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CALL-BY-VALUE SOLVABILITY

LUCA PAOLINI1 AND SIMONA RONCHI DELLA ROCCA2

Abstract. The notion of solvability in the call-by-value A-calculus is
defined and completely characterized, both from an operational and a
logical point of view. The operational char act er izat ion is given through
a réduction machine, performing the classical /^-réduction, according
to an innermost strategy. In fact, it turns out that the call-by-value
réduction rule is too weak for capt uring the solvability property of
terms. The logical characterization is given through an intersection
type assignment System, assigning types of a given shape to all and
only the call-by-value solvable terms.

AMS Subject Classification. 68Q05, 03D10.

1. INTRODUCTION

The call-by-value A-calculus (A/^-calculus) is a paradigmatic language which
captures two features present in many real functional programming languages:
the call-by-value parameter passing and the lazy évaluation. The parameters are
passed in a call-by-value way, when they are evaluated bef ore being passed and
a function is evaluated in a lazy way when its body is evaluated only when pa-
rameters are supplied. The real programming languages are all lazy, and almost
all call-by-value (e.g. ML [9]., Scheme [13], while Haskell [14] is one of the few
examples of a language using the call-by-name évaluation). Note that the call-
by-value parameter passing cannot be modelled in the classical A-calculus, since
the /3-reduction rule is intrinsecally a call-by-name rule. The A/^-calculus is a
restriction of the classical A-calculus based on the notion of value. Values are
either variables or abstractions and they represent the already evaluated terms.
Since the évaluation is lazy, an abstraction is always a value, independently from
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its body. The call-by-value évaluation mechanism in the A/Vcalculus is realized
by defîning a suitable réduction rule (the /?v-rule), which is a restriction of the
classical /?-rule, in the sense that (\x.M)N reduces to M[N/x] if and only if iV is
a value, i.e., it has been already evaluated.

The A/^-calculus and the machine for its évaluation, that we call secd, has
been introduced by Piotkin [11] inspired by the séminal work of Landin [8] on the
language ISWIM and the SECD machine.

In this paper we are dealing with the pure (i.e. without constants) version of
the A/?y-calculus. So a closed term is said valuable if its évaluation, through the
secd machine, stops.

The notion of terminating programs and so of valuable terms is central for
studying the operational équivalence between terms induced by the secd machine.
Let a context C[ ] be a term with some occurrences of an hole, and let C[M] be
the term obtained from it once the holes have been filled by the term M. The
operational équivalence is defined as follows:

M KS N if and only if VC[ ] such that C[M] and C[N] are closed,
the secd machine stops on C[M] if and only if it stops on C[N].

This équivalence corresponds to the Liebnitz equality on programs. In f act a
context C[ ] can be viewed as a partially specified program, and C[M] as a program
using M as subprogram. So two terms are equivalent if and only if they can
be replaced each other in the same program without changing its observational
behaviour. In a language (like the \/3v-calculus) without constants, the natural
behaviour to be observed is the termination property.

Piotkin proved that the \fiv-calculus enjoys some of the good properties we
expected from a calculus, namely the Church-Rosser and the standardization prop-
erty. But the notion of solvability, in the call-by-value setting, has never been
explored. In this paper we want to study such a notion.

The notion of solvability has been introduced in the classical À-calculus for
characterizing terms with good operational behaviour. Using a programming par-
adigm, M is solvable if and only if, for every output value P, there is a program
Cp[M], using effectively M as subprogram, such that Cp[M] évaluâtes to P. The
fact that CP[M] uses effectively M can be formalized as: not for all Q, Cp[Q]
évaluâtes to P.

In the case of classical A-calculus, it has been proved [15] that, for all term M,
if such a context C[ ] exists, then there is also a head context, i.e., a context of
the shape:

(\xi...xn.[ ])Mi...Mm

(for some m,n) with the same behaviour, where {#i,...,xn} is the set of free
variables of M (FV(M)). This means that the A-terms have a functional be-
haviour, and so the notion of solvability can be defined in the following standard
way:
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A term M is solvable if and only if there is a finite séquence of
closed terms, iVi,..., iVm such that

(Axi.. .zn.M)7Vi.. .Nm =p I

where FV(M) = {x±} ...,xn} and / = Xx.x is the term represent-
ing the identity function.

Solvable terms have been completely characterized from a syntactical point of view.
A closed term M is solvable if and only if it has a head normal form (i.e. there
are integers n,m and terms Mi,...,Mm such that M =p \x±.. .xn.XiMi.. .Mm

(1 < i < n), for some n).
From an operational point of view, solvable terms are the terminating programs,

in the head réduction machine [12]. From a semantic point of view, all unsolvable
terms (z.e., the non terminating programs) can be all consistently equated [15].
From a logical point of view, a term M is solvable if and only if it can be typed
in the intersection type assignment System defined by Coppo and Dezani [3].

Let recall also the notion of solvabihty in the lazy A-calculus, introduced by
Abramsky and Ong [1] for modelling the call-by-name lazy évaluation. The lazy
A-calculus is the classical one, equipped with the /^-réduction rule, but, in the éval-
uation of terms, no réduction is made under the scope of an abstraction. Abramsky
and Ong in [1] noted that the notion of solvability in this setting is the same as
in the call-by-name case (a term is solvable if and only if it has a head normal
form). But in this case the set of solvable terms does not coincide anymore with
the set of terminating terms, with respect to the lazy évaluation. Indeed the term
Aar.AA, where A = Xx.xx, is unsolvable, but the lazy évaluation stops on it. In
order to clarify the relation between solvable terms and termination in the lazy
setting, let us recall the notion of unsolvable of order n (n > 0).

Let P be unsolvable. P is of order 0 if and only if, there is no Q such that
P =p \x.Q\ P is of order n if and only if n is the maximum integer such that P —p
Xxi.. .£n.Q; P is of infinité order if such a n does not exist. So the terminating
terms in the lazy A-calculus are the solvable terms plus the unsolvable ones of
order greater than 0.

Semantically the unsolvable terms of order 0 (i.e., the non terminating
programs) can be consistently equated, but a model equating all unsolvable terms
is not correct with respect to the lazy operational semantics.

As far as the logical characterization of lazy solvability is concerned, it is easy
to show that the logical system defined in [1] can give such a characterization.

Now let us consider the call-by-value A-calculus.
First of all we must ask ourselves how the gênerai notion of solvability can

be specialized in this setting. In [4] (Th. 33) it has been proved that the Xj3v-
calcülus has a functional behaviour, as the classical A-calculus. More precisely,
the operational behaviour of a term M can be studied by considering just the
(call-by-value) head-contexts, i.e. contexts of the shape:
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(for some m,n) where all Pi (1 < i < m) are values and FV{M) — {xi, ...
So we can define:

a term M is call-by-value solvable (v-solvable) if and only if there
is a finite séquence of closed values Ni,..., iVm such that

where FV(M) = {xi, . . . ,xn}.
In this paper we will give a complete char act er iz at ion, from bot h an operational
and a logical point of view, of insolvable terms.

