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CONSTRUCTION OF VERY HARD FUNCTIONS FOR
MULTIPARTY COMMUNICATION COMPLEXITY*

JAN MANUCH1

Abstract. We consider the multiparty communication model defined
in [4] using the formalism from [8]. First, we correct an inaccuracy in
the proof of the fundamental result of [6] providing a lower bound on
the nondeterministic communication complexity of a function. Then
we construct several very hard functions, i.e., functions such that those
as well as their compléments have the worst possible nondeterministic
communication complexity. The problem to find a particular very hard
function was proposed in [7], where it has been shown that almost all
functions are very hard. We also prove that combining two very hard
functions by the Boolean opération xor gives a very hard function.

AMS Subject Classification. 68Q15, 68Q85.

INTRODUCTION

The multiparty model is a natural extension of the two-party model. The aim
is to compute a given Boolean function on an input. In the two-party communi-
cation model, the input is distributed between two parties, which are connected
by a communication link. The communication complexity is the total amount of
communication on the link needed to compute the function. Naturally, the goal is
to compute the function minimizing the communication complexity.

In the multiparty model the input is distributed among n parties. It is assumed
that there is a coördinator that is allowed to communicate to each party, but the
parties are not allowed to communicate directly with each other. The communica-
tion complexity is the total amount of communication on all links. The goal is the
same: to compute a function on the whole input minimizing the communication
complexity.
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One of the trivial solutions how to compute a Boolean function is sending all
data in the parties to the coördinator which will perform all computations. Hence,
the worst communication complexity of a function is equal to the size of the input.
The Boolean function which can be computed only with the worst nondeterministic
communication complexity is called hard function. If the complement of such a
function is also a hard function, then we call this function very hard. The aim of
this paper is to construct several concrete very hard functions.

The two-party model has been extensively studied; an overview of results on the
two-party model can be found in [8]. The study of the communication complexity
of the two-party model was inspired by the VLSI circuits complexity, cf [10]
and [13]. There are many other applications of the communication complexity,
cf [9]. The multiparty model was introduced and investigated in [4],

Note that in [3] a different multiparty model was considered. In that model each
of the n parties has all the inputs except one, and all parties communicate through
a shared "blackboard". This model was investigated in [1], where an interesting
relation to time-space tradeoffs and branching programs was discovered. We do
not know any connections between these two models.

There are only few results known about the multiparty model introduced in [4].
In [5] an upper bound on the deterministic communication complexity of order
O(k(/)k2(l — /)ncc(/)ncc(l — ƒ)) was established, where k(/) is the number of
processors accessed and ncc(/) is the nondeterministic communication complex-
ity of the function ƒ. In [6] a fundamental tooi to prove a lower bound on the
communication complexity of a given Boolean function was developed. However,
there was a small mistake in the proof. In this paper we correct the proof of this
result. Further results proved in [6] are the following relations between the non-
deterministic communication complexities of a function and its complement, and
also between the deterministic and nondeterministic communication complexities:

ncc(l - ƒ) < n ( 1 + 2n c c ( / ) ), cc(/) < n ( 1 + 2n c c ( / ) ) -

For the restricted one-way model, where only one communication is allowed for
each direction on each link, the following results for one-way nondeterministic and
one-way deterministic communication complexity were established in [6] :

ncd(/) = ncc(/), cci(/) < cc(/) • 2

For all these bounds it is shown that they are optimal.
The main result of this paper is the construction of several very hard functions.

Recall that a function ƒ is a very hard function if ƒ and its complement 1 — ƒ have
the worst nondeterministic communication complexity. Of course, in the deter-
ministic case the communication complexities of a function ƒ and its complement
1 — ƒ are equaL In the nondeterministic case there could be even an exponential
différence between the communication complexities of ƒ and 1 — ƒ, cf. [6]. In [7] it
has been shown that almost all functions are very hard, while finding a particular
very hard function was proposed as an open problem.
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Note that a similar problem appears in the theory of circuit size complexity. It
is well-known fact that almost all Boolean functions of n variables require £7(2n/n)
combinatorial circuit complexity, cf [12] and [11]. Here, the combinatorial circuit
complexity of a Boolean function ƒ is the minimal number of gates needed to
realize the function ƒ, where gates are any of all 16 binary opérations. On other
hand, the highest known lower bound of combinatorial circuit complexity of a
concrete function is only 3n, cf. [2].

