}
B_{i j} u=\bar{I}_{i} u_{j}-\bar{L}_{j} u_{i} \quad \text { for } \quad 1 \leqslant i<j \leqslant k \tag{23}
\end{equation*}
$$

The theorem then applies only when $k \geqslant 2$ (otherwise there are no $B_{i j}$ and subellipticity does not hold). We then define ideals of germs of C^{∞} functions at x_{0} by

$$
I_{1}^{-}=\sqrt[\mathbb{R}]{\left(\operatorname{det}\left(\begin{array}{ll}
C_{i_{1} i_{1}} & c_{i_{1}} i_{2} \tag{24}\\
c_{i_{2} i_{1}} & c_{i_{2} i_{2}}
\end{array}\right)\right.}
$$

and

$$
\begin{equation*}
I_{r}^{-}=\sqrt[\mathbb{R}]{\left(I_{r-1}^{-}, \operatorname{det}\left(M_{r-1}^{-}\right)\right)} \tag{25}
\end{equation*}
$$

where the M_{r}^{-}run through the 2×2 submatrices of (21) with $f, g, \ldots \in I_{r}^{-}$. Hence we see that $1 \in I_{r}^{-}$implies subellipticity at ($x_{o},-[\gamma]_{x_{0}}$).
I would conjecture that the conditions $1 \in I_{r}^{+}$and $1 \in I_{r}^{-}$, for some r, are also necessary for subellipticity, this is true in the case of real analytic $C-R$ structures.

The method outlined above will also give sufficient conditions in case the Levi form ($C_{i j}$) is a direct sum in all of U of a non negative semi definite and a non position semi definite form.

In the case of the Hörmander equation, where Q is given by (6). We set $A_{j}=\Lambda^{-1} x_{j}$ and $B_{j}=X_{j}$ and we obtain the Hörmander condition for subellipticity by applying the theorem.

An example which is related both to the Hörmander equation and to $C-R$ structures is given by a first order pseudo differential operator L on \mathbb{R}^{n}. Here we consider $Q: C^{\infty}\left(\mathbb{R}^{n}\right) \times C^{\infty}\left(\mathbb{R}^{n}\right)$ given by

$$
\begin{equation*}
Q(u, u)=\|L u\|^{2} \tag{26}
\end{equation*}
$$

The subellipticity of this Q was initiated by Nirenberg and Treves and then taken up by Egorov and Hörmander (see [3]). It is known that a necessary condition for subellipticity is that on the characteristic of L we have

$$
\begin{equation*}
\left\{\sigma(L), \quad \sigma\left(I^{*}\right)\right\} \geqslant 0 . \tag{27}
\end{equation*}
$$

Furthermore, Egorov has shown that if subellipticity holds at (x_{0}, η_{0}) than

$$
\begin{equation*}
\|\bar{L} P u\| \leqslant C(\|L u\|+\|u\|) \tag{28}
\end{equation*}
$$

Hence, if (28) holds problem is reduced to the case of (6) with $Q(u, u)=\left\|x_{1} u\right\|^{2}+\left\|x_{2} u\right\|^{2} \quad$ where $L=X_{1} u+\sqrt{-1} x_{2} u$.

REFRENCES

[1] Kohn, J. J. and Nirenberg, L. : Non coercive boundary value problems, Comm. Pure and Appl. Math. 18, 443-492 (1965).
[2] Kohn, J. J. : Subellipticity of the $\bar{\partial}$-Neumann problem on pseudo convex domain : sufficient conditions, Acta Math. 142, 79-122 (1979).
[3] Hörmander, L. : Subelliptic operators, Annals of Math. Studies, $\mathrm{n}^{\circ} 91$, 127-208 (1979).