A key observation is that, in order to characterize the class of v-solvable terms
from an operational point of view, the /^-réduction is too weak. In fact there are
/^-normal forms which are v-unsolvable, as for example the term:

\x.(\y.A)(xI)A

which is operationally equivalent to Aa:.AA. So, in order to characterize
operationally the v-solvability, a more refined tooi must be designed. To do so, we
extend the notion of valuability (z.e., termination) to open terms, by defming a
term M being potentially valuable if and only if there is a substitution 5, replacing
variables by closed values, such that s(M) is valuable. It turns out that the class
of the v-solvable terms is properly contained in that one of the potentially valuable
terms. We will show that the potentially valuable terms are completely charac-
terized through an évaluation machine, that we call inner machine^ performing
the classical /3-reduction according to the innermost-lazy strategy. It is important
to notice that the operational équivalence induced by the inner machine coincides
with « 5 . Another évaluation machine, the ahead machine, which is based on the
previous one, gives the desired char act er iz at ion of v-solvable terms. It turns out
that a term M is v-solvable if and only if it reduces, using the classical /3-reduction
with the leftmost-innermost strategy, to a term of the shape:

AX±. . .Xn.Xir\. . .±rn

where Pi is potentially valuables (1 < i < m). Note that this définition cannot be
expressed through the /^-réduction. A preliminary version of these machines has
been presented in [10].

Moreover we characterize bot h the potential valuability and the v-solvability
from a logical point of view, defining an intersection type assignment System,
which gives type exactly to the potentially valuable terms, and gives a type of a
particular shape exactly to the v-solvable terms. Such a type assignment System
is inspired to that one defined by [4] for reasoning about canonical denotational
semantics of A/3^-calculus.

Let recall that a A/3-theory is called sensible if it equates all unsolvable terms,
and semi-sensible if it never equates a solvable term to an unsolvable one. We
can extend in an obvious way this définition to a A/^-theory, calling it v-sensible
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if it equates all the t?-unsolvable terms, and v-semï-sensible if it never equates a
f-solvable term to a v-unsolvable one. According to the previous définition of v-
solvability, the secd-operational theory, ie., the theory Tsecd = {(M, N)\M ~ s N}
is not ^-sensible, as expected. Indeed AA and Ax.AA are two different unsolvable
terms which are not equated in Tsecd. This dépends on the fact that the secd
machine évaluâtes in a lazy way: indeed also the operational semantics of the
lazy A-calculus is not ^-sensible. Moreover, Tsecd is not -u-semi-sensible. In fact
it turns out that it equates the identity combinator / to a ^-unsolvable term.
This équivalence is not surprising, since it is a conséquence of the fact that, in
the minimal canonical model of A/^-calculus, showed in [4], which is built by an
inverse limit construction, all projections are A-representable. We will give hère a
purely syntactic proof of it.

The paper is organized as follows. In Section 2 the A/^-calculus and its
operational semantics are recalled. In Section 3 the notions of potentially valuable
and f-solvable term are introduced. The operational characterizations of poten-
tially valuable and f-soTvable terms are given in Sections 4 and 5 respectively.
Section 6 contains the logical characterization. The two appendices contain the
more technical proofs.

2. THE CALL-BY-VALUE A-CALCULUS

In this section we briefly recall the syntax and the operational semantics of the
A/^-calculus, as stated by Piotkin [11]. The A/^-calculus is a restriction of the
classical A-calculus, based on the notion of value. In particular, the restriction
concerns the évaluation rule, the /3-rule, which is replaced by the /3^-rule.

Définition 2.1. Let Var be a denumerable set of variables, ranged over by x.ty.t
z , •• - •

Let A be the set of A-terms, built out by the following grammar:

M ::=x\MM\Xx.M.

Terms will be ranged over by M, Â , P,Q,.... A term of the form MN is called
application while a term of the form Xx.M is called abstraction.

The set of values is the set Val C A defined as follows:

Val = Var U {Xx.M\ x G Var and M £ A}-

It is straightforward to check that every term is of the shape:

for some n,m> 0, where Mi G A, and Ç is either a variable or an abstraction.

Notation 2.2. Fret and bound variables are defined as usual, FV(M) dénotes
the set of free variables of the term M and A0 C A dénotes the set of closed terms,
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i.e.t terras whose set of free variables is empty. Moreover Val0 C Val dénotes the
subset Val H A0. A context (denoted by C[ ]) is a term with some occurrences
of a hole; it can be built by a grammar obtained from that one for X-terms by
adjoining the hole to the set of variables. C[M] dénotes the context C[ ] once
every occurrence of the hole has been replaced by the term M. Note that in the
replacement free variables can be captured, and so they can become bound. As
usual, terms are considered modulo a-conversion, i.e.t modulo renaming of bound
variables. Moreover Xx\.. .xn.M is an abbreviation for Xxi.(Xx2-(-- (Xxn.M)))
and M1...Mm is an abbreviation for ((...((MiM2)M3)...)Mm). = dénotes the
syntactical identity on terms.

Définition 2.3. The call-by-value évaluation rule is defined as follows:

(/?„) (Xx.M)N -> M[N/x] if N e Val

where M[N/x] dénotes the simultaneous replacement of every free occurrences of
x in M by N. renaming bound variables in M to avoid variable clash.

Let —>v: —>l and —v dénote respectively the contextual closure of the /3v-rule, the
reflexive and transitive closure of —>v and the reflexive, symmetrie and transitive
closure of —>v.

The (3V réduction satisfies both the Church-Rosser property and the Standard-
ization property (see [11]).

The évaluation of a program (closed term) is formalized through a réduction
machine, which we call secd machine for pointing out that it is equivalent (w.r.t.
the termination property) to the S.E.C.D. machine defined by Landin for evaluat-
ing expressions [8], once its input is restricted to pure A-calculus terms. We give
hère a logical présentation of this machine, i.e., the machine is defined as a set of
logical rules, and the évaluation process is mimicked by a logical dérivation.

The operational équivalence between terms is determined by observing the
termination of computations carried out by the secd machine.

Définition 2.4. i) The secd-machine is a set of rules proving statement of the
shape:

M tys N
where M e A° and TV G Val. The rules are:

-(abs)
Xx.M i^s Xx.M

M tys Xx.M' N $s Nf Mf[N'/x] $s P. .
MN^SP

 ( a P P ) "
If M ]^s TV, we will say that M is the input of the secd machine and N is the
corresponding output

Let M J|s be an abbreviation for: 3N such that M ]j,s N. If M 4s we
will say that M is valuable.
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ii) Two terms M and N are secd-operationally equivalent (M œs N) if and only
if for all context C[ ] such that C[M],C[N] e A°,

C[M] $s & C[N] 4S •

It is immédiate to verify that the secd-machine is deterministic, ie., if M tys

then there is exactly one N such that M J|s TV and moreover there is exactly one
dérivation proving M i^s N. So, if M J|5, then we can define the number of steps
of the secd-machine when filled with input M (notation: steps(M)) as the number
of applications of rules in the dérivation proving M ]^s N.

It can be checked that the secd-machine reduces at the every step the
leftmost outermost /3^-redex occurring in the input term not inside the scope of
an abstraction, until a value is reached. The following proposition holds:

Proposition 2.5. M G A°; M —>* N and N € Val if and only if M is valuable.

Proof. By the standardization property of /3w-reduction, see [11]. •

3. POTENTIALLY VALUABLE AND 'U-SOLVABLE TERMS

In this section, both the notions of potentially valuable and 'u-sorvable term are
introduced, and their relation is discussed. The notion of potentially valuable term
is the extension to open terms of the notion of termination in the secd machine.
Note that this extension cannot be defined in the standard way, by defining an open
term being potentially valuable if its closure is valuable, since the secd machine
évaluâtes terms in a lazy way, so ail abstractions are terminating.

Définition 3.1. A term M is potentially valuable if and only if there is a
substitution 5, replacing variables by closed values, such that s(M) is valuable.

It is immédiate to verify that a closed term is potentially valuable if and only
if it is valuable.

Now, let us define the notion of ^-solvability, for grasping the functional
behaviour of terms.

Définition 3.2. A term M is v-solvable if and only if there are values Ni,..., Afn
G Val0 such that:

where / ~ Xx.x and FV(M) = {zi,.. .,^m}-
A term is v-unsolvable if and only if it is not v-solvable.