We also prove that combining two very hard functions by the Boolean opération
xor results in a new very hard function. This resuit extends a similar result from [6]
that claims that the Boolean opération and preserves the hard functions and the
result from [7] that claims that the deterministic communication complexity adds
up when combining two functions by xor.

1. PRELIMINARIES

In this section we define the multiparty model, the nondeterministic protocols
and the communication complexity. We start with an informai définition of the
model.

The multiparty model consists of a coördinator and n parties. The coördi-
nator wishes to evaluate a Boolean function ƒ (xi , . . . ,xn). The input vector
% = {xi,-.-<>Xn) is distributed among n parties, with Xi G {0, l } m known to
the party i. We allow a communication only between the coördinator and any
party. Instead of saying "the communication between the coördinator and party
z" we often say "the communication on link in. The computation consists of sev-
eral phases, where one phase is as follows:
The coördinator sends some nonempty messages to some parties and then, each
party that got a message, sends a nonempty message back to the coördinator.
After the computation the coördinator announces the result: ï if accepted or Ö
if rejected. In the nondeterministic case we accept an input, if there exists an
accepting computation for this input.

Next, we give formai définitions of the nondeterministic protocol. We will use
the notation from [8]. Let À be the empty string. In the following we identify a
relation 3> Ç A x B with the function <£ : A —> 2B defined as follows: for every
a e A, ${a) = {b | (a,6) e #}.

Définition 1.1. A nondeterministic protocol over X = {xi,... ,xn} with x% =
x\-..x™ e {0, l } m , n > 1, m > 2, is a pair P = (*C ,#F) , where

(a) 4>c is a communication relation of the coördinator in

[{o,i,$}Tx([{o,i}Tu{ö,ï});

and the projections of $c are defined as follows: for all c E [{0, l,$}*]n,
i € {1 , . . . ,n} let
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(b) <&p is a communication relation of parties in

({l , . . ,n}x{0, l}mx{0,l ,$}+)x{0, l}+ ,

where

(i) <J?c has the prefix freeness property:
for each z G { l , . . . , n } , c,c' G [{0,1, $}*]", d,df G {0,1}+: let a (let c'%) be
the z-th component of c (of c');
if ei = c[ and (c, d), (c', d!) G ̂ c , i , then d is not any proper prefix of d';
if d is a proper prefix of c£, ie . , c£ = Cidf%m with m G {0,1,$}* and
(c, d) G ̂ c,z, then d is not any proper prefix of df and vice versa (each party
knows when it is the end of a message from the coördinator),

(ii) &p has the prefix freeness property:
for each i G { 1 , . . . , n}, c G {0,1,$}*, d,d! G {0,1}+ and xux\ G {0, l } m

such that ((z,Xi,c),d), ((z,^,c),d') G 3>p, d is not any proper prefix of d!
(the coördinator knows when it is the end of a message from any party),

(Ui) for each i_ G { l , . . . , n } , c,d G [{O,JL,$}*]n such that a = dt / A, if
&c(c) H {0,1} ^ 0, then <£c(c') Ç {0,1} or $ct{d) = {A} (if there is a
communication on link i then party i knows when it is finished).

Let us give an intuitive explanation of the symbols used in the above définition. 0,1
represent bits sent through the communication links and $ is a virtual end mark of
messages. Virtual means that the symbol is not send neither by the coördinator,
nor by any party. The properties (i)-(iii) ensure that any such virtual end mark is
not necessary. In fact, the use of such a mark during the communication can lead
to very nonintuitive properties of the model: consider, for example, a node which
sends k empty messages, and in this way the receiver obtains an arbitrary large
information, the number fc, without increasing the communication complexity.
Symbols Ö, ï represent the resuit value of a computation.

The relation $c maps a temporary state of a communication on all links to
the one of the result values or to an n-ary séquences of messages sent from the
coördinator to the each party. The empty message means that the coördinator
does not communicate with the party. The relation <PP maps the number i of a
party, the input of the party i and a temporary state of the communication on the
link ü o a nonempty message sent from the party i back to the coördinator. Since
we consider nondeterministic protocols, these maps could be ambiguous.

We proceed with the définition of the computation.

