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THE EIGENVALUES OF HYPOELLIPTIC OPERATORS

A. MENIKOFF and J. SJOSTRAND
L}

Let P = P(x,D) be a self-adjoint pseudo-differential operator of order m > 0,
with principal symbol pm(x ,E) =0 on a smooth n-dimensional compact riemannian
manifold M without boundary. If P is elliptic then P has a discrete set of eigen-
values bounded from below. Denoting by N(\) the number of eigenvalues < X
( counting multiplicities) the distribution of eigenvalues of P may be described by the
formula
n/m

- S dXAdE  as A—s @ .
P, (x,E)=<1

X
(2m)

(1) N()\) ~

This result has a long history. It may be obtained by studying the singularities

of one of the functions
tr(P-AD)"", tre™), tr(P%), tr(e!th)

(see [1], [4] or [8]). Here we would like to consider the same problem for hypoellip-

tic operators.

A result in this direction has been obtained by Metivier [7], who studied the
spectral function of hypoelliptic operators which are the sums of squares of real vector
fields. He described the spectral function for operators which have a uniform behavior
in the base space, but, for example for the Grusin operator, Di,, + |x" |2 IDX, |2, his
results do not give the asymptotic behavior of the eigenvalues. Other results which
overlap with ours have been presented at this meeting by Bolley, Camus and Pham [2] .

We will discuss the eigenvalues of self-adjoint operators P which are hypoellip-
tic with the loss of one derivative, Let ¥ = {pm(x, €) =0} be the characteristic variety
of P. We will suppose that ¥ is a smooth symplectic submanifold of T*(M) and that

pmvanishes to exactly second order on ¥. Let 2n' = dim I, 2n" = codim & and

+ i"‘j yJ=1,..., 0", with “j >0 be the eigenvalues of the Hamilton matrix of Pm



158

(cf. [9]) restricted to the orthogonal space of £. Then, P will be hypoelliptic with

the loss of one derivative if and only if
nll

(2) P18 + ;E’wj(x,g) (1+20) 40

for any set of non-negative integers aj , at every point (x,E)€3. Here prln-1 is the

subprincipal symbol of P, (ct. [3] or [9]). Infact, P will have a parametrix

m

1_,i.e.
92

eLY)
2
) QP=I+K
where K is a compact operator on LZ(M),
If m>1 and P is hypoelliptic, then P will have only eigenvalues of finite

multiplicity whose only limit points can be T e,

We will further suppose that on I

nll
(4) pl‘n_1 + E Hj > 0.

It will then follow from a theorem of Melin [5] that there is a constant C such that

5) (Pu,u) = - C jul?

and consequently that the spectrum of P is bounded below. Then e"tP is well defined

for t >0 and our goal will be to show

THEOREM 1. Under the above assumptions

C1 t—nl/(m—1) .l_f n' >n||(m_1)

(6) tr(e—tP) ~ c, t—n/mlog t if n'=n"(m-1)
C3 t—n/m if n'<n"(mn-1)
as t{0.
=t

Since tr‘(e_tP) =ye J where >‘j are the eigenvalues of P, we may apply

Karamata's Tauberian Theorem to conclude.

COROLLARY 2. Denoting the number of eigenvalues < )\ by N(\) we have
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a, An /-1 if  n'>n"(m-1)
@) NO) ~ a, AVMlogn i n'=n"(me1)
An/m if n" <n"(m-1)

a3

as A — (a3, incidently is the same constant as in formula (1)).

1. THE ELLIPTIC CASE.

We will begin our discussion of Theorem 1 by rederiving formula (1) for the
elliptic case in a way amenable to generalization., To approximate exp(-tP) we will
seek a solution of

(1.1) Dyw = i P(x,D )w or R"xM

t
w(x,0) = u(x),
micro-locally of the form

(1.2) wie,t) = Al = @n) ™ § e EEN ot ) i) an.

Applying Dt-i P(x,Dx) to (1.2) and grouping terms as if ¢ were homogenous
of degree 1in 1 we will get an eikonal equation of the form
(1.3) <pt—ipm(x,<p)'()=0 i 00,x,8) = x.n
and various transport equations. Making the change of variables t = |n lm-]s, (1.3) will
become
(1.4) @ - ip'(x,<p)'() =0 where p'-= pm(x,«p;()/lnlm_1
for which we will try to find a solution which is homogenous of degree 1 in 7. Expanding
¢ as a power series in s we can find
(1.5) ols,x,m) = <x,n> + iP'(x,n)s+¢)2(x,n)52 Foen
which satisfies (1.4) modulo an arbitrarily high power of s. From the first transport

equation we find that a= 1+ 0(s). Since ¢ leaves the real axis rapidly we may modify

¢ and a for large s so as to get a solution of (1.1) modulo an operator with C°
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kernel in x and t.

As a result ( )
i<x-y,n>-tP_(x,m)+...
e Pu) ~atux) = @m)™ (e m a(t, x,n Ju(y)dydn
and x.8)
-tp_(x,§
tr(e-tP) ~ (em)™ SS e O dxadE + ...
= (2™ g-n/m I’-:lr(‘:—n) SS dxpAdE + ...

p,(x,9=<1

modulo a function less singular in t. Applying Karamata's Tauberian Theorem gives (1).

