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IMMUNITY AND SIMPLICITY FOR EXACT COUNTING
AND OTHER COUNTING CLASSES*

J. ROTHE1

Abstract. Ko [26] and Bruschi [11] independently showed that, in
some relativized world, PSPACE (in fact, ©P) contains a set that is
immune to the polynomial hierarchy (PH). In this paper, we study
and settle the question of relativized séparations with immunity for
PH and the counting classes PP, GP, and ©P in all possible pairwise
combinations. Our main resuit is that there is an oracle A relative
to which G=P contains a set that is immune to BPP e P . In particular,
this QPA set is immune to PHA and to ©PA. Strengthening results of
Torân [48] and Green [18], we also show that, in suitable relativizations,
NP contains a G^P-immune set, and ©P contains a PPPH-immune set.
This implies the existence of a G=Ps-simple set for some oracle £?,
which extends results of Balcâzar et al. [2, 4]. Our proof technique
requires a circuit lower bound for "exact counting" that is derived from
Razborov's [35] circuit lower bound for majority.

AMS Subject Classification. 68Q15, 68Q10, 03D15.

1. INTRODUCTION

A fundamental task in complexity theory is to prove séparations or collapses
of complexity classes. Unfortunately, results of this kind fall short for the most
important classes between polynomial time and polynomial space. In an attempt

Keywords and phrases: Computational complexity, immunity, counting classes, relativized
computation, circuit lower bounds.

* Supported in part by grants NSF-INT-9513368/DAAD-315-PRO-fo-ab, NSF-CCR-9322513,
and NSF-INT-9815095/DAAD-315-PPP-gü-ab, and by a NATO Postdoctoral Science Fel-
lowship from the D euts cher Akademis cher Austauschdienst ("Gemeinsames Hochschulsonder-
programm III von Bund und Lândern"). Work done in part while visiting the University of
Rochester.
1 Institut fur Informatik, Friedrich-Schiller-Universitat Jena, 07740 Jena, Germany; e-mail:
rotheQinformatik.uni-j ena.de

© EDP Sciences 1999



160 J. ROTHE

to find the reasons for this frustrating failure over many years, and to gain more
insight into why these questions are beyond current techniques, researchers have
studied the problem of separating complexity classes in relativized settings. Baker
et al, in their séminal paper [1], gave for example relativizations A and B such that
PA ^ NPA and PB = NPB , setting the stage for a host of subséquent relativization
results.

Séparations are also evaluated with regard to their quality. A simple séparation
such a sP A 7̂  NPA merely claims the existence of a set S in NPA that is not recog-
nized by any VA machine. This can be accomplished by a simple diagonalization
ensuring that every PA machine f ails to recognize S by just one string, which is
put into the symmetrie différence of S and the machine's language. It may well
be the case, however, that some PA machine nonetheless accepts an infinité sub-
set of £, thus "approximating from the inside" the set witnessing the séparation.
Thus, one might argue that the différence between PA and NP"4, as witnessed
by S, is negligible. In contrast, a strong séparation of PA and NPA is witnessed
by a PA-immune set in NPA. For any class C of sets, a set is C-immune if it is an
infinité set having no infinité subset in C.

A relativization in which NP and P are strongly separated was first given by
Bennett and Gill [8]. In fact, they established a stronger result. Technically
speaking, they showed that relative to a random oracle R, NPR contains a PH-bi-
immune set with probability 1. This was recently strengthened by Hemaspaandra
and Zimand [22] to the strongest result possible: Relative to a random oracle R,
NP^ contains a P^ balancée immune set with probability 1. See these références
for the notions not defined here.

