
INFORMATIQUE THÉORIQUE ET APPLICATIONS

ALFONS GESER

HANS ZANTEMA
Non-looping string rewriting
Informatique théorique et applications, tome 33, no 3 (1999),
p. 279-301
<http://www.numdam.org/item?id=ITA_1999__33_3_279_0>

© AFCET, 1999, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1999__33_3_279_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Theoretical Informaties and Applications
Theoret. Informaties Appl. 33 (1999) 279-301

NON-LOOPING STRING REWRITING

ALFONS GESER1 AND HANS ZANTEMA2

Abstract. String rewriting réductions of the form t —»J utv, called
loops, are the most frequent cause of infinité réductions (non-
termination). Regarded as a model of computation, infinité réductions
are unwanted whence their static détection is important. There are
string rewriting Systems which admit infinité réductions although they
admit no loops. Their non-termination is particularly difficult to un-
cover. We present a few necessary conditions for the existence of loops,
and thus establish a means to recognize the difficult case. We show in
detail four relevant criteria: (i) the existence of loops is characterized
by the existence of looping forward closures; (ii) dummy élimination, a
non-termination preserving transformation method, also preserves the
existence of loops; (iii) dummy introduction, a transformation method
that supports subséquent dummy élimination, likewise preserves loops;
(iv) bordered Systems can be reduced to smaller Systems on a larger
alphabet, preserving the existence and the non-existence of loops. We
illustrate the power of the four methods by giving a two-rule string
rewriting system over a two-letter alphabet which admits an infinité ré-
duction but no loop. So far, the least known such System had three
rules.

AMS Subject Classification. 68Q42, 20M10.

Keywords and phrases: string rewriting, semi-thue System, termination, loop, term rewriting,
transformation ordering, dummy introduction, dummy élimination, overlap closure, forward
closure.

* Partially supported by grant Ku 966/3-1 of the DFG within the Schwerpunkt Deduhtion at
the University of Tù'bingen.
1 Alfons Geser, Symbolisches Rechnen, Wilhelm-Schickard-Institut fur Informatik, Universitàt
Tübingen, Sand 13, 72076 Tübingen, Germany; e-mail: geser@informatik.-uni-tuebingen.de
2 Department of Computer Science, Universiteit Utrecht, RO. Box 80.089, 3508 TB Utrecht,
The Netherlands; e-mail: hansz@cs.uu.nl

© EDP Sciences 1999

280 A. GESER AND H. ZANTEMA

Résumé. Les réductions de mots de la forme t —>~̂ utv, appelées
boucles, constituent la cause la plus fréquente de chaînes de réduction
infinies. En tant que modèle de calcul, ces chaînes infinies sont indési-
rables et il est donc d'autant plus important de les repérer statique-
ment. Il existe des systèmes de réécriture de mots qui admettent
des chaînes infinies même s'ils n'admettent pas de boucles. La non-
termination dans ce cas est particulièrement difficile à découvrir. Nous
présentons quelques conditions nécessaires pour l'existence de boucles
et nous établissons ainsi une méthode pour reconnaître le cas difficile.
Nous présentons en détail quatre critères significatifs : (i) Pexistence
de boucles est caractérisée par l'existence de boucles obtenues par
l'opération de fermeture progressive (forward closure en anglais) ; (ii)
V élimination des symboles à occurrence unique, une mé-
thode de transformation qui préserve la non-termination ainsi que
l'existence de boucles ; (iii) l'introduction de symbole à occurrence
unique, une méthode de transformation qui autorise l'élimination des
symboles à occurrence unique en même temps qu'elle préserve les
boucles ; (iv) les systèmes à bords peuvent être ramenés à des systèmes
plus petits sur un alphabet plus grand, tout en préservant l'existence
et la non-existence de boucles. Nous illustrons la puissance des quatre
méthodes en donnant un système de réécriture des mots possédant deux
règles sur un alphabet de deux lettres qui admet une chaîne de réduc-
tion infinie mais aucune boucle. Jusqu'à présent, le plus petit système
connu ayant ces propriétés avait trois règles.

1. INTRODUCTION

A string rewriting System (SRS, for short) is a set of pairs of strings i —» r
by which one may replace in a directed fashion equals by equals: a string of the
form cêd may be replaced by crd which is considered as a simpler expression for
the same object. SRSs are a convenient means to reason about semantic equality
and algorithms. The study of SRSs is likely to attract practical interest in the
near future since relevant aspects of DNA computation are modelled by string
rewriting.

A SRS whose rewriting relation admits no infinité réductions is called
terminating. Termination, without being too restrictive, entails that several im-
portant properties of an SRS become decidable, e.g. confluence. And inductive
proofs can be done based on termination. Termination of SRSs is undecidable [9].
To learn more about termination it is useful to investigate shapes of infinité ré-
ductions.

Infinité réductions are often composed of cycles. A cycle is a non-empty
réduction where a term is rewritten to the same term. More generally, a loop
is a non-empty réduction where the starting term re-occurs surrounded by some
left and right context. In other words, a loop is a réduction of the form t —>̂ utv.
It is obvious that a loop can be composed infinitely, giving an infinité réduction.
In fact, the usual way to deduce non-termination is to construct a loop.

NON-LOOPING STRING REWRITING 281

However SRSs are known which admit no loops and still are not terminât ing.
Such non-terminât ion is of an inherent ly non-periodic nature and may be difficult
to detect. As a first step towards the investigation of such SRSs we envisage
a method to prove that an SRS admits no loops. That is, we seek necessary
conditions for the existence of loops. Whereas construction of a loop trivially
proves the existence of a loop, we have heard yet of no way to deduce non-existence
of a loop unless the SRS is terminât ing.

We develop four tools to prove non-existence of loops.

• Our central resuit characterizes the existence of loops by the existence of
looping forward closures. Forward closures [3, 14] are restricted forms of
réductions which can often be captured intuitively. A looping forward closure
is one of the form t —>̂ utv.

• As a second resuit we obtain that dummy élimination [6,24] preserves the
existence of loops. A dummy élimination splits a rewrite rule / -> rOr'
where D is a dummy, Le, a letter that does not occur at left hand sides,
into two rules l —» r, l —> r''. Dummy élimination is known to preserve
non-terminât ion.

• Our third resuit says that dummy introduction, a method that replaces a
dead string by a dummy symbol, also preserves the existence of loops.

• Our fourth resuit finally states that a bordered string rewriting System can
be reduced to a string rewriting System with smaller right hand sides but a
larger alphabet which admits loops if and only if the original System did.

We demonstrate the usefulness of the four results in concert by a proof that there
exist non-terminating, non-looping SRSs having only two rules. We do so by giving
a witness together with a complete proof. So far, the least known non-terminating,
non-looping SRS had three rules [4,12].

2. BASIC NOTIONS

We assume that the reader is familiar with termination of string rewriting. For
an introduction to string rewriting see [2,10].