Définition 1.2. A computation of a protocol P = (<PC,&P)
 o n a n input vector

x = (xi,..., xn) is a communication vector c = (ei , . . . , cn) with

where

(i) for alH e {1,. . . ,n} c\,..., c2^ e {0,1}+;
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(ü) there is an integer r, called the number of rounds of c, and a séquence of
vectors cp], • -., C[2r] £ [{0,1, $}*]n, ie., states of the computation such that

(a) c [ 0 ] = (A, . . . , A ) ,
(b) if l is even, then

if l is odd, then for each i e { l , . . . , n }

•r d>

xi)c[Z]i)}ï otherwise,

Informally, the vectors C[2j_i] and C[2J-J represent the states of computation in the
round j . Vector C[2j-i] is the state after the coördinator sends messages to chosen
parties. If the coördinator does not communicate with a party i in the round j ,
then the i-th component of C[2j-i] contains two symbols $ in the end. Hence the
second one is removed by the définition in part (ii.c), when computing cpj], ie.,
the state after the chosen parties send back messages to the coördinator.

We dénote the set of all computations on an input x (all computations) by
comp(P, x) (by comp(P)). We say that a computation c is accepting, if ï G 3>c(c)-
P is called an r-round nondeterministic protocol if every computation of P has at
most r rounds.

We say that P computes 1 for an input vector x, ie., P(x) = 1, if there exists
an accepting computation c of P on x, otherwise P computes 0, ie., P(x) = 0.
We say that P computes the Boolean function ƒ with the input variables X, if for
each x e [{0, l}m]n we have f(x) = P(x).

Now, we illustrate the above définitions with the following example.

Example 1.3. Consider the function ƒ defmed by

ƒ (xi,..., xn) = 1 iff there exist i ^ j such that Xi = Xj.

We construct a nondeterministic protocol P = ($CI$P) computing this function:

i = b3 £{0,1} andVkï ij: bk = A},

^(1,^,6$)= .

10, otherwise,

'ï, if a = cj = 6$y$, 6 e {0,1}, y e {0, :

$c (ei , . . . , cn) = ^ and VA; / i, j : cfc = A,

0, otherwise.
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<Pc has the prefix freeness property, since all messages the coördinator sends, have
the same length. The same holds for <PP. If we have c,d G [{0, l,$}*]n with
d = di / A and £c(c) H {0,1} ^ 0, then $(c') Ç {Ö,ï}, so P satisfies also
condition (in) of Définition 1.1. Hence it is a nondeterministic protocol.

Informally we can describe the protocol P as follows: the coördinator guesses
for which i ^ j the equality Xi = Xj holds. It also guesses the first bit of Xi = Xj
and sends it to the parties i and j . It does not communicate with the other parties
at all. The party i (the party j) checks if the coördinator guessed the first bit of
Xi (of Xj) correctly and in such case sends back the rest of the input Xi (of the
input Xj ). Finally, the coördinator checks if the rest of xi equals to the rest of Xj.
Only in such case it ends with ï. Clearly, this protocol computes the function ƒ.

Consider an input vector x = [x\,..., xn) such that xi = x2 = ai . . . am / x3

and a\ = x\. Then

C = {ai$CL2 . . . & m $ , CL\%0,2 • - • Ö m $ , A, . . . , A)

is an accepting computation of P on x. Indeed, we have r\ = r2 — 1, r<$ = - - - —
rn = 0 and the séquence of states of the computation is:

c[o] = (A, - . . , A), c[!] = (ai$,ai$,$, . . . , $ ) ,

C[2] = (&i$a2 • • • öm$, ai$«2 • • • a m $ , A , . . . , A) = c.

The number of rounds of c is 1. The computation

c' = (ai$a2 •.. am$, A, ax%x\ . . . a^$, A,..., A)

is not any accepting computation. Obviously, each computation uses exactly 1
round, so P is a 1-round protocol.

Now we look at some simple properties of computations. Conditions (i)-(iii)
ensure that the set of all computations comp(P) has the self-delimiting property:

Lemma 1.4. Leti €. {1 , . . . ,n}, c^d € comp(P) be computations such thatCi ^ di

are both nonempty and q be the largest number such that c\ — cj1, . . . , cf = d?.
Let Ti (let r\) be the number of rounds, in which there was a communication on
the link i in computation c (in computation d). Then

q < 2ru q < 2r\, (SDI)

c^+1 is not any proper prefix of d^ . (SD2)

Let us define the morphism Zi, which deletes the virtual mark $: h(Ö) = 0, h(l) = 1,
ft($) = A. So we have h(ci) = c\ ... c?r*. Moreover, we define h(c) = ft(ci)... h(cn).
We can state a corollary of Lemma 1.4.