Many more immunity results are known; see, e.g., the papers [2,4,10-13,21,23,
26,29,39,50]. Most important for the present paper are the results and (circuit-
based) techniques of Ko [26] and Bruschi [11]. In particular, both papers provide
relativizations in which the levels of the polynomial hierarchy (PH) separate with
immunity, Bruschi's results being somewhat stronger and more refined, as they
refer not only to the E but also to the A levels of PH. Also, both authors indepen-
dently obtain the result that there exists a PH-immune set in PSPACE, relative
to an oracle. Since Ko's proof is only briefly sketched, Bruschi includes a detailed
proof of this result. This proof, however, is flawed1.

1In particular, looking into the proof of ([11], Thm. 8.3), the existence of the desired oracle
extension, W, in Case (e) of the construction is not guaranteed by the circuit lower bound used.
In Case (e) of stage /, W is required to have an odd number of lengt h h (l) st rings such that all
circuits associated with a list of still unsatisfied requirements reject their inputs simultaneously—
an input corresponds to the W chosen; so once W is fixed, every circuit has the same input,
X w ( O ^ ) * * - X w ( l h ^ ) - The used circuit lower bound for the parity function merely ensures
that for each circuit C on that list, C computes parity correctly for at most 20% of the "odd"
inputs of length h(l). Thus, the extension W must be chosen according to the remaining 80% of
such inputs to make that circuit reject. However, if there are sufiiciently many circuits on the list
whose correct input régions happen to cover all "odd" inputs of length h(l) (for instance, when
there are 5 circuits each being correct on a different 20% of such inputs), then there is no room
left to choose a set W Ç {0, l}fe(0 of odd cardinality that makes all circuits reject simultaneously.
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Using Ko's approach, it is not difficult to give a valid and complete proof of this
result, and indeed the present paper provides such a full proof—note Corollary 3.9.
However, the purpose of this paper goes beyond that issue: We study séparations
with immunity for counting classes inside PSPACE with respect to the polynomial
hierarchy and among each other. Counting classes that have proven particularly
interesting and powerful with regard to the polynomial hierarchy are PP (proba-
bilistic polynomial time), the exact counting class GP, and ©P (parity polynomial
time). Note that the PSPACE^ set that is shown by Ko [26] (cf. Bruschi [11]) to
be PH -immune in fact is contained in ©PA. Ko's technique [26] is central to all
results of the present paper.

The relationship between these counting classes and PH still is a major open
problem in complexity theory, although surprising advances have been made show-
ing the hardness of counting. In particular, Toda [45] and Toda and Ogihara [46]
have shown that each class C chosen among PP, G=P, and ©P is hard for the
polynomial hierarchy (and, in fact, is hard for CPH) with respect to polynomial-
time bounded-error random réductions. Toda [45] showed that PP is hard for PH
even with respect to deterministic polynomial-time Turing réductions. However,
it is widely suspected that PH is not contained in, and does not contain, any
of these counting classes. There are oracles known relative to which each such
containment fails, and similarly there are oracles relative to which each possible
containment for any pair of these counting classes fails (except the known contain-
ment Gf ÇPP [40,51], which holds relative to every oracle), see [1,5,6,18,47,48].

Regarding relativized strong séparations, however, the only results known are
the above-mentioned result that for some A, ©PA contains a PHA-immune set [26]
(cf. [11]), and that for some B, NPB has (and thus both PHS and PP B have) a
©Ps-immune set [10]. In this paper, we strengthen to relativized strong sépara-
tions all the other simple séparations that are possible for pairs of classes chosen
among PH, PP, ©P, and G=P. Just as Balcâzar and Russo [2,4] exhaustively
settled (in suitable relativizations) all possible immunity and simplicity questions
among the probabilistic classes BPP, R, ZPP, and PP and among these classes
and P and NP, we do so for the counting classes G=P, PP, and ©P among each
other and with respect to the polynomial hierarchy.