Lemma 3.3. The class of v-solvable terms is properly included in the class of
potentially valuable terms.

Proof. Let first prove the inclusion. Let M be î;-solvable, so for some closed
values iVi,..., Afn, (\x\.. .xm-M)Ni.. .Nn —v I. Without loss of generality, we
can assume m < n. In fact, if m > n, then there are Pj (n -f 1 < j < m) such that

.. .NnPn+x.. .Pm =v ƒ;
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just take Pj = I, for all j . Since / is a normal forai, (Xx\.. .xm.M)Nx.. *Nn —>* /
andso M[Ni/xu ..., Nm/xm]Nm+1.. .Nn - ^ / . By Proposition 2,5,

MJJViM, ...,Nm/xm]Nm+1.. .iVn ̂ s

and this implies MfiVi/sci, ...,iVm/aïm] ^ s . The inclusion is proper, since Ax.AA
is valuable, and s.o potentially valuable, but clearly t?-unsolvable. D

4. OPERATIONAL CHARACTERIZATION
OF POTENTIALLY VALUABLE TERMS

In this section a new réduction machine, the inner-machine, is introduced,
which operationally characterizes the potentially valuable terms, in the sense that
it stops if and only if the input term is potentially valuable. The shape of the
output results of such a machine, which we call canonical terms, is particularly
interesting.

Définition 4.1. i) A term M is canonical if and only if it is either a value or
of the shape:

xM1...Mm (m > 0)
where Mi (1 < i < m) is canonicaL Let C be the set of canonical terms.

ii) The inner-machine is a set of rules proving statements of the shape:

where M G A and N € C The rules are:

m>0 Mj^i
-(var)

P|WM,.K,,N(tMJ|

-(lazy).
Xx.Q^Xx.Q

Let M §i be an abbreviation for: 3N such that M ̂  JV.
If M i^i N, then M is the input of the ^-machine and N is the correspond-

ing output

It is easy to prove that the inner-machine is well-defined, i.e.., if M ̂  N then
N G C, and moreover the machine is deterministic. So the notion of the number of
steps (defined for the secd-machine in the previous section) can be extended to the
i-machine in a straightforward way: if M ^ , stepi(M) dénotes the number of steps
performed by the i-machine on input M.
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Note that the mner-machine exécutes the classical /^-réduction (call by name)
with an innermost-lazy strategy. In fact it performs at every step the lefmost in-
nermost /3-redex not inside the scope of a À-abstract ion, until either an abstraction
or a head variable is reached, and, in the last case, it performs the same réduction
strategy in parallel inside all the arguments.

Let us introducé a new réduction rule:

(Xz.M)N^innerM[N/z] if NeC.

Let —>i, —>* and =i dénote respectively the closure under application of the
—>inner, the reflexive and transitive closure of —̂  and the reflexive, symmetrie and
transitive closure of — .̂

Note that —>£, —>* and =i are not contextual closed, but they are just closed
under application. Indeed, the réduction relation obtained by the contextual
closure of —>inner is not Church-Rosser (e.g., the term (Xx.(Xz.I)(xA))A would
reduce both to / and (Àz./)(AA), which do not have a common reduct).

—>|, as have been defined, is Church-Rosser (it can be easily proved), and
moreover, being not closed under abstraction, it is intrinsecally lazy. As far as the
example before is concerned, note that the term (Xx.(Xz.I)(xA))A has just one
z-redex, and it z-reduces only to (Xz.I)( AA).

The mner-machine can be alternatively described as performing the —>i réduc-
tion. More precisely, it performs the lefmost outermost z'-redex not inside the scope
of a À-abstraction, until either an abstraction or a head variable is reached, and
in this last case it performs the same réduction strategy inside all the arguments.
Moreover canonical terms are lazy normal forms with respect to the z-reduction
rule, i.e., a canonical term does not contain z-redexes, but inside the scope of a
À-abstraction. The following proposition clarifies the relation between the z-
machine and the i-reduction.

Proposition 4.2. M ^ N if and only if M —•* iV and N is canonical.

Proof. (=>•) By induction on the définition of the i-machine. (<=) By induction on
the lenght of the réduction M —•* N. D

The behaviour of the mner-machine and of the secd-machine coincide on closed
terms, as proved by the following proposition.

Proposition 4.3. Let M G A0. Then M ^ N if and only if M $s N.

Proof. (=>) By induction on stepi(M). In case the last used rule is (lazy) then
the proof is obvious. The last used rule cannot be (var), since M is closed. Let
the last used rule be (head), and let the dérivation be:

QhR P[R/x)Ml.. Mm h N
{Xx.P)QM1...Mm^N

By induction Q J|5 R and P[R/x]Mi.. .Mm ^s N. This implies there is a
dérivation:
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P[R/x)M1...Mrn.1^sXz.S

We will prove that P[iï/z]Mi.. Mm J|s N implies (\x.P)QM1.. Mm tys N, by
induction on m. The first step is obvious, by the rule (app). For the induction step,
looking at the dérivation showed before, we can assume (Xx.P)QM±.. .Mm_i J|s
Xz.S. So we can build the dérivation:

(«<=) By induction on steps(M). ïf the last used rule is (abs) then the proof is
obvious. Otherwise, let the dérivation be:

P ^s Xx.R Q^sS R[S/x] $S

By induction P ^ Xx.R, Q h S and R[S/x] ^ N. So {Xx.R)Q ^ Â  (by the
rule (head)). We will prove, by induction on stepi(P), that (Xx.R)Q JJ-i iV and
P JJ-i Xx.R imply PQ ̂  AT. The case stepi(P) = 1 is obvious. Otherwise, let
P = (Xz.S)TP!.. .Pr (r > 0). Then:

T ^ r S[V/z}Pl...Pr^Xx.R
(\x.S)TP1...Prl),i\x.R

By induction, S[Tf/z\P1.. .Pr ̂  Xx.R and {Xx.R)Q ^ TV imply S[T'/z]Pi.. .PrQ
Xx.R. So we can build the following dérivation:

T^r S[T//z]P1...PrQhXx.Rru
— (^neaaj.(Xx.S)TP1...PrQh Xx.R

D

In order to prove that the inner-machine completely characterizes the potentially
valuable terms, we need some lemmas. Moreover, for proving them, we need to
introducé a measure to be used for currying out the induction. Informally such
a measure, that we call weight, is an upper bound to both the number of lazy
/^-réductions and of ̂ -réductions needed for reducing a term to a value, if it is
possible.

Définition 4.4. The weight of M (denoted by (M)), is the partial function defmed
as follows:

• (Af ) = 0 if M G Val
• ((Xx.Mo)Mx.. Mm) = 1 + (Afi) + (M0[Mi/x]M2. - Mm)'

Proposition 4.5. i) M —>* AT G Val implies (M) is defined.
ii) M ->£ iV e Val implies (M) > (N).

iii) M -> ; JV e Val implies (Af) > (JV).
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Proof. See Appendix A. D

Lemma 4.6. Let M = (Xx.M0)M1.. .Mm G A°. /ƒ tfiere is N G VaZ suc/i
M —>* iV then, for all i (1 < i < m), Mi —>* Ni} for some value Ni} and

(M).