Corollary 1.5. [6] Letc,d E comp(P) and assume Ci^di are both nonempty7 then
h(ci) is not any proper prefix of h(di).
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Sometimes we are not interested in the communication on all links, but only in
the communication on selected links. We use the following notation:

Notation 1.6. Let J = {ji , . . - ,jfc} Ç { l , . . . ,n} be a nonempty set and let
c — (ei , . . . , cn) be a computation. Then c/J — (CJ±,..., Cjk).

We finish this section by the définition of the nondeterministic communication
complexity.

Définition 1.7. The length of a computation c of P is the total length of all
messages m e {0,1}+ in c. For each x G [{0, l}m]n such that P(x) = 1, let
ncc(P, x) dénote the length of the short est accepting computation of P on x. The
nondeterministic communication complexities of the protocol P and of the function
ƒ are

ncc(P) = max{ncc(P,;c) | P(x) = 1},
ncc(7) = min{ncc(P) | P computes ƒ} •

Similarly, we can define ncc(P ïx/J)) ncc(P/J) and ncc(ƒ/</), when we measure
only the communication on links in J.

Example 1.8 (continued). The length of both computations c and d is 2m.
Clearly this holds for any accepting computation of P. Hence ncc(P) = 2m,
which implies ncc(/) < 2m.

Using the idea of the protocol P for any Boolean function ƒ we can construct
a protocol with the nondeterministic communication complexity nm. First, the
protocol sends all the information the parties have to the coördinator and then
the coördinator is able to compute ƒ. This implies:

Proposition 1.9. For any Boolean function ƒ : [{0, l}m ] n —>• {0,1}; ncc(/)
< nm.

Now we can define hard and very hard functions.

Définition 1.10. A Boolean function is hard, if ncc(/) = nm and it is very hard,
if ncc(/) = ncc(l — ƒ) = nm.

2. THE FONDAMENTAL TOOL

In this section we correct Theorem 1 and its proof frorn [6]. The mistake in [6]
occurs actually in Lemma 1. Here is the correct version of Lemma 1.

Lemma 2.1. Let £>i, £>2, - • -, bp be a séquence of nonempty binary strings such that
no element is a proper prefix of another and no element of this séquence occurs in
it more than q times. Then YA=I \bi\ > plog2.

Before the proof let us show that Lemma 1 in [6] does not hold.
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Example 2.2. In Lemma 1 and its proof of [6] the inequalities YA=I 1̂ 1 > pl°g §

and Xir^i 1̂ 1 — P\ l°g ~ a r e claimed, and the later one is used in the proof of The-
orem 1 in [6]. However, the following séquence of binary strings 00, 00,00, 01,1,1,1
shows that neither of these is true. Indeed, we have Y^=i 1̂ 1 = H> P ~ ^ an<^ ^
we choose q = 3, then plog - == 11,09 and p log - =14.

Proof of Lemma 2.1. Let qf < q be the maximal number of occurrences of a string
in the séquence. For i = 1, . . . , qf consider sets Qi containing strings which occur
in the séquence at least i times. Clearly, Y^ï=i \Qi\ = P- For e a c n set Qi there
is a corresponding binary tree such that the strings in Qi encodes the paths of
the tree. Since no element in the séquence is a proper prefix of another element,
all strings end in the leaves of the tree. The trees Qi , . . . , Qq' form together the
forest G. Let T(G) dénote the total sum of the depths of all leaves of the forest
G. Obviously, T(G) = Y^=i 1̂ 1- Now we transform the forest G into a forest G"
in two steps:

Step (i). Apply the following procedure as many times as possible. If some node
in of the forest has only one son, then we delete the node and replace it by
its son. In this way we get a forest containing only binary trees.

Step (ii). Apply the following procedure as many times as possible. Let V\ (v2)
be a leaf with the maximal (minimal) depth. If depth(^i) < depth(^2) + 1,
then the forest is balanced. Otherwise, we perform the following opération:
if v is the father of t»i, then we eut off both sons of v and connect them to
V2 • In this way we get the balanced forest G" with depths of leaves either h
or ft + 1.