Ko's proof of the result that ©P contains a PHA-immune set exploits the
circuit lower bounds for the parity function provided by Yao [53] and Hâstad [20].
Noticing that Hâstad [20] proved an equally strong lower bound for the majority
function, one could as well show that PPA contains a PH^-immune set for some
oracle A We prove a stronger result: By deriving from Razborov's [35] circuit
lower bound for the majority function a sufficiently strong lower bound for the
boolean function that corresponds to "exact counting," we construct an oracle
relative to which even in G=P (which is contained in PP) there exists a set that
is immune even to the class BPP e P (which contains PH by Toda's result [45]).
This result implies a number of new immunity results, including relativized ©P-
immunity and PH-immunity of G=P.
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Conversely, we show that, in some relativized world, NP contains (and thus
both PH and PP contain) a GP-immune set, which strengthens Torân's simple
séparation of NP and G=P [47,48], As a corollary of this result, we obtain that,
in the same relativization, GP has a simple set, z.e., a coinfmite G9P set whose
complement is GP-immune. Just like immunity, the notion of simplicity originates
from recursive function theory and has later proved useful also in complexity the-
ory. The existence of a simple set in a class C provides strong évidence that C
séparâtes from the corresponding class coC Our result that, for some oracle B,
G=P has a simple set extends Balcâzar's result that, for some A, NPA has a sim-
ple set [2], We also strengthen to a strong séparation Green's simple séparation
that, relative to some oracle, ©P £ PP P H [18]. Similarly, the relativized simple
séparation of the levels of the PP P H hierarchy [9] also can be turned into a strong
séparation. As a special case, this includes the existence of a PP-immune set
in P N P (and thus in PH) relative to some oracle, which improves upon a simple
séparation of Beigel [6].

2. PRÉLIMINAIRES

Fix the two-letter alphabet S = {0,1}. The set of all strings over E is denoted
by £*, and the set of strings of length n is denoted by En. For any string x e S*,
let \x\ dénote its length. For any set I Ç S * , the complement of L is L = S* \ £,
and the characteristic function of L is denoted by XL, i-e-, XL(X) = 1 if x £ L,
and XL(E) = 0 if x 0 L. For the définition of relativized complexity classes and
of oracle Turing machines, we refer to any standard text book on computational
complexity such as [3,24,33]. For any oracle Turing machine M and any oracle A,
we dénote the language of MA by L(MA)> and we simply write L(M) if A — 0.
For classes C and V of sets, define C p to be {JDeT,CD, where CD dénotes the class
of languages accept ed by C oracle machines wit h oracle D. For any class C, let
coC dénote {L \ L G C}. We use NPOTM as a shorthand for "nondeterministic
polynomial-time oracle Turing machine". Let accMA(x) (respectively, ^MA(X))
dénote the number of accepting (respectively, rejecting) computation paths of
NPOTM M with oracle A on input x, and let totj^ii(x) be the total number of
computation paths of MA on input x.

Définition 2.1. Let A be any oracle set.

1. ([30,44], see also [52]) The (relativized) polynomial hierarchy can be
defined as follows:

• for each k > 0, a set L is in S^' if and only if there exists a polynomial
p and a prédicat e a computable in PA such that for all strings x,

xeL <=> (Q1W1HQ2W2) -•(Qkwk)[<T(x,wuW2,.-- ,wk) = 1],

where the Wj range over the length p(|#|) strings, and for each i, 1 <
i < k, Q{ = 3 if i is odd, and Q̂  = V if i is even.
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• D e n n e n ^ =coS£A .

• DefinePHA = U>o s f A -
2. [17,34] ®P^ = {L I (3NPOTM M) (Vx e E*) [x e L <=> accMA(x) is

odd]}.

3. [16] PPA = {L j (3NP0TMM)(Vx e £*) [x G L <=> accM4x)

4. [40,51] &PA = {L | (3NPÖTM Af) (Va e £*)[x e L ^ accMx(x)
]}

5. [16] BPPA is the class of languages L for which there exists an NPOTM
M such that for each input x, x G L implies that rejM^(x) < ^totMA(x),
and x $ L implies that accM^(^) < \totMA(x).