SRSs are also called semi-Thue Systems.
A cycle is a réduction of the form t —>• J t; a loop is a réduction of the form

t —>J utv where «, v are strings. Hère tu dénotes the concaténation of strings t
and u. The string t is also called a prefix, u a suffix of tu. Any string utv is said
to contain t as a factor. A loop can be composed with itself to form a larger loop:
^ ~~̂H u^v "*# uutvv. Composition can be itérâted finitely and infinitely. A SRS
R is said to admit a loop if a loop t —>~̂ utv exists.

We will occasionally treat SRSs as term rewriting Systems where we identify
letters with function symbols of arity one. This allows us to apply some of the
term rewriting techniques to SRSs. Termination of term rewriting is summarized
in Dershowitz [4].

282 A. GESER AND H. ZANTEMA

3. A BASIC EXAMPLE

In this section we present a three-rule SRS to illustrate the typical aspects of
non-terminating, non-looping rewriting.

Proposition 1. The three-rule SRS R given by

bc -> de (1)

bd -> db (2)

ad -> abb (3)

admits an infinité réduction, but no loop.

The same System already appears in Dershowitz's survey ([4] p. 111),
however without a proof that it admits no loop. A slightly more complicated
example, including a proof, of a three-rule SRS with the same property was given
by Kurth [12].

Proof, For every i > 0 there is a réduction

atic ~^R ab^dc -^T 1 adb^c ^R abi+1c

yielding the infinité non-looping réduction

abc - > £ ab2c ->• J ab3c - » £ - - •

Now we prove that R is non-looping. Assume that v —»J uvw was a loop. During
this réduction, every rewrite rule had to be applied at least once; any two-rule
subset of the SRS terminâtes, and therefore cannot form a loop. Particularly, we
may conclude that v contains both letters a and c.

Then u and w contain no letters a or c since the number of a and c letters
remain unchanged by rewrite steps. The length of the factor left from the first a
remains unchanged by rewriting. So u is empty. The length of the factor right
from the last c can at most cause each d to be replaced by two 6-s. So w is empty.
But this means that v —>^ v, a contradiction to the fact that application of rule (3)
increases the length of the string. Hence R is non-looping. D

4. LOOPING OVERLAP CLOSURES

When speaking about réductions, one often resorts to special réductions, called
closures. Several characterizations of termination by closures are known. In this
section we will give a characterization of looping SRSs by means of overlap closures.
In the next section we will strengthen this resuit towards the further restricted
forward closures.

NON-LOOPING STRING REWRITING 283

Définition 2 (Overlap Closure [8]). Let an SRS R be given. The set OC(R) of
overlap closures is the least set of .R-reductions such that
ocl. if (l -> r) e R then (l -^R r) € OG(R),
oc2. if (si - ^ tf

xx) G OC(R) and (xsf
2 ->£ t2) e OC{R) such that x ^ e then

(s i4 ->R *ixs2 -•£ *i*2) ^ OC(iî),
oc3. if (5x -•£ ^52^/) G OC(i2) and (s2 ->£ t2) € OC(iî) then (si ->£ tis2*ï ->£

tita^) G OC(fl),
oc2'. if (si ->+ xt[) e OC(R) and (s2x -»£ i2) e OC(iJ) such that se ^ e then

(*2«i -^J «2**1 ->i *2*i) e OC(iî),
oc3'. if (si -»£ ii) 6 OC(i2) and (4M2 ->J i2) 6 OC(i?) then (s2sis2' -•£

«2*1*2 -^5*2) €OC(iî).

The fairly technical définition of overlap closure becomes clearer as soon as one
considers the fate of the positions in the terms during the réduction. To this end,
we use Rosen's [20] notion of residual.

Intuitively, residual positions "correspond" to each other in a rewrite step. For
the positions of the occurrence of the left hand side of the rule, there is no cor-
responding position at the right hand side: they are touched. It is apparent that
only the touched positions are essential in a réduction.

A position is a nonnegative integer. A position p is a position of a string t if
0 < p < \t\ where |i| dénotes the length of t. It is called an inner position of t if
0 < p < | i | .

Let i = cld —>• crd = tf be a rewrite step using rewrite rule / —»• r. We call a
position p in t touched by this rewrite step if p is of the form p = \c\ + v where
v is an inner position in L A position p from t that is not touched has a unique
residual pf in tf which is defîned by p1 = p if p < \c\ and p1 — p — \l\ + \r\ else (Le.
if|c| + |Z |<p< | i |) . The residual function is induetively extended to réductions:
If p1 is the residual in t1 of p from t by the réduction t —^ i', and pn is the
residual in tn of p' from t' by the réduction tf —>^ t/f, then pn is the residual in
tff of p from t by the composite réduction t -^*R t' —^ tn. Now a position p in t
may be called touched during the réduction t—t^t' if the réduction is of the form
t - ^ t11 -^R tnf -**R t1 and the residual p" in t" of p from t by t -^*R t" is touched
in the step t11 ->R tfn.

Thus we can characterize overlap closures.

Lemma 3. If R is an SRS, then the set OC(R) is exactly the set of réductions
t -^>~fi t

1 where every inner position of t is touched during the réduction.

Proof The proof is in two parts. First we prove that every overlap closure touches
all inner positions of its start ing term, by structural induction along the définition
of overlap closure. For Case (ocl) the claim is obvious.

Case (oc2): Let u be an inner position in S1S2. If w < |si| then the claim
follows by inductive hypothesis for si —y~̂ t\ ~ t\x. Otherwise, u has a residual
v! = u — \s\\ -h |ii| in t\<r by s\Sf

2 —>-J iis^, in which case u! — \t[\ is an inner
position in s2 = xs2. The claim follows by inductive hypothesis for 52 —^ t2.

Case (oc3): Follows immediately from inductive hypothesis for Si -^

284 A. GESER AND H. ZANTEMA

Case (oc2'): Let u be an inner position in sf
2S\. If u > \s'2\ then u — \s'2\ is

an inner position of S\ which is touched dur ing si —>J t\ = xt!
x by inductive

hypothesis. Else u has a residual uf in s2t\ by s2s\ —^ s2t\. Then u' — \sf
2\ is

touched during sf
2x —^ £2 by inductive hypothesis.

Case (oc3'): A position \s2\ < u < \s2s\\ is touched during s2sis2 —>-J s^tis^'
because u — |s2|, an inner position of Si, is touched during si —^ t\ by inductive
hypothesis. Every other inner position u of s2s\s2 has its residual u' in s2tis2 by
s25iS2 —»# 52^is2 which is touched during s2t\S2 -»# £2 by inductive hypothesis.

This finishes the first part.
In the second part, we prove that a non-empty réduction t -»jj t' that touches

all inner positions of ty is an overlap closure. To this end we perform induction
on the length n of t —ï1^ f. If n = 1 then t —>-# t' must be a rule in i?, otherwise
there remain untouched inner positions. Then t —>R tf is an overlap closure by
Case (ocl).

Now let n > 1, and let the réduction be t - ^H" 1 *" = cld ~^R CT<^ = *'• L e t

0 < pi < P2 < • - * < Vm < \t\ be the enumeration of all inner positions of t
untouched during t —>r^1 tn. For each pi from t let p\ dénote its residual in in by
t —y7^1 t". The expression t\p, q\ is to dénote the factor of t that starts at position
p and ends at position q in t, Now the réduction t - ^ - 1 t" can be split into m+1
réductions

where 0 < i < m with the agreements po = PQ = 0,pm+i = p'm+i = |*|.
By construction, every inner position of £[pz,Pi+i] is touched during (4). Every

non-empty réduction of these is an overlap closure by inductive hypothesis. At
least one of these réductions is non-empty.