Note that in both steps we preserve the numbers of both leaves and trees, and
the depths of leaves can only decrease, thus T{Gf) < T(G). Let a (let b) be the
number of leaves in depth h (in depth h + 1). Clearly, a + b = p. It is easy to
dérive qf • 2h+l = 2a + b = p + a, which implies

T(G) > T(Gf) - ha + (h + 1)6 = plog^-^ - a > plog -n
Q Q

where the last inequality comes from the inequality log(x + 1) > x for x G (0,1),
in which we substitute x — -. D

To state the theorem we need another two définitions.

Définition 2.3. [6] Let Y be a nonempty subset of / "Hl ) . We say that the
index j is important for f with respect to F , if for every y = (yi,..., yn) G y there
isy'j G {0, l}m such that

f(yu . . . , Vj-uyp %+i , . . . , yn) = 0.
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Let J Ç { l , . . . ,n} be a nonempty set of indices and x = (#1, . . . ,rcn), y =
(2/1 ) • • • ) Vn) two input vectors. We dénote

[x .y\/J = (zu ...,zn), w h e r e z z = <

I yxy otnerwise.

Let M be a nonempty sets of inputs. Then J-closure of M is the set

C£j(M) = {[x:y}/J
If we use Lemma 2.1 instead of incorrect Lemma 1 in [6] in the proof of the
theorem, we get the following result.

Theorem 2.4. Let Y be a nonempty subset of /~1(1) and J i , . . . , JT be pairwise
disjoint sets of indices. Assume that every j E L£=1 J% is an important index for f
wüh respect to Y and let dz be positive mtegers satisfyzng

d, > max{|M| I C£j, (M) Ç J"1 (1)}

Then we have lower bounds on the nondetermmistic communication complexity

ncc( ƒ/ Jt) > log M , ncc( ƒ) >

The proof is based on Lemma 2.1, properties of nondeterministic protocols
(Cor. 1.5) and the classical crossing séquence argument, cf. [6]. Note that the
above theorem differs from Theorem 1 in [6], where it was claimed ncc(/) >

J2l=i 1°S d \' ^ e aPP^y t m s theorem in Example 1.3.

Notation 2.5. For every a € {0, l } m and every integer d let val(a) dénote the
value of the binary string a and let (a)d dénote the string from {0, l } m such that
val( (a)d) = val(a) + d mod 2m.

Example 2.6 (continued). Assume that n < 2m~l + 1. Let us choose in
Theorem 2.4: r = 2, Ji = {1}, J2 = {2} and Y = {(a,a, (a)i, (a) 2 ) . . . , (a)„_2) |
a G {0, l}m}. It is easy to see that indices 1 and 2 are important with respect to
Y. Take arbitrary different a, b G {0, l } m . Assume that ƒ (a, 6, (fe)i, (6)2,... ) =
ƒ (6, a, (a)i, (a)2,... ) = 1. Then we have a = (b)c and b = (a)d for some integers
1 < c, d <n-2 < 2m~1 - 1. Obviously c + d = 2m, which contradicts the above
restrictions for c and d. Hence we can set d\ = 1 and similarly d2 = 1. Using
Theorem 2.4 we obtain ncc(/) > 21og(2m) = 2m. Thus we can conclude ncc(/) =
2mfor alln < 2m~1 + 1.

3. VERY HARD FUNCTIONS

In this section we give the main result of the paper. We present two methods
how to construct a very hard function for any n using a strongly very hard function
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f(xi,x2) or using very hard function(s) with less than n variables. We also show
that the function g(x\1x2) = 1 iff val(xi) < val (#2) is very hard and a simple
modification of the function g, denoted below by p'(xi, x2), is strongly very hard.
For this purpose we need some more définitions.

Définition 3.1. Let ƒ (#i , . . . ,xn) be a Boolean function, Xi G {0, l } m and let
Ji — {%] for all i e {1 , . . . , n}. If there exists a nonempty set Y Ç /~1(1) such
that for all i G {1 , . . . , n} the index i is important with respect to Y and there
exist positive integers di such that for every i e { l , . . . , n }

d, > max{|M| I ClJ% (M) Ç Z"1 (1)}, and (1)
MÇr

log^=m, (2)
di

then the function ƒ is strongly hard. We will say that the function ƒ is strongly
very hard when both the function ƒ and its complement 1 — ƒ are strongly hard.