Proof By Proposition 4.3, M —>* iV G FaZ implies M |U TV. So we will give the
proof by induction on stepi(M). If stepi(M) = 1, then m = 0, and the proposition
is vacuosly true. Otherwise, the dérivation of M -^ TV is of the shape:

Mx ^ iZiM0[iZi/x]M2».Mm ^ N
{\x.M0)M1...Mm$iN

 [ j"

By Proposition 4.3, both Mx and Mo[Ri/x]M2.. .Mm are reducible to a value, and
(Mi) < (Af) follows by définition of (Af), while (Af*) < (Af) (2 < i < m) follows
by induction. •

nLemma 4.7._Let M G A and let FV(M) Ç {xu..nxn}. If there are PU...,P7

e Val0 and M e Val0 such that M[Pi/xu..., Pn/xn] ->J M ; then there is N e A
such that both M ^ N and iV^/xi , . . . , Pn/xn] -^* M.

Proo/. In this proof we will dénote R[Pi/xi,..., Pn/^n] by iZ', for every R e A.
The proof is carried out by induction on the weight (Mf) = k. Note that

Af' G A°.

/c = 0: Then Mf is already a value and, since it is closed, it must be Af'
= Xz.P'. There are two cases:

1. M = Xj and Pj = Xz.Pf. So Xj ^ Xj, by the (var) rule, with m = 0,
and Xjiy/xj] -^*vy.

2. M = Xz.P. This case is obvious since the inner-machine stops by the
rule (lazy).

k>0: Then M' = (\z.P')M[.. .Af̂  (m > 0). Then two cases are possible
(with respect to the shape of M):

1. M = XjMi.. .Mm and Pj = Xz.P1'. So

(xj-Mi.. .Mn.JfPx/aïi,..., Pn/xn] = P,-M{.. .M^ ̂ ; M.

By Lemma 4.6 and Proposition 2.5, M2- ̂ * M^ G Val and (Mz
;) < fe, so

by induction there is Â i such that M^ ̂  iV̂  and Ni[Pi/xi,..., Pn/xn] ~ *̂
Mi (1 < i < n).
So XjMi.. .Mm ̂ i cCjA î.. .ATm by rule (var) and

2. M = (Xz.P)M1..Mrn.
By Lemma 4.6 and Proposition 2.5, M{ ^ * Mi G yaZ, and (M{) < k.
So by induction there is R such that Mi ^ P and R! —>* Mi.
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Clearly Pf[M1/z]M^ . M^ -+% M, thus Pf[M[/z)M^ . M'm ->; M.
Moreover {Pf[M[/z]M2.. .M^) < k by définition of weight, so by
Proposition 4.5.Ü) (P'lR'/zjM^ M^> <k.
Furthermore Pf[Rf/z}M^ . M^ - ^ M, because P'[Mi/z]M^. . .M^ - <
M and iï' ->£ Mi. So by induction P[#/z]M2.. .Mm J|; W, for some TV,
and

Then (Az.P)Mi.. .Mm J|̂  N, by the rule /iea<i.
D

Lemma 4.8. Let M e A, FV(M) C {x l r . .,xn} and Or = Xxi. ...xr+i.xr+i.
M ^i iV implies Vr > stepi(M), there is M e Fa/0 suc/i iAai M[Or/xu ..., O r /xn

—̂* M

Proof. By induction on stepi(M). The case stepi(M) = 1 is trivial.
In the case the last applied rule is (var) the result is obvious.
Let the last applied rule be

Let q = stepi(Q). By induction Vr > q, Q[Or_/xu ...,Or/xn] - . J Q e Val0,
and by Lemma 4.7, J?[Or/a;1,..., O

r /xn] ->* Q.
Let p = stepi(P[R/z]M!.. .Mm). By induction, V/i > p:

M,-,OVsn] - î ^ e Val.

In particular, since stepi(M) = 1 + q + p, for all p > stepi(M), both

Q' = Q\Op/xu ...,Op/xn] - ; Q' € ya/°

and

R' = R[Op/Xl, ...,O"/xn] - • Q' e Va/0.

Let P' = P[OP/xlt...,Oo/xn] and M| = Mi[Oe/Xl,...,O"/i„];

- ; P'[Q'/z}M[.. M'm -*; M,

for some M G FaZ°. So

n] = (Xz.P')Q'M[.. M'
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(\z.Pf)Q'M[.. .M'm ->v P*[Q'/z]M{.. M^ ->; M e Val0.

D

Now we are able to prove the characterization theorem.

Theorem 4.9 (inner property). M J|z if and only if M is potentially valuable.

Proof. (<=) The proof follows directly from Lemma 4.8. (=>) By définition, M po-
tentially valuable means that there is a substitution s, replacing variables by closed
values, such that s{M) is valuable. By Proposition 2.5, this implies s(M) —>* N e
Val0, and, by Lemma 4.7, this implies M ̂ . •

The inner-machine induces an operational équivalence on terms, defined in the
usual way as follows.

Définition 4.10. Let M, AT G A. M and N are i-operationally equivalent
(M &i N), if and only if for all context C[ } such that C[M],C[N] e A°,
C[M] $& C[N] Ik.

By Proposition 4.3, &s and ^i coincide.
It can be interesting to consider an extension of the operational équivalence, by

dropping the restriction that contexts must be closing. Let define:

Définition 4.11 (iopen-equivalence). The term M and TV are i-open-operationally
equivalent (M «f N) if and only if for all context C[ ], C[M] ̂ ^ C[N] ̂ .

Proposition 4.12. M ̂  N if and only if M ss£ N.

Proof Both directions can be proved by contrapposition.
(<=)' Obvious.
(=>): Let C[M) »̂ and C[N] fo, for some C[.] not necessarely closing. C[M] is

potentially valuable, so there is a séquence of closed values Pi,. . . ,Pn such
that, iïFV(C[M}) C {xi, ...7xn}, then C[MJ[Pi/xi, ...,Pn/xn] ^ . Then the
closing context, separating M and Â  is

C'{ } = (\Xl...xm.C{ D P L . ^ / ^ J

m—n

where FV(C[N}) UFV(C[M}) = {xu . . . ,xm}.

•
Note that in gênerai the équivalence induced by closing contexts does not coicide
with that one induced by all context. For example, let us consider the machine
which takes a A-term as input, performs at every step the leftmost outermost /3V-
redex not inside the scope of a À-abstraction and stops on the lazy /3^-normal form.
For closed terms this machine is equivalent to the secd-machine, so it induces the
same équivalence. Consider the terms Po = Xy.(Xx.AA)(yI) and P± = \y.AA,
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which are sss. Let C[ ) = [ ](Xx.x(zI)). Then the previous described machine
stops on C[PO]Ï while does not stop on C[Pi].

It is important to notice that the behaviour of the mner-machine is in some
sense anomalous, since M §i N does not necessarily imply M ~i N. A counter
example is the term (Xyz.I)(xI): it is immédiate to check that (Xyz.I)(xI) ]^i Xz.I,
while the context (Xx.[ ])(Xx.AA) séparâtes the two terms.

5. OPERATÏONAL CHARACTERIZATION OF ^-SOLVABILITY

In this section the operational characterization of the v-solvability is given,
through a réduction machine, the ahead machine.

Such a réduction machine performs the /^-réduction and uses the inner-machine
as submachine.

Définition 5.1. i) A term M is a v-head normal form (v.h.n.f) if and only if
it has the following shape:

.. .Mm

where Mi G C (1 < i < m). Let VH be the set of t;-head normal forms.
ii) The ahead-machine is a set of rules proving statements of the shape:

where M G A and TV e VH. The rules define an auxiliary machine too,
proving statements of the shape M ^ TV. The set of rules is the following,
where k e {0,1}:

m>0 Mil&Ni(1^m

P[R/z]Ml...Mm]£N

:(A0).
Xx.P^Xx.Q

Let M $a be an abbreviation for M ^ N, for some N.
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It is easy to check that the définition is correct, i.e., M ty% N implies N G VTL.
Furthermore, note that the machine of level 1 is the inner-machine, ie . M $\ N if
and only if M ̂  N. The behaviour of the ahead-machine is not completely lazy:
it enters under the external abstraction (if any) and then it works exactly as the
mner-machine. In order to give a précise characterization, in terms of réductions,
of the behaviour of the ahead-machine, we need to introducé a new réduction rule.
Let —•ƒ, —>*j and = j be the not lazy version of —>,, —•* and =$ respectively; namely
—>i, —>} and =/ dénote respectively the contextual closure of —>inner, the reflexive
and transitive closure of —»/ and the reflexive, symmetrie and transitive closure
of-/.