Together with the rule l —> r we have a set of at least two overlap closures.
Recall the premise that every inner position of t is touched during the whole
réduction. Since p^ 1 < i < m are not touched during t —>*R tn their residuals
p\ in t" must be touched by t" -^R tf. So the non-empty réductions (4) may be
sticked together, one after the other, with l —» r to yield an overlap closure by
Cases (oc2), (oc3), or (oc2;). Case (oc3') may occur in the border case m = 0. D

It is now natural to ask whether the existence of loops is reducible to the
existence of loops during which every position is touched. We will call such a loop,
which is by Lemma 3 an overlap closure of the form t —^ utv, a looping overlap
closure. Call the number n of réduction steps of a loop t -^1}t utv its length.

Lemma 4. An SRS admits a loop if and only if it has a looping overlap closure.
Moreover if there is a loop of length n then there is a looping overlap closure of
length at most n.

Proof. "If" is trivial; we have to prove "only if".
Let R be the SRS. We prove that from a loop t -^~R utv an overlap closure

tf —>~ft v!tfvf can be constructed, by induction on the number of positions in t

NON-LOOPING STRING REWRITING 285

that are not touched during the given réduction. If this number is zero, then we
are finished, thanks to Lemma 3. Otherwise we construct a loop with a smaller
number of untouched positions in the starting term. To this loop the inductive
hypothesis applies, which yields the claim.

Suppose that t —^ utv is given dur ing which a position p in t is not touched.
Since no step touches p, every string in the given réduction contains a unique
residual of p, and can therefore be split into two parts. Thus the entire réduction
t —>J utv can be split into two réductions,

h -^R *i and t2 - ^ t'2 (5)

such that

t = t\t2 and utv = ut\t2v = t[t2

holds. We perform a case analysis on the lengths of ut\ and t[. Case 1: ut\ is
shorter than t[. Then there is vf such that tf

x — utxv\ and the réduction ti —^ tf
x

is non-empty. So t\ —>̂ ut\v' is another loop, with less untouched positions in
t\. Case 2: ut\ is longer than t[. Then t2v must be shorter than t2, which is
symmetrie to Case 1. Case 3: ut\ and t[have the same length. So t[= ut\
and 2̂ = t2v hold. One of the réductions (5) must be non-empty, as t —)^ utz; is
non-empty. This réduction may be used as the wanted loop.

By construction the length of the new loop does not exceed the length of the
given loop. •

5. LOOPING FORWARD CLOSURES

The set of overlap closures may be complex and difficult to détermine. This
suggests to go for further restricted réductions.

Définition 5 (Forward Closure [3,14]). The set of forward closures of an SRS R
is the least set FC(R) of /^-réductions such that

fcl. if (l -> r) e R then (l -*R r) e FC(iî),
fc2. if (si -^x t[x) G FC(R) and (xsf

2 -^^ t2) e FC(R) such that x ^ e then
(si52 ->^ tf

xxsf
2 ->J t[t2) G FC(R),

fc3. if (si -^^ *is2*ï) ^ FC(fl) and (s2 -^J t2) e FC(R) then (s2 ->+ J

Forward closures apply naturally as by a resuit of Dershowitz [3], termination of
SRSs can be reduced to finiteness of réductions initiated by right hand sides of
forward closures.

Theorem 6. [S] An SRS is non-terminating if and only if the right hand side of
some forward closure initiâtes an infinité réduction.

286 A. GESER AND H. ZANTEMA

We are going to strengthen Lemma 4 towards looping forward closures. To this
end we show that one can get rid of compositions of overlap closures of types oc2'
and oc3'.

For the proofs below it turns out useful to imagine every overlap closure
accompanied by its composition tree. The composition tree for an overlap clo-
sure c is defined to be a binary tree where the nodes are overlap closures, the root
is c, and arrows point from an overlap closure to the two overlap closures that
formed it. Each overlap closure is labelled by its type. Let us use a term notation
for such trees: e. g. 1 dénotes an overlap closure of type ocl; 2(1,1) an overlap
closure of type oc2 that is formed by two overlap closures of type ocl; 3(1, 2(1,1))
is obtained by oc3 from the previous two; and so on.

For such composition trees we define a size measure: Let

p (l) = 2 ,

/o(2(ci,c2)) = /o(3(ci,c2)) =

p(2'(Cl) c2)) = p{3'(Cl, c2)) =

Let us say that an overlap closure c\ is smaller than an overlap closure c2 if
p{c\) < p{c2) holds.

Lemma 7. If there is a looping overlap closure of type oc3 then there is also a
smaller looping overlap closure having at most the same length.

Proof Let u2u\ —>\ v2v{ be an overlap closure of type oc3', derived from {u\ —>J
vi) e OC(R) and (u^viu^ = u2 ->£ v2) G OC(R). Moreover let this overlap
closure be looping, Le. u2u\u2

f is a factor of v2y Le. there are strings y, z such that
v2 — yuf

2u\v!2z,
Then (u2 —>~̂ v2) G OC(R) and (m —^ Vi) G OC(R) form a looping overlap

closure u2 —>̂ yu2u2u
f2Z of type oc3- The new overlap closure is smaller. For,

if ci and c2 dénote the composition trees of the overlap closures u\ —>^ v\ and
v!2v\u2 = u2 -^J v2y respectively, then p(3(c2îci)) = p(c2)p{ci) < p(ci)p(c2) + 1
= p(3/(c1,c2).

By construction, the length of the new loop does not exceed the length of the
given loop. D

Lemma 8. If there is a looping overlap closure of type oc£ then there is also a
smaller looping overlap closure having at most the same length.

Proof Let u2u\ —>J v2v[be an overlap closure of type oc2', derived from (ui —^
v\ = xv[) G OC(R) and {v!2x = u2 —>~R V2) e OC(R). Let ci,c2 dénote the
composition trees of the two overlap closures. The size of the composed overlap
closure is p(2'(ci, c2)) — p(ci)p(c2) +1- Moreover let the composed overlap closure
be looping, Le. u!

2U\ is a factor of v2v[, Le. there are strings y, z such that v2v[=
yu2uiz.

Distinguish cases whether \u±z\ < \v[\ or \z\ < \v[\ < \u\z\ or \v[\ < \z\ holds.
In the first case u\ is a factor of v[whence U\ —>̂ xv[is a smaller looping

overlap closure, for its size is only p{c\).