According to Theorem 2.4 it is obvious that any strongly (very) hard function
is also a (very) hard function. First, we modify the function g(xx,x2) and prove
that the resulting function g/(xi,x2) is strongly very hard. Let

gt(xux2) = 1 iff val(si) < val(ar2) A (xux2) + (0m, lm) V (xux2) = (l r o ,0m).

Theorem 3.2. The function gf is strongly very hard.

Proof. First, we check the function gf. Set J\ — {1}T J2 = {2}, Y — {(xi}x2)
X\ — x2}- Take any vector x = (a^a) eY". We have^'((a)_f_i,a) = gf(a1 (a)_i) =0 ,
hence both indices are important with respect to Y. Consider now a^b. Clearly,
exactly one of the values g\a^b) and #'(&,a) is equal to 0. Hence the integers
d\ = d2 — 1 satisfy the condition (1) of Définition 3.1 and since \Y\ = 2m, they
satisfy also (2). The function gf is strongly hard.

For the function 1 — gf we set J\ = {!}, J2 = {2}, Y = {((a)+i,a) | a G
{0, l} m }. Since, for all a e {0, l } m , (1 - gf)(a,a) = 0, both indices 1,2 are
important with respect to Y. Take any two vectors ((a)+i,a), ((6)+i, &) 6 V
with a y£ b. We want to show that at least one of the values (1 — </)((a)+i,6),
(1 —p7)((&)+i, a) is equal to 0. Assume the contrary that both the values are equal
to 1. Then we have (a)+i > b with ((a)+i,6) / (lm ,0m) or ((a)+i,6) = (0m , lm) .
In the second case both a, b are equal to lm , which is a contradiction. In the first
case we obtain 2m - 1 > val(a) +1 > val(b) > 0 and similarly 2m - 1 > val(b) +1 >
val(a) > 0. These together imply the inequality val(a) + 1 > val(6) > val(a) — 1.
Thus again a = 6, a contradiction. We have shown that at least one of values
(1 -0 ;)((a)+i, &), (1 - s 'XW+i) a ) is equal to 0. The cardinality of the set Y is 2m.
Therefore as in the previous case the integers d\ = d2 = 1 satisfy both conditions
(1) and (2). Hence, the function 1 - g/ is strongly hard and the function gl is
strongly very hard. D

Using a similar method one can show the following lemma.
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Lemma 3.3. The function g is very hard.

Now we show how to construct a very hard function / i (zi , . . . ,xn) using a
strongly very hard function /(xi,X2) and the opération xor on Boolean strings
In order to do so let us define the opération xor on Boolean strings and the xor
constructor F® which constructs the function h.

Définition 3.4. Let © dénote the Boolean opération xor. Let x = x1 . . .x m ,
y = y1... ym be m-bit strings. We define the xor opération on strings as follows:
x © y = x1 © y1...xm © ym. Let n > 2 be an integer, J C { l , . . . , n } b e a
nonempty set and ƒ (£1,2:2) be a Boolean function. We define the xor constructor
F® as follows

F®(J,nJ){xu...,xn) = ƒ( © x„ © x \

Theorem 3.5. Let f{x\,X2) be a strongly very hard function, n>2bean integer
and J C { l , . . . , n } be a nonempty set. Then the function h = F 0 ( J, n, ƒ) is very
hard.

Proof Since the function ƒ is strongly hard, there exists a nonempty set Y f Ç
/~1(1) such that all indices are important with respect to Y f and there are values
of dl such that

d{> max{|M| | C£Tf (M) ç / ^ ( l ) } and log ̂  = m,
Mcyf * dJ

where j / = {z}, i = 1,2. Dénote J ' = { 1 , . . . , n} — J. Let us consider the following
set

Y=\(yi,...,yn) I ( © y„ © yt)

First, we show that all indices are important with respect to Y for the function h.
Let j e {1 , . . . , n} be an index and (yi, . . . , j/n) € F be an input vector. Let

(zi,aï2) = f © y%% ©
\zej teJ'

We can assume that j G J, since the proof for j € J ' is similar. Index 1 is
important with respect to Y^ therefore there is x[ such that /(x'1,x2) = 0. Put
yf

3 = y3 © xi © xf
x. We obtain

( © Vz) © 2/j = ( © 2/z) © X! © xi = xi-

The value of xor on all y^s with indices in the set J ' remains constant, and hence
h(yu ... ,3/j-i,2/^2^+1, •. • ,2/n) = /(xi,x2) = 0. This implies that all indices are
important with respect to Y'.
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We set J3 = {j} for every j G { l , . . . ,n} and we prove that if we set d3 =
2(n-2)m . ̂ / for a l l indices j eJ and d3 = 2<n"2)m • 4 for all indices j G J', then
the assumptions of Theorem 2.4 are satisfied. To prove this it is enough to show
for all indices j G J (for all indices j G J'): if M is a subset of Y, which satisfi.es
C£j3 (Af) Q h~l(l) then \M\ < 2(n"2)™ • d{ (then \M\ < 2^~2)m • d{).