Proposition 5.2. M ̂ ° N if and only if N is of the shape Axi.. .xn.xN\.. .Nm,
and M —>} Xx\.. .xn.xM\.. .Mm, and Mj ^ Nj (1 < j < m).

Note that the fact that the —•/ réduction is not Church-Rosser does not create
any problem, since the ahead-machine performs a particular strategy on it. So
this new machine is deterministic, and if M ̂ , then step^(M) is the numbers of
steps of the dérivation proving M JĴ  TV.

For proving the desired characterization, we need two lemmas.

Lemma 5.3. Let M e A and FV(M) Ç {xi r . . ,£„}. If there are Pu...,Pk

e Val0 such that (Axi.. .xnM)P1.. ,Pk ->JJ I then M ^ TV and {\xx.. .xn.N)
Pi...Pk^vL

Proof As showed in the proof of Lemma 3.3, it is always possible to assume k > n.
Let 5 = (XXL . .xn.M)P1.. .Pk and, for every R e A, let B! be R[Pi/xu .., Pn/xn]<

The proof is given by induction on the following pair: ((5), number of symbols in
M), ordered by the lexicographical order.

(0, s): Then S G Val and the proof is trivial by rule (A0).
(h+ 1, s): Let analyze all possible shapes of the term M.

• M = XjM\.. .Mm (m > 1). By hypothesis there are Pi,.. .,Pk G Val0

such that

(Aa*. - .Xn.XjMr.. .Mm)Pi.. .Pfc - ; P,M{.. .M^Pn+1.. .Pfc - ; /

where, by Lemma 4.6 and Proposition 2.5, M,' —•* M* e Fa/. So by
Lemma 4.7 (using the fact that 4Ĵ  coincides with ^ ) we can state M» 4j-a
TVi and

Nl^NiiPi/Xii.^Pn/XrJ^Mi.
So arjMx.. .Afm i^° XjNx.. .7Vm, by rule {var), and

M = (A^.P)QMi.. .Mm (m > 0). Then

S = (Aan.. .^.(Az.P)QM1.. .Mm)Pi.. -
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->J {\z.P')Q'Ml. JlCPn+1. - -ft - : (Xz.P*)QM{. . J t O

where Q' -»£ Q e Val Since Q' ->JJ Q e FaZ, by Lemma 4.7 Q ̂  iï
and

tf-^Qe Va*.

Let us remind that Q ̂  R coïncides with Q ̂ * R (•). Observe that

(Xz.P')Q'Mi.. M'mPn+l.. .Pk -,p P'[Q'/z}M'v . .M'mPn+l.. .Pk -Sp

->£ P'[R'/z]M[.. .M'mPn+ï.. .Pk - » ; ƒ (**).

Since

(5) = n + (Pi) + + <P„> + ((Az.P/)Q/MÎ.. -M^Pn+1. - .ft)

= n + (Pi) + + (Pn) + i + (QO + (P'tQV^^i- • .M^n+i . • -ft)

= (by Prop. 4.5.Ü))

(P'EQVzjMi:. .M^Pn + 1 . . .ft) > (P'[R!/z]Mi.. .Af^Pn+x.. .Pfc)

we can apply the induction hypothesis (••) obtaining P[R/z]Mi.. ,Mm 4°
TV (*•*) and (Xxx. ..xn.N)P1.. ,Pk -** / .
(•) and (***) together imply (Aar.P)QMi.. .Mm J|° iV, and the proof is
given.

• M = Ax.P. This case is straighforward by induction on 5.

D

Lemma 5.4. Let M e A and let FV(M) C {xu...,xn}. If M J|° then Vr
> max{n, step^(M)}, 3h > 0 such that

where Ok = Ao;i

Proof. First of all, observe that P tyi Q and FV(P) Ç {a^i,.. .,o;n} imply (by
Lem. 4.8) that Vr > stepi(P),_ 3P G ̂ aZ such that P[Or/xu ...,Or/xn] ->; P,
and Q[Or/xi,..., O r/xn] ->* P (by Lem. 4.7), Furthermore, P ^ if and only if
P 4U and stepi[P] = step\[P).

The proof is carried out by induction on the dérivation oi M §Pa N.

AO: The proof follows immediately from the induction hypothesis.
var: Let

m>0 Mj^gNj
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By Lemma 4.8 Vr-j > stepi{Mj) Mó[Ort/xu...., Or*/xn] ->£ Mó G Val
(1 < j < ra). Let TT = step°a(M) = 1 + siepi(Mi) + + stepJ(Mm). Let
p > max{n, TT}. Since TT > m, then

p-n

for some ft > 0, where M[ = Mi{Op/xu ..., Op/xn].
head: Let the last used rule be

Qi&R P[R/z}M1....MmraN
(Xz.P)RM1 MmraN

If 7T = step°(P[R/z]Mi.. .Mm), then by induction, Vr > max{n, TT}, 3/I' > 0:

i Mm)

Let p > max{n, 1 + sïep\(Q) -h TT}. SO by Lemma 4.8 3Q' G ̂ a^° such that
both

and

Let P' = P[Op/xl7..., Op/xn] and M[ = Mi[Op/xu ..., Op/xn). Then

(Au.. -xn.P[iï/z]Mi.. ,Mm) O ^ . . ^ = P W ^ . . .M^ O^JD^ -+%
p-n

< O71'' (ft" > 0)
v̂

by Church-Rosser, and finally

(Aa;i.. .xn.(\z.P)QM1.. .Mm) OP.....OP ->* (Az.P')Q'M{.. .M^ Op Op ^ *
p p-n

-^* (\z.Pf)Q/M[...Mf
rnO

p Op->*.P/[Q7^]Mi...M^Op Op ^l Oh".
p—n p—n

D

Now we are able to prove our result.

Theorem 5.5 (v- solvability). M JJ-̂  if and only if M is v-solvable.

Prooi Let FV(M) = {x l r . , z n } .
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=$-: By Lemma 5.4 there are r and h such that:

i.. •gw.M)pr.„..Or,->; Oh (h > 0).

So (\x1...xn.M)Or Or Rx...Rh ->JJ 7, for all Ru.. .,Rh e Val.

: By Lemma 5,3.
D

It can be interesting to compare the notions of /^-normal form, valuable term and
insolvable term. Xx.(\y.A)(xI)A and Aa;.AA are respectively a /3^-normal-form
and a value, and are both i>-unsolvable.

We can classify the t?-unsolvable terms as follows.

Définition 5.6. Let P be t;-unsolvable. P is of order 0 if and only if there is no
Q such that P ~i Xx.Q. P is of order k + 1 if P ~i Xx.Q and k is the maximum
integer such that Q is v-unsolvable of order fc, while it is of infinité order if this
integer does not exists.

All the t;-unsolvable terms of order 0 can be consistently equated (see [4]).
Moreover the relation between potentially valuable and f-solvable terms can be
now stated as follows.

Proposition 5.7. A term is not potentially valuable if and only ifit is v-unsolvable
of order 0.

