JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

LoUis Nirenberg

Remarks on the Navier-Stokes equations

Journées Équations aux dérivées partielles (1981), p. 1-4
<http://www.numdam.org/item?id=JEDP_1981 \qquad A13_0>
© Journées Équations aux dérivées partielles, 1981, tous droits réservés.
L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www. math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

REMARKS ON THE NAVIER-STOKES EQUATIONS

by L. NIRENBERG

This talk is a report of work in progress of L. Caffarelli, R. Kohn and L. Nirenberg [1] extending the results of V. Scheffer [2-4]. It concerns weak solutions of the incompressible Navier-Stokes equations in 3 space dimensions of fluid flow. The velocity vector

$$
u=\left(u^{1}, u^{2}, u^{3}\right)
$$

satisfies (using summation convention and subscripts t, i to denote differentiation with respect to time or x_{i})

$$
\begin{gather*}
u_{t}^{j}-\Delta u^{j}+u^{i} u_{i}^{j}+p_{j}=0 \quad j=1,2,3 \tag{1}\\
\nabla \cdot u=u_{j}^{j}=0 .
\end{gather*}
$$

Here Δ is the Laplace operator in the space variables, and prepresents the pressure; viscosity has been normalized to be one. For simplicity we assume here that the forcing term on the right of (1) is zero.

The initial value problem consists in prescribing

$$
u(x, 0)=u_{0}(x)
$$

We suppose u_{o} has finite energy $E_{o}=\left.\int!u_{0}\right|^{2} d x$.
If we consider a flow in a fixed domain G rather than all of R^{3}, we also prescribes some boundary conditions, for example the values of $u(x, t)$ for $x \in \partial G, t \geqslant 0$, say zero. Since the classical work of J. Leray and subsequently, E. Hopf, one knows the existence of weak solutions of (1), (2) for $t>0$ with finite energy for any time :

$$
\begin{equation*}
\int|u(x, t)|^{2} d x \leqslant C(T) \quad \text { for } 0 \leqslant t \leqslant T \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{T} \int|D u|^{2} d x d t \leqslant C(T) \tag{4}
\end{equation*}
$$

where $|D u|^{2}=\sum_{i, j}\left(u_{i}^{j}\right)^{2}$. Furthermore one has the energy inequality which we express in the following form; $\forall T>0$, for $\quad \varphi \in C_{0}^{\infty}(t \leqslant T), \varphi(x, t) \geqslant 0$, we have

$$
\begin{equation*}
\int_{t=T} \varphi|u|^{2} d x+\iint \varphi|D u|^{2} d x d t \leqslant \iint \frac{1}{2}|u|^{2}\left(\varphi_{t}+\Delta \varphi\right)+\left(|u|^{2}+p\right) u^{i} \varphi_{i} d x d t \tag{5}
\end{equation*}
$$

Formally, one obtains this, with equality, if one multiplies (1) by φu^{j}, integrates in (x, t) and sums over j. However up to now one has only proved the existence of a weak solution of (1), (2) satisfying the inequality (5).

Since the early 50's (see the books by O. Ladyzhenskaya [5], J. L. Lions [6] and R. Temam [7]) there has been much work devoted to the following questions : 1. Is the weak solution, described above; of the initial (or initial boundary value) problem unique ? If one can prove some further regularity of the solution then it is (see [5-7]).
2. Can the solution(s) develop singularities? If so can they eat energy in the sense that one may have strict inequality in (5) ? For the initial value problem one knows that after some time $t=T_{o}\left(E_{o}\right)$ the velocity $\left\lceil u \boldsymbol{u}\right.$ is finite. u is then C^{∞} with respect to the space variables.

A weaker form of 2 is :
3. Can the solution develop singularities in case $u_{0}(x)$ is a nice function ?

Let S be the complement of the largest open set (in space-time) in which $u \in L_{l o c}^{\infty}$ i.e. S is the set where $|u|$ becomes infinite. Treating the initial value problem in all of R^{3} in [1], and the initial boundary value problem in [3], Scheffer proved the following result.

Theorem 1 (Scheffer) : The 5/3-Hausdorff measure of S is finite $: H^{5 / 3}(S)<\infty$.

In [1] we localize his arguments and extend them to give the following improvement.

Theorem 2 : If u is a weak solution in an open set in $R^{3} \times R$ satisfying (3) - (5) then $H^{1}(S)=0$.

The proof is based on two propositions. The first is a local form of the key proposition of Scheffer in [2]. In the following, if $P=\left(x_{0}, t_{0}\right)$ we denote by $Q_{r}=Q_{r}(P)$ a circular cylinder in (x, t) space given by

$$
Q_{r}=\left\{(x, t)| | x-x_{0} \mid \leqslant r, t_{0}-r^{2} \leqslant t \leqslant t_{0}\right\}
$$

Proposition 1 There is an absolute constant $\delta>0$ such that if u is a solution of (1), (2) in $Q_{1}(P), P=(0,0,0,1)$ with

$$
\int_{Q_{1}} \int_{0}\left(|u|^{3}+|u||p|\right) d x d t+\int_{0}^{1}\left(\int_{|x|<1}|p| d x\right)^{3 / 2} d t \leqslant \delta
$$

then $|u|$ is finite in a neighborhood of P in $Q_{1}(P)$.

A reformulation of this result is the following obtained by scaling if u is a solution, so is $\lambda u\left(\lambda x, \lambda^{2} t\right) \forall \lambda>0$.

Proposition 1^{\prime} : If $P \in S$ then

$$
r^{-2} \iint_{Q_{r}(P)}\left(|u|^{3}+|u||p|\right) d x d t+r^{-7 / 2} \int_{t_{0}-r^{t_{0}}}\left(\int_{\left|x-x_{0}\right|<r}^{|p| d x)^{3 / 2} d t>\delta}{ }^{t_{0}}\right.
$$

Making use of this, and various interpolation estimates, as well as the relationship

$$
\Delta p=-u_{j}^{i} u_{i}^{j}
$$

we prove

$$
\overline{\lim }_{r \rightarrow 0} r^{-1} \iint_{O_{r}(P)}|D u|^{2} d x d t>\delta^{\prime} .
$$

Proposition 1 is proved with the aid of special test functions φ in (5) approximating the fundamental solution of the backward heat equation, with singularity at P.

REFERENCES

[1] L. Caffarelli, R. Kohn, L. Nirenberg, to appear.
[2] V. Scheffer, Comm. Math. Phys. 55 (1977), p.97-112.
[3] V. Scheffer, Comm. Math. Phys. 61 (1978) p.41-68.
[4] V. Scheffer, Comm. Math. Phys. 73 (1980) p.1-42.
[5] O. A. Ladyzhenskaya (her book on fluid dynamics).
[6] J. L. Lions, livre paru chez Dunod.
[7] R. Temam (his recent book on Navier-Stokes equation).