Hence take a j G J and a subset M of 7 which satisfïes C ^ (M) Ç /i~1(l).
(The proof is similar for j G J'.) Let us define the following sets

K(xux2) =

Note that the sets if (xi, X2) form a décomposition of the set M. For all a G {0, l } m

define the sets

Mf(a) = {(xux2) I a<E L(xlix2)} >

which form a décomposition of [{0, l}m]2. Note that Mf(a) Ç Y-f, since the
sets if(# 1,0:2) and L(^i,x2) are empty if (xi,a?2) ^ Yƒ. We show that for any
a G {0, l } m , Cfj/ (Mf(a)) Ç / "H 1 ) : w h i c h implies that the set Mf(a) has at

most d{ éléments.
Take two éléments x,xf G Mf(a), where x = (x i , ^ ) , x; = (x^x^). We have

a G L(xi, X2), so there exists a vector y = (t/i,. . . , yn) which satisfies y G K(x±) x2)
and x\ © y3 = a. Similarly there exists a vector yf = (y[,... ,y^) for the values
x'i,X2. Since both y,yf belong to the set M and C£j3 (M) Ç /i~1(l), we obtain

= 1- Thus

f([x : A

Therefore Ct3f (M/(a)) Ç /"H1)^ which implies \Mf(a)\ < d{. We have

(xx,x2) ae{0,l}

There is at most 2^n~^rn éléments in any K(xi)x2) with the same value of y3. So
by the pigeon hole principle there is at least ^-^^ éléments in any if(xiïX2)
with distinct values of y3. Obviously such éléments have also distinct values of

/j . Therefore we have the inequality |L(xi,X2)| > ^ ( ; x i ^ . We can conclude

2 -d{>£= ^ \L(xux2)\> \ M \

2 ( n _ 3 ) m = 2 ( n _ 3 ) m
(xi,x2) (x!,x2)
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This implies the inequality \M\ < 2^n~2^rn • d{, as desired. So we can set dj
= 2(n-2)m . df f o r a l l indices j e J and dj = 2^"2)m • d{ for all indices j G J'.

The cardinality of the set Y is 2<n"2)m • |y/ | . The rate between \Y^\ and d{ is
the same as the rate between \Y\ and di for any index i G J and similarly for c^
and any index i e J'. It is easy to see that log ^ = log ^ 4 = m for all indices

Î G J and log ^ = log ̂ ~~f- — m for all indices i G J'. Hence, by Theorem 2.4,
the communication complexity of the function ft is nm, ie., function ft is hard.

Since the complementary function 1 — ƒ is also strongly hard and 1 — ft =
J, n, 1 — ƒ), the function 1 — ft is hard too. This complètes the proof. •

Theorem 3.5 gives us the method how to construct a very hard function for
any n using a strongly very hard function ƒ{x\,x2). Hence, as a conséquence of
Theorems 3.2 and 3.5 we have:

Corollary 3.6. Let n > 2 be an integer and J be a nonempty proper subset of
{1, . . . ,n}. The function F e ( J , n,gf) is very hard.

Next, we analyze the functions created by combining two Boolean functions by
the Boolean opération xor. More precisely:

Définition 3.7. Let gi : [{0, l}m ] n i -> {0,1}, g2 : [{0, l}m]n 2 -> {0,1} be two
Boolean functions. Let n = n\ + n2. We define the Boolean function g\ ® #2 as
\/xe [{0,1}™]™ : (5i

Now we can state our last theorem.

Theorem 3.8. For all Boolean functions

max(ncc(#i) +ncc(l - 0 2

In particular, if both functions g\ and 52 are very hard, then the function g\ © #2

is also very hard.