A À/3-y-theory is a conguence relation on terms closed under the /^-equality. Let
us recall that the A-theories can be classified into sensible and semi-sensible, the
former being these equating all unsolvable terms, and the latter these never equat-
ing a solvable term to an unsolvable one. We will introducé a similar classification
for the A/^-theories.

Définition 5.8. i) A A/3^-theory is v-sensible if and only if it equates all
the ^-unsolvable terms.

ii) A A/^-theory is v-semi-sensible if and only if it never equates a f-solvable
term to a ^-unsolvable one.

The \pv-theory induced by the secd operational équivalence is Tsecd =
{(M,N)\M pas N}. It immédiate to see that:

Proposition 5.9. Tsecd is not v-sensible.

Proof Consider the two terms AA and Ax.AA. They are both ^-unsolvable but
the former is not valuable while the latter is a value. D

Now we will prove that 'Tsecd *1S n°t ^-semi-sensible.
Let Yv = (\xf.f(\z.xxfz))(\xf.f(\z.xxfz))y A = \xyz.(\uv.xuv)(yz) and

R = YVAL
It is immédiate to check that, for all M e Val, YVM ̂ * M(\z.YvMz). The

combinator Yv is a recursion combinator in the call-by-value setting. We will prove
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that R and / have the same operational behaviour. The next lemma will allow us
to consider just contexts of a particular shape.

Lemma 5.10. LetM.NeA and let FV(M)U FV(N) C '{xu.. . ,x n } .
M ^s N if and only if 3C[ } = (Xxt.. .xn.[ ])MX.. .Mm such that C[M),C[N]

e A° and C[M] ]^s and C[M] ffs or vice versa, for some Mi,..., Mm € A.

Proof. See [4] (Th. 33). •

Lemma 5.11. Let Pu..., Pk e A° (k > 1).
/P i . . .Pk tys M if and only if RPX.. .Pk J|s Xv.{\z.YvAz)Mv.

Proof. By induction on &.
fc = 1: IPi i^s M if and only if Pi \^s M if and only if RPX fy3 \v.(\z.YvAz)Mv,

by the secd-rules and R l̂5 \x.(\uv.(\z.YvAz)uv)(Ix).
k > 1: By induction /P x . . .Pfc_i J|s TV if and only if

RPL . JV-i ^a Au.(Az.yvAz)iVu.

IP\. • -̂Pfc J>5 M if and only if N = \y.Nf and Pk tys M' and Nf[Mf/y) tys M
if and only if ((\z.YvAz)Nv)[Mk/v] ]^s Xv.(Xz.YvAz)Mv (by secd-rules) if
and only if RPX.. .Pk J>5 Xv.(Xz.YvAz)Mv.

D

Theorem 5.12. Tsecd «5 not v-semi-sensible.

Proof. We will prove that R ms I. Since R,I E A°, by Lemma 5.10 we can consider
just contexts of the shape C[ ] = [ ]Mi.. .Mm. If m = 0 then the secd machine
stops for both I and R. Otherwise the proof follows from Lemma 5.11. •

6. LOGICAL CHARACTERIZATION

In this section we will present a type assignment System which allows a complete
characterization of the insolvable, terms.

Définition 6.1. Let v and a be two type constants. Let T be the set of types a
built out from the following grammar:

G ::= i/|a|<7i f!... Pi an —»- a (n > 1).

T will be ranged over by a, r, 7r, p, //....

The —> type-constructor is associative on the right and the intersection
type-constructor H binds stronger than —». The types are considered modulo
permutations of types bound by intersection costructor.

All types have the following shape:
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for some m, n where p is either v or a. In the latter case the type is named proper.
Let a proper type be denoted by av and the subset of proper type by Tp. In the
rest of the paper, we will use = for denoting the synctactical identity both on
terms and types.

Définition 6.2.
i) Let a basis be a finite set of assignrnents of the shape x : a, where o; is a

variable and a is a type. If B is a basis, let dom(B) = {x \ x : a G B}.
ii) The following type assignment System proves statements of the shape:

B h M : a where B is a basis, M G A and a e T. The rules are:

{x : a} \~ x : a
(var)

0 h Xx.M : u ^

Bh M : r x 0 dorn(B)

B h Xx.M : i/ -> r

BU{x : au...,x :an}\- M :r x g dom(B) (n > 0)
B\- Xx.M : a i n . . . n

h M : ai H ... H an -* r (Bj h N : ai)x<i<n

(n > 0)

B\J?=1Bi\-MN:r
We will dénote by V : B f- M : a a dérivation P proving B h M : a; and by
V' Ç P the fact that V' is a subderivation of V.

Proposition 6.3.
i) Let M € C. Tften 3B, a. 5 h l ; a ; /n particular, 3B. Bh M : v.

ii) Lei M € VW. T/ien 3B, crp. B\- M :ap.
iii) Xei M G VaZ. T/ien 35 . B\- M :v.

Proof. i) By induction on M. If M is an abstraction apply directly the rule
(i/). If M = xMi.. .Mm, by induction B-B*,^. 5^ h M» : ̂  (1 < i < m);
thèn for every a, there is a dérivation using one application of rule (var)
followed by m applications of rule (—•> £/), proving:

{x : ai —>• ... —> <7m —> a} Ui ̂ î h M : a.

Note that in particular it can be a = ZA
ii) By induction on M. If M = xMi...Mm , take the proof of point i) and

choose a to be proper. The case M is an abstraction is trivial by induction,
iii) Trivial by (var) and (v) rules.

D

We will prove that the typability in the above type assignment System is
preserved by /^-réduction and by a particular case of /-expansion. In particular,
since —̂  implies —>̂ , and the ̂ -expansion implies the expansion we considered, it
turns out that the System is closed under =£.
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Lemma 6.4 (Subject réduction). B h M : a and M —»£ Mf imply 3B; such
that B! h M' : a.

Proof. The proof is by induction on the number m of ^-réduction steps. The case
m = 0 is obvious. Otherwise, let T> : B h M : a. We will build a new dérivation
V proving B' h M' : a, where M ^ M1 ^ M*. Then the resuit follows by
induction.

Let M = C[(Xx.P)Q] and M' = C[P[Q/x]]. If (Ax.P)Q occurs in a subterm
of M typed using the rule (u), then V' can be obtained by replacing (Xx.P)Q by
P[Q/x] in all subjects of T>. Otherwise there are two cases.

1) There is a subderivation S Ç Î ) of the shape:

{x:a1}\~x:a1 var , „ ,| var

B\j{x:au...,x:an}\-P:T

B \- Xx.P : ai H ... H an ^ r Bi h Q :

Then by:

a) replacing the i-th application of the (t?ar)-rule typing x by T>i (1 < i < n);
b) replacing every occurrence of x in the subjects by Q\
c) replacing every assignment x : Oi by the assignments in Bi\
d) erasing the rules (—> /) and (—> E1);

the following subderivation <S' can be built.

B1\-Q:a1 BnhQ:an

B' U?=1 Bi h P[Q/x] : r

Note that Bf = B. The desired P ' is then obtained by replacing in V the
subderivation S by 5' and finally, by replacing in the rest of dérivation (Xx.P)Q
by P[Q/x}.

2) Let the redex be introduced by an application of the rule (—>v /) followed by
an application of the rule (—> E). In this case the proof is similar, but it is possible
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that B' ^ B since either x does not occur in P or it occurs just in subterms of P
typed by v . D

Lemma 6.5. LetV : B \- P[Q/x] : a. If Q e C then 3B such that B h (Xx.P)Q :
a.