NON-LOOPING STRING REWRITING 287

In the second case u\ = wu^ v2 — yu^w^ and v[— u'xz for non-empty strings
w,u[. Define v2 = yu2. Then (u2 -»£ u2w) G OC(JÎ) and (umi -*£ vi) G OC(R)
form an overlap closure u2Ui —»£ t ^ i of type oc2. The new overlap closure
is looping: U2u[= u^xu^ is a factor of t ^ i = t ^ ^ i = yu^xu^z. lts size is
p(2(c2,ci)) = p(c2)p(ci) which is less than p(2'(ci, c2))-

In the third case u ^ i is a factor of v2 = yv!2u\zf where string 2;' is given by
z — zfv[. Then (u2 ->£ yu'^z') G OC(R) and (ui -> ui) G OC(iî) form an
overlap closure u2 -»^ yu2vizf of type oc3. The new overlap closure is looping:
^2 = u2x is a factor of yv!2v\z' — yuf

2xv[zf. Its size is p(3(c2ïci)) = p(c2)p(c\)
which is less than p(2/(ci,C2)).

By construction, the length of the new loop does not exceed the length of the
given loop. •

Theorem 9. A SRS admits a loop if and only if it has a looping forward closure.
Moreover if there is a loop of length n then there is a looping forward closure of
length at most n.

Proof Suppose that R is a string rewriting System that admits a loop. By
Lemma 4 there is a looping overlap closure, u —>̂ v. We have to show that
if this is not a forward closure then there is still a smaller overlap closure. By
induction on p then the claim follows.

Suppose that u -^^ v is not a forward closure, i.e. in its composition tree some
label 2' or 3' occurs. If the outermost occurrence of a label 2' or 3' is at the root
then Lemmas 7 and 8, respectively, take care of a smaller overlap closure.

Otherwise the composition tree contains a pattern f{ff{c\^c2)^c^) or a pattern
/(ci,/ '(c2,c3)) where ƒ G {2,3}, ƒ' G {2/,3/}. We show that then the composi-
tion tree can be rearranged such that the size decreases. The rearrangement is
expressed by rewriting rules listed in Table 1. It is tedious but easy to verify that,
given an overlap closure together with its composition tree, in each case one of
the rules describes a valid rearrangement of the composition tree such that the
resulting overlap closure remains the same. Some rules have an "a" and a "b"
variant; the "a" variant applies when c2 overlaps with c\ or C3 (depending on the
rule), the "b" variant otherwise.

It remains to show that every such rearrangement decreases the size of the
composition tree.

To prove that each instance of a rearrangement rule strictly decreases p,
observe that for left hand sides p(/(/ /(ci,c2), c3)) = p(ci)p(c2)p(cs) +^(03) and
p{f(ci,ff(c2ics)) = p(ci)p(c2)p(cs) + p(ci), respectively, and that for ail right
hand sides p yields p(ci)p(c2)p(c3) + 1. Strict decrease follows from p{c) > 2 for
every composition tree c.

p is strictly monotonie, so strict decrease holds also for rearrangement at a
non-root node of the composition tree.

By construction, the length of the new loop does not exceed the length of the
given loop. D

288 A. GESER AND H. ZANTEMA

TABLE 1. Rearrangement rules for composition trees.

2(2'(ci,c2),c3) -> 2'(ci,2(c2,c3)) (la)

2(2'(Cl,c2),c3)-> 2'(2(ci, c3),c2) (lb)

2(ci,2/(c2,c3)) -> 2'(2(Cl,c2),c3) (2a)

2(c1,2/(c2!c3)) -> 2'(c2,2(Cllc3)) (2b)

3(2'(ci,c2),c3) -> 2'(ci,2(c2,c3)) (3a)

3(2/(ci,c2),c3) -> 2'(3(ci,c3),c2) (3b)

3(Cl,2'(c2)c3)) -> 2'(3(Cl)c2),c3) (4).

2(3/(ci,c2),C3) ->3'(ci,2(c2,c3)) (5)

2(c1,3'(o2,cs)) -» 3'(2(Cl,c2),c3) (6a)

2(c1)3'(c2,c3)) -» S ' fo^d . c s)) (6b)

3(3 /(c1,c2),c3)->3'(Cl,3(c2,c3)) (7)

3(ci, 3'(c2, c3)) -> 3'(3(Cl, c2), es) (8)

Example 1. We can now give an alternative proof that the three-rule SRS R in
Proposition 1 admits no loops, by showing that it has no looping forward closures.
Forward closures are at most of the forms

d&, (6)

bdmc ->+ <T+1c, (7)

adn+1 ->+ aiüb, (8)

adn+1c -^J aw'c (9)

where m,n > 0 and w,wr G {b,^}*, |u;|6 + 2\w\d = 2n + 1, |V| > n + 1. To see
that this set of réductions contains all forward closures check that it contains each
rule in R and is closed under opérations oc2 and oc3.

Not all of these need be forward closures, but this is not essential for our
argument. One can show that none of these réductions is of the ferm t ->^ utv.
Réductions of forms (6, 7), or (8) can also be generated by a terminating subset
of R each, hence cannot be loops. Réductions of form (9) cannot be cycling by
a lengt h argument, and cannot be properly looping because uv non-empty must
contain one of a, c. So there is no looping forward closure. Hence R is non-looping
by Theorem 9.

NON-LOOPING STRING REWRITING 289

Example 2. Let S be as R above where c has been identified with a.

ba —> da

bd-> db

ad —> abb.

It has no loops either, as we are going to show. Forward closures in S are at most
of the forms

(10)

-Kt c f ^ V (11)

(12)

(13)

(14)

(15)

(16)

(17)

where m, n > 0, w

adn+1

bdmadn+1

u

bdTu

udn+1

bdmudn+1

~^s

~^s

~^s

->+s

~^s

~^s

\w\b + 2\w\d =

u = adqi

vf — au, c

adq2

w! -

awb.

cT+1awb,

u',

<r+1u',
u'wb,

= 2n + 1, and

•-•adqka,

/
' • Q/lLi (Xs

for some k>l and | ^ | > gz > 1 and nj € {6, d}* for all 1 < z < fc.
None of these réductions can be looping. Réductions of forms (10),...,(12)

cannot be looping because each is formed by a terminating subset of the rewrite
rules. If a réduction of the form (13) were looping then so were a réduction of the
forms (10),...,(12).

Because the number of a symbols is not changed by rewriting, and ui ^ u[holds
for all 1 < i < fc, none of the réductions of forms (14),...,(17) can be looping either.
So S admits no looping forward closures. By Theorem 9 S admits no loops.

Example 3. The four-rule SRS R!

bc —> de

be —>• eeb

ed —> de

ade —> aeeb

290 A. GESER AND H. ZANTEMA

over the alphabet A = {a, b, c, dy e} admits infinité, but not looping réductions as
we are going to show. The set of forward closures is contained in

ben ->+ e2nb, (18)

edm -++, dme, (19)

benc -»£, wc, (20)

aden + 1 ->+, ae2n+2by (21)

aden+1c ->+, atu'c (22)

where w G {6, e}*, \w\ = n + 1, |w|d = 1, tu' e {&, d, e}*, \w'\ > n + 2, |7//|&e

= 1. Réductions of form (18) obviously cannot be loops; neither can réductions
of form (22) be. By Theorem 9 the SRS admits no loop. It admits, however, for
every i > 1 a réduction of the form

adëc ~^R> aeebé~xc - ^ ^ 1 ae2ibc ->& ae2idc -»|£ ade2ic,

and so the infinité réduction

ade1c —^^, ade2c —>~̂ , ade4c —>^, adesc —>~R, • • •

The set of forward closures of length bounded by n is finite and can effectively
be computed. So there is a décision procedure for the existence of loops of length
bounded by n.