2. THE HYPOELLIPTIC CASE.

We will now attempt to find a solution of (1.1) micro-locally of the form (1.2)
when P satisfies the assumption of Theorem 1. The eikonal equation will be of the form
(2.1) ¢}, = ip(x,¢})
again. We make the same change of variables as before to make (2.1) homogenous. But
this time it will be necessary to solve (2.1) as s — « , This is because the solutions
of (2.1) will not leave the real axis everywhere. In fact, bicharacteristics starting in
Z stay in ¥ giving a point where Im ¢ stays O.

We'll solve (2. 1) using Hamilton-Jacobi Theory. We'll make a series of canoni-
cal transformations to simplify our prohlem. To begin with let us choose new canoni-
cal coordinates so that 3y = {x" = €" =0} where (x,£)=(x',x",€',8"), x'€ RrR" ,
x"eR™ etc. Setting t=s|n' lm_1, (2.1)
becomes
(2.2) ol = iR (x,0!)/ |n' Im_1 =ip'(x,q}).

Expanding p' as a Taylor's series in (x" ,g") we find

(2.3) p'(x,g>=la+z;|=2aaﬁ(x',g')x"“g-'ﬁ+o<1g|"‘<l>}"l+ig"||g|»3>.

The quadratic terms  in (2.3) may be expressed as
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o((x",&"),H(x",&"))
where H, the (transversal) Hamilton matrix of p is skew-symetric with respect
to the standard symplectic form ¢ in R2n" .
Recalling the results of [9], H has eigenvalues of the form % i pj(x‘ ,E'") with
K >0 for j=1,...,n", andif V . (V_) denotes the span of the positive (negative)
eigenvectors of H in ¢2n", then V_ (V) is a positive (negative) definite Lagrangean
'

\l
plane in 022" , and

n
" eoc”-v ev_.

Since V + depend smoothly on (x',E') we may make a complex canonical change of

variables so that V_= {x" =0} and V += {€" =0} . In terms of these new coordinates

A O
(2.4) H=
where A is a matrix with only positive eigenvalues.
Since we have made a complex change of variable the following considerations will
be only formal and will required justification.

Equation (2.2) now takes the form

b, x"¢ :p)'(f

>
3<jorpl P
It is possible to find one more canonical transformation so as to make the higher

(2.5) (Dé=" <A(X',*P;(,)X", X'">+

order term in (2.5) takes the form O(}x" llepn | (1x"]+ lp"1)). Solving (2.5) by using
formal power series in (x" ,17") we will get a solution

SA

¢=<x',m'>+<ex",n" >+ cubic term in (x",n").

The phase function of At is

p=<eSAy

1oy, 7)">+<X'-Y':ﬂ' >4 ...
where the other higher order terms converge to 0 exponentially fast.

Denoting by C ={(x,go)'(. - cp;7 , n)} the canonical relation generated by i we may
note the C_ isthe  graph of the identity and C_ = {(x',x",g',0),(x',0,€",E")}.

The fist transport equation is
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da , (1
2.7) &+ APy Ja=0(x |+ [g"])
whose solution is

-s(% tr A +pl o)

als,x,8) =e Yeo(xr |+ &),

The leading term of the solution Atu is

i<e™SA
(211)’"8 e

X"-y", BN >+<x'-y',E'> - s( tr' H +p['n_1)
, . -tP, .
The leading term of tr(e™ " ) is then

u(y) dy dg .

. =SA v on snw -S(trT H+p' )
2.8) (2m)™" Se‘<(e -Dx", 8" > m-1 ixde.

When n' >n"(m-1) we will compute the singular part of (2.8).
Evaluate the integral with respect to (x",&") in (2.8) by the "method of stationary
phases" (thinking of s1- || ™ 1/t as the large parameter). This gives that the lea-

ding term of tr(exp(-tP)) is
-s(tr'H +p' )

e e m-1
(2.9) (2m)™™ — dx'n dg' .
det(I-e™)
It is easily seen that
CaA -2su. -1
det(I - ™3 T2 g(1-e J)
-z s2a.p)s
O<acZ

where 2 Hqs oo 92 Ko are the eigenvalues of A. When n' > (m-1)n" the integral

(2.9) is convergent and equals

nl
“m=1
(2.10) L ) dx'n a8
(! @ n gzn{F(x',g')Zﬂ
where
(2.11) F(x',ﬁ')j)siézn" (Ph_ (' 8"+ (1+203)#j(x':§'))-n'/m_1

(P is hypoelliptic if and only if F # o for all (x',g')€ 5).

Applying a Tauberian theorem will yield
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'/(m-1)
(2.12) N(\) ~ "—nim-r— dx'ade'.

n
(2m) {F=1Ing
This completes a sketch of the proof of Theorem 1. A justification of our formal
changes and variable and complete details of the proof will appear in a future publica-

tion.

After this conference we learned that Tréves has also constructed exponential

e_tP for the same class of operators considered here. Tréves' construction is dif-

ferent from ours. As an application he proves the local analytic hypoellipticity of the

-~

? - Neuman-problem,
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