Proof. The occurrences of Q considered for the expansion in P can be divided in
two groups: let Qi,. . . , Qq (q > 0) be those occurrences of Q such that there is
T>i : Bi \~ Qi : er* and X>* Ç V (1 < % < q) and let Qq+u. - .,Qg+P (p > 0) be
those occurrences of Q which are not typed by sub dérivations of T> (i.e. these
occurrences are in subterms of P typed by the constant v). We will consider two
cases, according to q = 0 or q > 0.

q = 0 Every occurrence of Q in P[Q/x] occurs in a subterm of P typed by a rule (i/).
Since, by hypothesis, Q G C, by Property 6.3, there is B* and a dérivation
S* proving B* h Q : v.

Let replace in T> every such occurrence of Q by x (note that x is not
typed); the resuit is a dérivation Vf : B h P : a, where x g dom(B).

Thus, V is the following subderivation:

V'

S*

B\- P :a xg dom(B)

B H- Xx.P : v -> a B* \- Q : v
(->25)

BUB*h (Xx.P)Q \a

q > O Let S be the subderivation obtained from T> by:
a) replacing every T>i : Bi h Q : ai by the rules

-(t?ar) (1 < % < q)
h

b) replacing every rule I-P^Q/XI-I/^) Ŷ hp r i /(^), where P̂  are the subterms
of P containing the i-th untyped occurrence of Q (q < i < q + p)

c) replacing every occurrence of Q in the subjects by x and adjusting else-
where the basis.

The resuit is S : Bf U {x : cri,...,x : c^} h P : r where

B ' = j z : /x| z: fie B,ze FV(M) and

the rule (uar) occurs out o f the T>i (1 <i < q)\-
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The subderivation V is obtained by adjoining an application of (—• E) and
(—• /) rules to <S, in the following way:

Bf V- Xx.P : ai n ... H aq —>• r Bi h Q : o*
E)

5 ' U^i Bi H (Az.P)Q : r

Note that B' U =̂o Bi = B. D

Lemma 6.6 (Subject expansion). B \~ M : a and M —>* M imply 3B such
that BV- M :a.

Proof. By induction on the number m of z-reduction steps. The case m = 0 is
obvious. Let-consider the case m = 1; then the gênerai case follows directly from
the induction hypothesis.

Let M = C[P[Q/x}} and M = C[(\x.P)Q]. Since M ->* M, then F[Q/x] does
not occur under an abstraction. This means that, if V : B h M : a, then P[Q/x]
cannot occur in a subterm of M typed by the rule (i/), so there is a subderivation
«SCP, such that S : B* \- P[Q/x] : r, for some B* and r. Then, by Lemma 6.5,
there is 5' : Bf h P[(Àrr.P)Q] : r. The conclusion is obtained from T> by replacing
S by tS', by adjusting the basis and by replacing every occurrence of P[Q/x] in
the subjects in V by (Xx.P)Q. •

Theorem 6.7 (Characterization of potentially solvable terms). M ^ if and
only if3B. B h M : er.

Proof. (4=): M ^ TV if and only if M ->J TV and iV G C. Then the proof
follows by induction on the lenght of the réduction from M to TV, using
Proposition 6.3.1 and Lemma 6.4 (since M —>* TV implies M —>£ TV).

(^>): See the Appendix B.
D

Theorem 6.8 (Characterization of u-solvable terms). M 4° if and only if
3B.
BhM:apeTp.

Proof («=): By Proposition 5.2, M ^ implies M -*} TV, for some TV. Then the
proof can be carried out by induction on the number of steps of the réduction
from M to TV, using Proposition 6.3.1 and Lemma 6.4 (since M —>} TV implies
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(=>): See the Appendix B.

•
The type assignment system h, presented here, is strongly related to the system
presented in [4] for reasoning on the denotational semantics of the A/^-calculus
(let call it h*). Indeed, h can be obtained from h* by restricting both the syntax
of types and the rules of types formation, and by dropping the weakening and
subtyping rules. The two Systems have the same typability power. We could use
directly system h* for characterizing the v-solvability, introducing in it a suitable
notion of proper type. But the characterization would have been less simple and
clear.

7. APPENDIX A

In order to prove the proposition we need some additional lemmas.

L e m m a 7 .1 . M -+v N and (TV) is defined imply (M) is defined.

Proof. M ->„ TV means that M ~ C[(Xx.P)Q] and TV = C[P[Q/x]\. The proof
is given by induction on (TV). (C[P[Q/.x]]) is defined implies that C[ ] must have
one of the following shapes:

2. C[ ]-(A2/.C /

3. C[ } = (\y.P0)Pi.. .Pi-iC'I ]P i+1. - .Pn (n > 0, 1 < i < n).
Let recall that (Xx.P)Q -^v P[Q/x] implies Q is a value and so (Q) = 0. We
can assume, without loss of generality, that x $ FV(Pi), for all % (1 < i < n);
otherwise we can rename the bound variable x with a fresh variable.

Let C[ ) be of the shape 1. Then (C[P[Q/x]}) defined implies that P[Q/x]
is of the shape M0Mi...Mm (m > 0), with Mo = (XZ.MQ) or Mo = z and
m = 0.

- Let m = 0 and n = 0. Then C[P[Q/x\] ~ Mo E Val. Then (C{P[Q/x]}) =
0, and (C[(\x.P)Q]) = 1 + (Q) + (Pi) = 1 + 0 + 0 = 1 .

- Let m > 0, and n > 1.. Then C[P[Q/x]] = M0M1..,MmP1.. .Pn and
Mo = (Az.Afó), so by hypothesis (M0Mi.,.MmPi.. .Pn) is defined. Fur-
thermore, since (Q) = 0, (TV) = ((Ax.((Az.M0)M1...Mm)QPi.. .Pn)
= 1 + (Q) + ((XzM.o)M1..,MmPl.. .Pn> is defined.

- The case m — 0 and n > 1 is similar to the previous one, but simpler.
Let C[ } be of the shape 2. (C[P[Q/x]\) = 1 + (Px) + (C'[P[Q/x]][Pi/y]
P2 . . .Pn). By induction (C /[(AX.P)Q][PI/Î / ]P2. . .Pn) is defined, and we are
done, since by définition {C[(Xx.P)Q}) = 1 ' + (Pi) + (C"[(Ax.P)Q]

Let C[ ] be of the shape 3.
- Let i = 1. So <C(P[Q/:r]])= 1 + <C'[P[Q/a:]]) + (Po[C'[P[Q/x]]/y]

Pi.. .P„). By induction {C'\{\x.P)Q}) and (P0[C"[(Ax.P)Q]/y]i^.. .Pn>
are both defined and we have done, since (C[(Aa;.P)(5]) = 1 + (C'[(\x.P)
Q]) + (Po[C'[(Xx.P)Q]/y}P2.. .P„>.
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- Let i > 1. Then

(C[P[Q/x]\) = 1 + (Pi) + (P0[Pi/y]P2. • .Pi-i[C[P[Qfx]]fy]Pi+1.. .Pn),

and by induction (P0[Pi/y}P2-• .Pi-i[C'[(\x.P)Q]]/y]Pi+1.. .Pn) is
defined. So we have done, since by définition

(Cl(Xx.P)Q}) = 1 -f (PO + (Pa[P1/y}P2.. •Pi-i[C
/[(Ax.P)Q]]/2/]Pi+1.. .Pn)-

D

Lemma 7.2. (M) zs defined and M —>£ A?" impZy (M) > (TV).