Corollary 10. For every n > 0 the following is decidable: given a finite SRS,
does it admit a loop of length < n ?

In the next few sections we investigate which transformations preserve looping
SRSs.

6. DUMMY ÉLIMINATION

Dummy élimination is a useful method to split right hand sides of rewrite rules
at symbols ("dummies") that do not occur at left hand sides. Dummy élimination
is known to preserve non-termination. It preserves loopingness, too, as we show
next.

For our présentation we fix an alphabet A including a dummy symbol D.

Définition 11. For each string of the form s = riUr2 • • - ̂ rn where r̂ e (A \
{•})* fcrallî€{l,... ,n} , let S (s) =def {ri, . . - , r n }-

Définition 12. [24] For an SRS R on the alphabet A where the symbol D e A
does not occur on left hand sides of R, let

E(R) =de{ {l-±u\ (l-+r) e

NON-LOOPING STRING REWRITING 291

Theorem 13. [24] Let R be an SRS. If -*E(R) terminâtes then —»n terminâtes,

Theorem 14. Let R be an SRS. If ->R admüs loops then -^E{R) admits loops.

In the proof we utilize the following characterization of the existence of loops.

Définition 15. For an SRS R, a relation >^on strings is defined by v >R W if
there exist ç, qf such that v —»J qwq''.

Proposition 16. The relation >R is transitive. The SRS R admits no looping
réductions if and only if >R is irreflexive.

Proof of Theorem 14. Let R be an SRS, and let S = E(R).
We claim that s -^R t implies £ (s) >™ult £(t). Suppose 5 —ÏR t using rule

l -> r in R, which means that s is of the form 5 = si/s2. Let us first assume
that si, 52 do not contain • , whence S (s) = {$1^2}- If r does not contain D,
then £(t) = {sirs2}, and the claim follows by SiZs2 —>s siTs2, a s ru*e ' ~* r

is also in S. Else, suppose that r = riGr2ü • • * ürn with n > 1. Then S (t) =
{siri,r2,r*3,. * • j^n-i j^n^}- Nowby définition 5iZs2 is greater than every element
of £ (t), hence again the claim follows. By closure under multiset union, this
reasoning carries over to the case where si or s2 contain dummy symbols and the
claim has been proved.

Now it is easy to show that this extends to: s >R t implies S(s) >™ult £(t).
The following chain of implications finishes the proof. Suppose 5 admits no loop;
then >5 is irreflexive; then >™Zt is irreflexive; then ># is irreflexive; so R admits
no loop. D

The following example shows that dummy élimination preserves neither termi-
nation nor non-loopingness.

Example 4. Let R be the one-rule SRS g f -¥ ggOfff. The System E(R)
= {gf —ï gg,gf -^ fff} derived by dummy élimination, admits the following
loop.

gff ->E(R) 99f -*E(R) gfff-

In contrast, R terminâtes as its only forward closure is gf —> gg^fff-, the right
hand side ggHfff of which is unable to initiate an infinité réduction.

Example 5. The two-rule SRS

bad —> dadcbabb
R " ' bd - • db

over the alphabet A = {a, 6, c, d} admits an infinité réduction but admits no loop.
Non-termination follows from the existence of réductions bablad —>•£ ubab%+1adv
with suitable strings w, v for ail % > 0. For the proof that R admits no loop, we
apply dummy élimination to R with c the dummy, yielding the System E(R) as

292 A. GESER AND H. ZANTEMA

follows.

Î
bad —y dad
bad -» babb

bd -» db.

Every E(R)-réduction is also a 5-reduction where 5 is the SRS of Example 2.
Since 5 admits no loop, E(R) admits no loop either. By Theorem 14 then, R
admits no loop either.

7. DUMMY INTRODUCTION FOR LOOPS

A dead factor in a string, Le. a factor that will never be touched by any
rewrite step, may be replaced by a dummy symbol. In view of applicability of
dummy élimination (described in the previous section) such a replacement is a
valuable preprocessing step, which is therefore called dummy introduction. Dummy
introduction preserves not only non-termination but also the existence of loops.

Définition 17. A position p is called dead (for R) in a string t if no J?-derivation
starting from t touches p. Likewise a string d is called a dead factor (for R) in
context (v, w) if d is iî-irreducible and the positions \sv\ and \sv\ + \d\ are dead in
the string svdwu for ail strings 5, u.

Technically, a dummy introduction is given by an SRS of the form

T = {vdw -> vOw \v eV,w eW}

with the intended meaning that the (potentially empty) factor d is dead within
each left context v G V and right context w G W. We next give a technical
criterion, shieldedness, by which this claim can be checked effectively.

Définition 18 (Left Overlap). A string l is said to left overlap a string r if there
are strings l\ r' and x where l — Vx, r ~ xr\ and x and Vrf are non-empty.
Likewise, r is called to right overlap l in this case. Two strings are said to overlap
if one is a factor of the other or one left over laps the other.

Définition 19 (Shielded [23]). Let R be an SRS. Let d be a string and let V, W
be non-empty sets of strings over A such that d is non-empty if the empty string
is in V and in W. Then d is called shielded by V, W if moreover

1. every overlap of a left hand side / of a rewrite rule l —> r in R with a string
vdw, v G V, w G W already is either a left overlap with v or a factor of v or
a right overlap with tu or a factor of tu; and

2. for each left overlap of l — Ux, v ~ xvf of l with t?, a suffix of rvf is in V,
3. for each v — vflvn', a suffix of v'rv" is in V\
4. for each right overlap of l — yV\ w = w/fy of l with u>, a prefix of it/V is in

W, and
5. for each w — u)!lwf\ a prefix of w!rwn is in W.

NON-LOOPING STRING REWRITING 293

t =

u =

vdw —— • if

>

= v dw

FIGURE 1. The situation in Lemma 24. Either v ~ v' and
o r ^ ~h->r V* and W =

Lemma 20. [23] Condition (1) m Définition 19 is equivalent to: for ail strings
s, u} t* and strings v G V, u> G VF, £/ie zndicated occurrence of d is not touched m
the step svdwu —>R tl'.

Lemma 21. /2#/ Conditions (2) and (3) zn Définition 19 are equivalent to: for
ail strings v —ÏR vf where a suffix of v is m V, also a suffix of v' is m V.

Lemma 22. [23] Conditions (4) and (5) %n Définition 19 are equivalent to: for
ail strings w —>R wf where a prefix of w is m W, also a prefix of w1 is m W.

Lemma 23. [23] If d is shielded by sets V, W of strings then d is dead in context
(v,w) for every v G V,w G W. Conversely, %f d is dead m some context (v,w)
then there exist sets V, W of strings such that v G V, w G W and d is shielded by
V,W.

The sets V, W may be infinité as in the following example1.

Example 6. Let v — a, d — b, w — e, and let R — {xa —> ax.yx —̂ s,yb —» s}.

Hère we get V = ax*, W = s.

It is routine to prove the following commutation property.