Proof. Let P be a protocol computing function g\ © g2 with the communication
complexity ncc(#i ® g2)- Let Ji = { 1 , . . . , rt\} and J2 = {ni + 1, . . . , n}. Take
an arbitrary x = (x1 ; . . . ,xn i) such that ^i(x) = 1. We show that there exists
Vx = (xni+u...,xn) such that g2(yx) = 0 andncc(P, (x, yx)/J2) > ncc(l-^2). For
the contrary assume that there is an x such that #1(2;) =• 1 and for all y G ̂ 2~

1(0)
the protocol P needs to communicate on the input (x,y) less then ncc(l — g2)
bits on the links in J2. Now imagine the following protocol for function 1 — g2:
the coördinator contains also the virtual parties l , . . . , n i ; it simulâtes protocol
P with the input x in the virtual parties. Clearly, since gi(x) = 1 the protocol
computes function l — g2. The communication complexity of the protocol is equal
to the communication complexity of P on the links in J2, since the communication
between the coördinator and the virtual parties is performed inside the coördina-
tor. But this is a contradiction, because by the assumption the protocol computes
1 — g2 with a smaller communication complexity than ncc(l — g2).
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Now we show that there exists XQ such that ncc(P, (xo,yxo)/Ji) ^ ncc(#i)*
Assume the contrary. Consider the following protocol for function g±: the coör-
dinator contains in addition the virtual parties ni + 1,. . . , n; in the beginning it
générâtes an arbitrary input y G ̂ 1 ( 0 ) for the virtual parties and then it sim-
ulâtes protocol P. Clearly, such protocol computes the function gi. Moreover,
for each input x there exists a commutation, when in the beginning the coördi-
nator generated the input yx for the virtual parties, and so this computation has
the communication complexity less than ncc(#i). Hence. the protocol has the
communication complexity less than nccQji), which is again a contradiction.

The existence of x0 implies the inequality ncc(P) > ncc(P, (xOy yXo)) > ncc(#i)+
ncc(l — #2)- By symmetry we have also ncc(P) > ncc(^2) + ncc(l — gi). These
two inequalities give the resuit. D

As a conséquence of Theorem 3.8 and Lemma 3.3 we have an another very hard
function.

Corollary 3.9. For all even n the function

h(xi,..., xn) = (val(xi) < val(x2)) 0 . . . ® (val(x„_i) < val(xn))

is very hard.

I would like to thank Pavol Dur is for many useful discussions.

REFERENCES

[1] L. Babai, N. Nisan and M. Szegedy, Multiparty protocols and logspace-hard pseudorandom
séquences, Proceedings, 21st ACM STOC (1989).

[2] N. Blum, A Boolean function requiring 3n network size. Theoret. Comput. Sci. 28 (1984)
337-345.

[3] A.K. Chandra, M.L. Purst and R,J. Lipton, Multi-party protocols, Proceedings, 15th ACM
STOC (1983) 94-99.

[4] D. Dolev and T. Feder, Multiparty communication complexity, Proceedings, 30th IEEE
FOCS (1989) 428-433.

[5] D. Dolev and T. Feder, Determinism vs. nondeterminism in multiparty communication
complexity. SIAM J. Comput. 21 (1992) 889-893.

[6] P. Duris and J.D.P. Rolim, A lower bound on the multiparty communication complexity,
STACS'95. Springer-Verlag, Lecture Notes in Comput. Sci. 900 (1995) 350-360.

[7] P. Duris, Multiparty communication complexity and very hard functions (to appear).
[8] J. Hromkovic, Communication complexity and parallel Computing, An EATCS Series.

Springer (1997).
[9] E. Kushilevitz and N. Nisan, Communication complexity. Cambridge Univ. Press, xiii

(1997).



MULTIPARTY COMMUNICATION COMPLEXITY: VERY HARD FUNCTIONS 75

[10] R.J. Lipton and R. Sedgewick, Lower bounds for VLSI, Proceedings, 13th ACM STOC
(1981) 300-307.

[11] O.B. Lupanov, Ob odnom metode sinteza skhem (Russian). Izv. Vyssh. Uchebn. Zaved.,
Radiofizika 1 (1958) 120-140.

[12] C. Shannon, The synthesis of two-terminal switching circuits. Bell Syst. Techn. J. 28 (1949)
59-98.

[13] A.C. Yao, The entropie limitations on VLSI computations, Proceedings, 13th ACM STOC
(1981) 308-311.

Communicated by M.J. Hromkovic.
Received September 4, 1999. Accepted March 20, 2000.