Proof. Let (M) = &. The proof is given by induction on the following pair: (&,p),
where p is the numbers of steps of the réduction M —>^ TV, ordered according to
the lexicographical order. The cases where either (M) = 0 or p = 0 are trivial.
Let the réduction path be: M -^p Pi —^ ^ ^ Rp = N (p > 0). Clearly
M = (Ax.M0)Mi...Mm, so let h' = (Mi), /i7/ = (M0[M1/x}M2...Mm) and so
A; = 1 + h!' + ft". Let p = 1. There are three cases:

1. If J?i = Mo [Mi/ar] M2.. .Mm then (Pi) = /i/A < k. Thus the proof is trivial.
2. Let Pi = (\x.N0)MiN2. • .ATm where 3j (unique) Mj —>/? iV}, while for z ̂  j

M^ = 7V̂  (.0 < i,j < m and ij / 1). Clearly M0[Mi/a;}M2.. .Mm -^p
N0[Mi/x]N2.. .7Vm; thus h" < k implies, by induction {NQ[M1/X\N2. . .N^)
< h". Finally (Pi) = 1 + (Mx) + (N0[M1/x}N2.. .iVm> < k and the proof is
done.

3. Let Pi = (Ax.M0)A^iM2..-Mm, where Mx -^^ N±. By induction (Mi)
> (Ni). Furthermore h" < k and M0[Mi/x]M2. • .Mm ->J M0[M/x]
M2.. .Mm imply, by induction, (M0[Mi/x]M2.. -Mm) < /i/r. Thus the con-
clusion follows, trivially, by définition of weight.

Since ((M),p) is greater than ((Ri),.p— 1), the complete proof follows by induction.
D

Now we are able to prove the Proposition 4.5.

Proof. i) By induction on the number of steps of the réduction M —>* M E Val
using Lemma 7.1.

ii) By i) and by Lemma 7.2.
iii) By ii), since the (3V-réduction is a special case of the /3-reduction.

D

8. APPENDIX B

Proof. (=>) of Theorem 6,7.
The proof will be given by a computabihty argument.
Let defme the following predicate: V(a,M) ^ there is a basis B such that

B\- M :a and M ^ .
Let M dénote a séquence of terms Mi.. .Mm, for some m > 0.
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Proposition 8.1.
i) V(<TI n ... n an -> r, xM) and V{pi, N) imply V(r, xMN) (l < i < n).

ii) V(T,MX) andx g FV(M) imply V fan... nan —> r,M), for somt ai , . . .,<7„.

Proof. i) Clearly 3B, 5 ' such that B h xM : ax H ... H an -» r and 5 ' h AT : ĉ
imply Ö U 5 ' h rrMTV : r. Let us prove that if xM ^ and iV ̂  then

xM §i implies there is a dérivation whose last applied rule is:

Mj l},i Ml (1 < i < m)

Since N tyi TV' the following dérivation can be built:

V(r,xMN) follows by rule (-> E).
ii) The proof is given by induction on the dérivation proving Mx ̂ . The only

not trivial case is when the last applied rule is:

QbiR P[R/z\M1...Mrnx^iN

where M = (Xz.P)QM1.. .Mm. By induction P[R/z]M^ . .Mmx ^ Â
implies P[Rfz]M\.. .Mm 4-i, so M ^ . Moreover, for some basis 5 ,5 i
(1 < ï < n), there is a dérivation ending with a rule:

B \~ M : ai f] ... H an -> r ( ^ h x : aQi<^<n , ^ x
B U 5i = 5 U {x : Ö"I,...,Z : crn} h M i : r ^

Since x ̂  FV(M), it must be x £ dom(B). Then P(crx n ... n «rn -> r, M).
Note that the case <J = v —>- r, is implicitely considered.

D

Now let define the following computability predicate:

r i s , M) < & V { )
• Compi{o\ n ... n crn ~^> T,M) <J=> Vj (1 < j < n) (Comp't(cTj1N) implies

Comp^r.MN)) (1 < j < n).

Lemma 8.2. Compta, M [N/x]) and N eC imply Compta, (Xx.M)N).

Proof. By induction on a. The basis case follows from the définition of V and by
Lemma 6.5. The gênerai case follows immediately from the induction hypothesis.

D

We will prove: B h M : a ^ Camp*(a, M) => Via, M) => M ^ .
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Lemma 8.3. i) V(a,xM) => Comipi(o,xM).
ii) Camp* {a, M) =>V(c,M).

Proof. By mutual induction on a. The only not trivial case is a = /zin...n/xm —> r.
i) Comipi{^j,N) (*) => V(fij,N) by induction on ii) (1 < j < m). 7>(/AI n ... n

/im -> T,XM) and V{^,N) (1 < j < m) => V(r,xMN) by Property 8.1.1
=4> Comp'L(T1xMN) (**) by induction. Finally (•) and (**) togheter imply
Comp'l(fii n ... PI Hm —> r, xM), by définition of Comp1'.

ii) Let x 0 FV(M). Clearly V(jij,x)^ Compi(pJhx) (1 < j < m) by induction
on i). Comp%{[i\ H ... n /xm —• r, M) and Compl(jAj,x) (1 < j < m) =>
Comp%{r, Mx), by définition of Comp1 =>• ̂ ( T , Mar) by induction =^ P(/xi n
... n / im -»• T, M) by Property 8.1.2.

D

Lemma 8.4. Let FV(M) = {x1}.. . ,x n ,x n + i , . . .,xn+fc|n, k > 0}? B = {xó :
(T3

r\l < j < n, 1 < r <mj,l < rrij} andV : B\- M : r.
IfQj eC (1 < j <n + k) and Comp^a^ Qh) (1 < r < rrij, 1 < h < n) then

Compi\r,M[Q1/xu...,Qn+k/xn+k\).

Proof. By induction on the dérivation. If the last applied rule is either (var) or
(v) the proof is trivial. If the last applied rule is (—> E) the proof follows by
induction, the définition of computability and (—> E). Let consider (—> / ) . It
must be M = Xy.P and r = //i Pi... fl //p —» r7, so

y g dom(B) ?

Let assume TV € C and Comp^ii^N) (1 < j < p). This implies (by Lem. 8.3.2)
that there are basis i?j such that Bj \- N : fij (1 < j < p). By induction

By Lemma 8.2:

CompV, (Ay-PtGi/n,..., Qn+k/xn+k])N)

which togheter with Comp'l(fij,N)^ implies

Compati! n ... n [iv -> r ;, M[Qi/a;i,...,

The case (—>y I) is similar, using Proposition 6.3.I. •

Now we are able to conclude the proof.
Let B \- M : a, FV(M) = {xu.. . ,xn ) icn + iv . .,xn+fc} and ^ = {x, : a^|l

< r < rrijy 1 < j < n, 1 < m^}.
By Lemma 8.3i), Compz(al,Xj) (1 < r < m^, 1 < j < n). Then by Lemma 8.4

Compi(a,M), which implies V{a,M) (by Lem. 8.3.2).
•
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Proof. (=>) part of the Theorem 6.8.
The proof is very similar to the previous one. Let ap € Tp and define the

following predicate:
7Z(ap, M) <=$ B \- M : ap, for some basis £ , and M ty%.

Proposition 8.5.

1. TL{ax n ... f\an -> TV,XM) and H(ai9N) imply lZ(rprxMN) (1 < i < n).
2. 1Z(rp,Mx) and x g FV(M) imply 7£(cri O ... n an —> TP,M), for some

ai,.. .,an.

Proof. See Lemma 8.1. •

Now let us define a new computability predicate:

• Compa(ay M) <̂> lZ(a, Af).
• Compa(ai H ... Han —> TP,M) o (Compa(ak,N) implies Compa(rp,MN))

(1 < k < n).

The proof ean be given following exactly the same lines than the proof of part => of
Theorem 6.7, i. e.. by proving that B h M : ap => Compa (av, M)
^n(ap,M)^M^a.

D
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