Lemma 24. Let T = {vdw —> vOw \ v G V, w G W} be a dummy introduction
such that d %s shielded by V^W for the rule (l —>- r). Then for ail strings t,£',u
there is a stnng v! such that u ^T t —^i-^r t' imphes u —>i-+r

 u*

The situation is illustrated in Figure 1.

Lemma 25. Let T = {vdw -> vBw \ v G V, w G W} be a dummy introduction
such that d is shielded by V, W for the SRS R. Then d is shielded by V, W also
for the SRS

{s~->t\(s^+t)£ OC(R)}'

Proof Let the prémises hold. We check against the conditions for shieldedness of
d by y, W for the rule s —> t where s —^ t is a overlap closure.

Condition (1): Let s overlap with vdw. No position in the box in v\d\w
(including the borders) is touched during s -^^ t, a fact that can be proven
easily by induction on n. On the other hand, every inner position of 5 is touched,

•'•Suggested by an anonymous référée

294 A. GESER AND H. ZANTEMA

by Lemma 3. Hence every overlap of s with vdw is either a left overlap with u, or
a factor of f, or a right overlap with w, or a factor of w.

Condition (2) and (3): We use Lemma 21 for convenience. Suppose that v -*s->t
vf where a suffix of v is in V. By définition of s —> t then v —^ vf for some n > 0.
By induction on n, using Lemma 21 for R, we get that a suffix of vf is in V. Using
Lemma 21 for s —> t finishes the proof.

Conditions (4) and (5) are proven dually. D

Dummy introduction is a special case of the following non-termination
preserving transformation.

Theorem 26. [24] Let R, S, and T be string rewriting Systems. If
1. S terminâtes,
2, i l C >• Q i rp ;

3. CP(T,R) Ç-»£<-T>

then R terminâtes.

Since the transformation R *-¥ S preserves non-termination, provided that Con-
ditions (2) and (3) hold, it is natural to ask whether it also preserves the existence
of loops. In other words, if Conditions (2) and (3) hold, and R admits loops,
does S admit loops, too? The answer is négative as the following counterexample
shows.

Example 7. Let R, 5, and T be the SRSs

T =

respectively. Condition (2) of Theorem 26 holds by ad ~^s &bb
Condition (3) holds since abd «— T pad -^R ppab satisfies abd -^R adb -^-R pabb
ppab. R has a loop

ade —> pabc —> pade

but 5 has no loop by Proposition 1. Hence the transformation R t-ï S does not
preserve the existence of loops.

Surprisingly, dummy introduction does preserve the existence of loops.

Theorem 27. Let R be an SRS and let T = {vdw -> vUw \ v e V, w e W} be a
dummy introduction for it such that d is shielded by V, W. Let S be an SRS such
that R Ç —»£ <— .̂ Then S admits a loop if R admits a loop.

Proof. By straightforward induction, from Lemma 24 one can prove that

< - T - > K Ç - > « < - T (23)

NON-LOOPING STRING REWRITING 295

for ail m and n, Next,

-»£ Ç ^ s ^ T (24)

holds for ail n. This is proven by induction on n as follows. For n — 1 the claim
follows from the premise R Ç —>^ <f-̂ by the définition of —»_R. For n > 1, we
have the reasoning

-*il 5= - ^ 5 <~r ~^K i= ~>S "^K ^ T 5= ~^S ~^S ^ T ^"T '
premise (23) IH,n —1

Assume now that R admits a loop t -^~j^ ptq where t ,p, q E *4*. According to
Lemma 4, we may assume that this is an overlap closure. By (24) there is u such
that t —» £ u <—̂ ptq for some k. We prove by induction on k that every string in
the réduction ptq - ^ u contains t as a factor.

To prove the claim, we show that if tf —>T tff and t is a factor of £', then t is
a factor of t!! as well. The property that £ is a factor of £' may equivalently be
expressed by the existence of a string uf such that f ~^t^ptq vl'. We use the fact
that (t —>jj ptq) E OC(R) whence by Lemma 25, d is shielded by V, W for the
SRS {s -^ t | (5 ^ + £) € OC(i*)}. With that, Lemma 24 yields the commuting
diagram

I
i"

Since £/; admits a rewrite step for rule t —> ptq, it follows that t/f contains £ as a
factor.

So every term in the réduction ptq —)>̂ u contains £ as a factor. We conclude
that u has £ as a factor, and so £ —>J u is a loop for S. D

Example 8. The SRS

bc -» rfc (1)

6d -> d6 (2)

ad -> a666a66 (3)

contains the dead part a&66 in rule (3). To prove that it does not loop, choose
T = {abbba —> Da}. It is easily verified that d = a666 is shielded by V = {e} ; W ~

w.
Example 9. The two-rule SRS

>• dadbabb

bd^db

296 A. GESER AND H. ZANTEMA

over the alphabet A = {a, 6, d} admits an infinité réduction but admits no loop.
Let R be the two-rule System. Non-termination follows from the existence of ré-
ductions babzad —>^ ubabl+1adv for ail i > 0. For the proof that R admits no loop,
we transform it to the System from Example 5 of which we already derived non-
loopingness. The transformation is done by the dummy transformation defined
by

T = {vw -* vOw | v G {ad, abb}, w € {6a, da}} •

Check that the only overlaps of left hand sides of R with vw are of the form badw
and vbad (the overlapping région is enclosed by spaces). It is straightforward to
verify that the empty string is shielded by V — {ad, abb}, W = {ba, da}.

By Theorem 27 then R admits no loop either.

8. BORDERED STRING REWRITING SYSTEMS

Shikishima-Tsuji et al. [21] have reduced the termination problem of confluent
one-rule SRSs to that of non-overlapping one-rule SRSs. Their encoding idea was
introduced by Adjan and Oganesjan [1] to attack the word problem for one-rule
string rewriting. One step of the réduction applies under less restrictive premises.

Définition 28. A string s is called bordered if there is a non-empty string z such
that z is both a prefix and a suffix of 5. A SRS R is called bordered if there is a
non-empty string z such that every left hand side of R and every right hand side
of R each has prefix and suffix z. The shortest such z is called the border of the
string, SRS, respectively.

By Wrathall's characterization [22], a length increasing one-rule SRS is confluent
if and only if every self-overlap of £ is also a self-overlap of r. So particularly every
confluent, overlapping one-rule SRS is bordered.

It is obvious that a border has no self-overlaps. We will dénote the border string
by the symbol o from now on. Let us assume that the alphabet S has at least
two letters. Let C = S* \ E* o S* dénote the set of strings that do not contain the
border as factor, The set oC forms a code, in other words, oCis a free generator
of the submonoid of E* generated by o C

Proposition 29. For a string o that has no self-overlaps, every string s G E* has
a unique décomposition s = SQOSIO .. .osn where SQ, SI, . . . , sn G C.

Now let Q be an (infinité) alphabet bijective to C via the function ƒ : f£ —» C.
Then O* and (oC)* are isomorphic via the isomorphism ƒ* : Î7* —> (oC)* defined
by F(e) = e, ƒ » = o / (w) , u G îï, f*(xy) = /*(y)/*(y), xyy G ̂ ~.

Let cj) : Cl* -> (oC)* o be defined by </>(x) — f*(x)o. Then <f> is bijective with
inverse

(f)"1 (O 5x0 52 0 . . . O Sno) — / ~ 1 (5 i) / ~ 1 (5 2) . . . / ~ 1 (s n)

NON-LOOPING STRING REWRITING 297

for ail si,S2,.-.,Sn G C. By Proposition 29 4>~~l is well-defined and satisfies
f ^ s o t) = f ^ s o j f ^ o t) for ail 5 G (oC)\ t G (Co)*.

Let i£ be a bordered SRS over alphabet S with border o. Then £%T G (o C)* o for
every rewrite rule t -> r in R. Define c^"1^) = W"1 W -> ^(r) | (̂ -> r) G # } .
Conversely, if 5 is a SRS over (a subset of) alphabet tt then <j>(S) = {0(^) -^ <£(?")}
is bordered with border o. Moreover c()(<p~1(R)) = R and (j>~1 (4>(S)) = 5.

Lemma 30 ([21] Lem. 4). Let R be a bordered SRS with border o. Then the
following hold for ail s, t G S*, ar,y G fi*.

1. /ƒ x ->0-i(K) 2/ ^en 0(x) -^H 0(î/).
2. / / s -># t then there are unique uyu' G C* and s',£' G (oC)*o swcA tfiai

s = usfu!, t = u i V and (j)~1{sl) —>-̂ -i(/e) ^~1(t /).
3. x is a factor of y if and only if </>(x) is a factor of <f>(y).

Proof By Proposition 29 a bordered rule £ —» r with border o can be decomposed
uniquely into

For the first claim, let x = z<lr1{f)zt - ^ - i ^) z(f)~1(r)z/ = y. Then ^>(x)
= u&x' — ĴÎ urtx' = 0(y) where u , ^ G E* are given by uo = <j>(z) and ouf — <j){zf).

Now for the second claim let s = u&x' where u G (oC)* and it' G (Co)*. By
définition of rewrite step, y — uru\ so t G (oC)* o. Moreover,

This proves the second claim.
The third claim is an immédiate conséquence of the first and second because

£ is a factor of y if and only if y is reducible by some rewrite rule x —> xf for an
arbitrary x1 G fi*, and a similar rule for factors over E*. D

Shikishima-Tsuji et al. prove the following resuit.

Theorem 31. [21] For every confluent one-rule SRS R = {£ —> r} there is
effectively a non-overlapping one-rule SRS S ~ {£! —>• r '} 7 |r'[< \r\ over another
alphabet such that R terminâtes if and only if S terminâtes.

In their proof they show that every overlapping one-rule SRS can be reduced
such that the number of self-overlaps of the left hand side decreases (by 1). By
induction on the number of self-overlaps of the left hand side they obtain finally
a one-rule SRS which is non-overlapping.

A close observation shows that in order to do one such réduction step, it
suffices that {£ -^ r} is bordered. The réduction readily carries over to the case of
arbitrarily many rules.

Theorem 32 ([7] for \R\ = 1). A bordered SRS R terminâtes if and only if^~
terminâtes. Moreover \r\ > |^~1(r)j holds for every rewrite rule £ —)• r in R.

298 A. GESER AND H. ZANTEMA

Proof. The inequality \r\ > l^"1^)! is immédiate by \r\ > \r\o > ^"H7*)! + 1,
where |r|o dénotes the number of occurrences of o as a factor in r.

We show that the existence of an infinité réduction in the one System entails
the existence of an infinité réduction in the other. If there is an infinité réduction
5° —^^-î^) s1 —>0-i(H) • * • then by Lemma 30 there is a corresponding infinité
réduction 4>(s°) —>•# ^ (S 1) —>R • • •. Conversely, if there is an infinité réduction
z° —»# z1 —»# * • • then there is an infinité réduction a;0 —>R xl —»# • * • where
x° G O£*)*oissuchthat2° = z W ' , z', z" G £*\£*o£*. The z', z" are nowhere
used during the réduction whence they may be stripped. Now by Lemma 30 there
is a corresponding infinité réduction (f>~l(x°) -^<£-I(K) <fi~l(xl) ~^4>-^(R) * * * Q

For example, R = {ababa —> aaabbba} is bordered with border a, but not
confluent: The self-overlap aba of £ = ababa is not a self-overlap of r = aaabbba.
With Q the set of nonnegative integers and f(bn) = n, one gets <j>~1(R) = {11
—> 003} which is obviously terminating by counting 1 symbols. So R is terminating
as well.

The following is particularly interesting if one is interested in loops.

Theorem 33. A bordered SRS R has a loop of length n if and only if (j)~~1(R) has
a loop of length n.

Proof. Let R have a loop of length n > 0, say s —^ t. Then by applying Lemma 30
n times one gets cj)~1(s/) —^^-i/R\ <l>~l(t/). Now since s — usfuf is a factor of
t = ut'u', s' is a factor of tf, and by Lemma 30 (f)~l(sf) is a factor of (p~1(t/).
Hence 0~1(s') -+2-1(R)

 <t>~1{^/) '1S a 1°°P °f length n for (f)~1(R).
Similarly in the opposite direction. D

9. A NEW EXAMPLE

In this section we present a two-rule SRS over a two-letter alphabet that has an
infinité réduction but no looping réduction.

Proposition 34. The two-rule SRS

1100101 ->10100101100111

1101 -> 1011

over the alphabet £ = {0,1} admits an infinité réduction but admits no loop.

Proof Let R be the two-rule System. R is a bordered SRS with border 1; then
C = 0*. Let Q = {C^OÎ^I, . . . } and let f{u)i) = 0î for ail nonnegative integers i.
For 0"1(i2) weget

—>

NON-LOOPING STRING REWRITING 299

which is nothing but a renamed version of the SRS from Example 9 by the renaming
{a M> tt>2j& ^ ^o,d H^ uj\}. So we gather that <fi~l(R) does not terminate but
admits no loop. By Theorems 32 and 33, respectively, it follows that R, too, does
not terminate and admits no loop. D

10. RELATED WORK

Our characterization resuit (Th. 9) is a close relative of the following two
resuit s about terminât ion, which were originally stated for restrict ed term rewrit-
ing Systems. Guttag et al gave a characterization of cycling. A SRS R is called
quasi-terminating if every infinité i£-reduction enters a cycle, z.e. is of the form

Theorem 35. [8] A quasi-terminating SRS R terminâtes (Le., admits no cycle)
if and only if there is no overlap closure of the form t —>J t.

Dershowitz has characterized termination of right-linear term rewriting Systems
by réductions starting from forward closures (Th. 6 is its string rewriting version).
A collection of results about forward closures and termination is presented in
Dershowitz and Hoot [5].

Dummy élimination for term rewriting has been introduced by Ferreira and
Zantema [6]. They show that dummy introduction preserves non-termination.
Zantema and Geser [24] present a technically simpler version for string rewriting.
McNaughton [17,18] calls SRSs where every right hand side contains a dummy
symbol inhibitor Systems; he shows that their termination is decidable and their
non-termination entails the existence of loops.

For the decidability results below ail SRSs are assumed to be finite. It is
well-known that termination of SRSs is an undecidable property [9], even for three-
rule SRSs [15]. The problem whether termination is undecidable for two-rule SRSs
or for one-rule SRSs is still open.

It is easily seen that it is semi-decidable whether a string initiâtes a loop with
respect to some SRS. On the other hand it is co-semi-decidable whether a string
initiâtes an infinité dérivation with respect to some SRS. As a conséquence, for
classes of SRSs in which every infinité dérivation contains a loop, for instance
non-length-increasing SRSs and inhibitor SRSs, it is decidable whether a string
initiâtes an infinité dérivation or not.

Otto [19] has shown that the existence of proper loops (i.e. loops that are not
cycles) is undecidable. Kurth [13] has given a décision procedure for the problem
whether a one-rule SRS admits a loop of length 1, 2, or 3. The study of special
forms of réductions so far shows only one-rule SRSs that terminate or admit a
loop [11,16,17]. If there were non-terminating, non-looping one-rule SRSs they
were not easy to find: None of the 6.7* 109 candidates l —» r where \r\ < 9 is both
non-terminating and non-looping [7].

McNaughton [17], having proved that well-behaved SRSs either terminate or
admit a loop, conjectures that no non-terminating, non-looping one-rule SRS ex-
ists at ail. A few related results witness that one-rule SRSs are indeed special:

300 A. GESER AND H. ZANTEMA

local confluence and confluence, properties undecidable for SRSs, are decidable
for one-rule SRSs [12,22]. To several other problems, such as termination or the
word problem, their decidability status for one-rule SRSs is unknown. A proof or
a disproof of McNaughton's conjecture were of great help in solving these open
questions. In every attempt to falsify McNaughton's conjecture, the central step:
the proof that the counterexample does not admit loops, can be done using our
method. In particular, as a conséquence of our Theorem 33, McNaughton's con-
jecture is true if and only it is true for ail one-rule SRSs that are not bordered.

11. CONCLUSION

The most gênerai known form of réduction that proves non-termination, Le.
the existence of infinité réductions, in a string rewriting System (SRS) is a loop
t —»"£ utv.

To obtain proof methods for the non-existence of loops in an SRS, we have
examined various known proof methods for termination. We found that it suffices
to check the set of forward closures against loops. Moreover dummy élimina-
tion and dummy introduction each not only preserves non-termination but also
existence of loops of SRSs. A réduction of bordered Systems turned out to even
preserve existence of loops as well as non-existence of loops.

We illustrated our four new methods in concert at a proof that a two-rule SRS
over a two-letter alphabet exists that admits infinité réductions but no loops.

REFERENCES

[1] S. Adjan and G. Oganesjan, Problems of equality and divisibility in semigroups with a single
defining relation. Mat Zametki 41 (1987) 412-421.

[2] R. Book and F. Otto, String-rewriting Systems. Texts and Monographs in Computer Science.
Springer, New York (1993).

[3] N. Dershowitz, Termination of linear rewriting Systems. In Proc. o f the 8th International
Colloquium on Automata, Languages and Programming (ICALP81), Springer, Lecture
Notes in Computer Science 115 (1981) 448-458.

[4] N. Dershowitz, Termination of rewriting. J. Symb. Comput. 3 (1987) 69-115; Corrigendum
4 (1987) 409-410.

[5] N. Dershowitz and C. Hoot, Natural termination. Theoret. Comput. Sci. 142 (1995)
179-207.

[6] M. Ferreira and H. Zantema, Dummy élimination: Making termination easier. In Proc. lOth
Conf. Fundamentals of Computation Theory, H. Reichel, Ed., Springer, Lecture Notes in
Computer Science 965 (1995) 243-252.

[7] A. Geser, Termination of one-rule string rewriting Systems t —> r where |r| < 9. Tech. Rep.,
Universitât Tübingen, D (Jan. 1998).

[8] J.V. Guttag, D. Kapur and D.R. Musser, On proving uniform termination and restricted
termination of rewriting Systems. SIAM J. Comput. 12 (1983) 189-214.

[9] G. Huet and D.S. Lankford, On the uniform halting problem for term rewriting Systems.
Rapport Laboria 283, INRIA (1978).

[10] M. Jantzen, Confluent string rewriting, Vol. 14 of EATCS Monographs on Theoretical
Computer Science. Springer, Berlin (1988).

NON-LOOPING STRING REWRITING 301

[11] Y. Kobayashi, M. Katsura and K. Shikishima-Tsuji, Termination and derivational
complexity of confluent one-rule string rewriting Systems. Tech. Rep., Dept. of Computer
Science, Toho University, JP (1997).

[12] W. Kurth, Termination und Konfluenz von Semi-Thue-Systemen mit nur einer Regel
Dissertation, Technische Universitat Clausthal, Germany (1990).

[13] W. Kurth, One-rule semi-Thue Systems with loops of length one, two, or three. RAIRO
Theoret. Informaties AppL 30 (1995) 415-429.

[14] D.S. Lankford and D.R. Musser, A finite termination criterion. Tech. Rep., Information
Sciences Institute, Univ. of Southern California, Marina-del-Rey, CA (1978).

[15] Y. Matiyasevitch and G. Sénizergues, Décision problems for semi-Thue Systems with a few
rules. In IEEE Symp. Logic in Computer Sdence'96 (1996).

[16] R. McNaughton, The uniform halting problem for one-rule Semi-Thue Systems. Tech. Rep.
94-18, Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, Aug. 1994.
See also "Correction to The Uniform Halting Problem for One-rule Semi-Thue Systems",
Personal communication (Aug. 1996).

[17] R. McNaughton, Well-behaved dérivations in one-rule Semi-Thue Systems. Tech. Rep. 95-15,
Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY (Nov. 1995).

[18] R. McNaughton, Semi-Thue Systems with an inhibitor. Tech. Rep. 97-5, Dept. of Computer
Science, Rensselaer Polytechnic Institute, Troy, NY (1997).

[19] F. Otto, The undecidability of self-embedding for finite semi-Thue and Thue Systems. The-
oret. Comput. Sci. 47 (1986) 225-232.

[20] B.K. Rosen, Tree-manipulât ing Systems and Church-Rosser Theorems. J. ACM 20 (1973)
160-187.

[21] K. Shikishima-Tsuji, M. Katsura and Y. Kobayashi, On termination of confluent one-rule
string rewriting Systems. Inform. Process, Lett. 61 (1997) 91-96.

[22] C. Wrathall, Confluence of one-rule Thue Systems. In Word Equations and Related Topics,
K.U. Schulz, Ed., Springer, Lecture Notes in Computer Science 572 (1991).

[23] H. Zantema and A. Geser, A complete characterization of termination of 0plq —• l r 0 s .
Applicable Algebra in Engineering, Communication, and Computing. In print.

[24] H. Zantema and A. Geser, A complete characterization of termination of 0p l9 —> l r 0 s .
In Proc. of the 6th Conference on Rewriting Techniques and Applications, J. Hsiang, Ed.,
Springer, Lecture Notes in Computer Science 914 (1995) 41-55.

Communicated by Ch. Choffrut.
Received October, 1998. Accepted Juin, 1999.