6. We write S^ for ££' and PH for PH0, and similarly for the other classes.

Note that PH U ®P U PP U ©P Ç PSPACE and BPP Ç PP. It is also known
that BPP Ç E£ H Hl ([28], see also [42]) and coNP Ç G P Ç P P [40,51].

An n-ary boolean function is a mapping fn from {0, l } n to {0,1}. Some of the
most important boolean functions are the parity function, PARn, and the majority
function, MAJn. Let us define those functions that will be considered in this paper:

• PARn(x) = 1 if and only if the number of bits of x that are 1 is odd.
• MAJn(x) = 1 if and only if at least [§] bits of x are 1.
• EQU^(X) = 1 if and only if exactly k bits of x are 1, where 0 < k < n.
• EQü£alf (x) = 1 if and only if exactly ff] bits of x are 1.

Families of boolean functions are realized by circuit families. By convention, when
we speak of "a" circuit C Computing "a" function ƒ, we implicitly mean a family
C = (Cn)n>o of circuits Computing a family ƒ = (fn)n>o of functions; ie., for
each ra, Cn is a circuit with n input gates and one output gate that outputs the
value fn{x) for each x € {0, l}n.

The size of a circuit is the number of its gates. The circuit complexity (or
size) of a boolean function ƒ is the size of a smallest circuit Computing ƒ. Unless
stated otherwise, we will consider only constant depth, unbounded fanin circuits
with AND, OR, and © (parity) gates. An AND (respectively, OR) gate outputs
1 (respectively, 0) if and only if all its inputs are 1 (respectively, 0), and a © gate
outputs 1 if and only if an odd number of its inputs are 1. Since {AND, OR, ©}
(and, indeed, {AND, ©}) forms a complete basis, we do not need négation gates.
Note that switching from one complete basis to another increases the size of a
circuit at most by a constant.

The depth of a circuit is the length of a longest path from its input gates to
its output gate. Since adjacent levels of gates of the same type can be collapsed
to one level of gates of this type, we view a circuit to consist of alternating levels
of respectively AND, OR, and © gates, where the séquence of these opérations is
arbitrary—the depth of the circuit thus also measures the number of alter nations.
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3. IMMUNITY AND SIMPLICITY RESULTS FOR EXACT COUNTING

In this section, we prove the main resuit of this paper:

Theorem 3.1. There exists some oracle A such that G=P contains a BPP®
immune set

Before turning to the actual proof, some technical details need be discussed.
First, we need a sufficiently strong lower bound on the size of the "exact counting"
function, EQU^alf, when computed by circuits as described in the previous section.
Razborov proved the following exponential lower bound on the size of the majority
function when computed by such circuits; see Smolensky [43] for a gener alizat ion
of this result and a simplification of its proof.

Theorem 3.2. [35] For every k, any depth k circuit with AND, OR, and ©
gates that computes MAJn has size at least 2n(n ).

Using this lower bound for majority, we could (by essentially the same proof
as that of Thm. 3.1) directly establish BPP®pA-immunity of PPA. However, to
obtain the stronger result of Theorem 3.1, we now dérive from the above lower
bound for majority a slightly weaker lower bound for the EQUn

a function, still
being sufficiently strong to establish Theorem 3.1.

Lemma 3.3. For every k, there exists a constant c*k > 0 and an rik £ N such that
for all n > rik, every depth k circuit with AND, OR, and © gates that computes
EQl£alf has size at least n"1 • 2°*nl/(a*+4).

Proof. Fix a sufHciently large n. Note that the majority function can be expressed
as

n

(l)

Each function EQU^, 0 < i < n, is a subfunction of E Q U ^ , since for each
x e {0, l } n , E Q I 4 0 ) = EQUanlf (xOn71-*). Thus, the circuit complexity of EQUJ,

is at most that of EQU2^lf for each i. Now let sizefc(EQU^alf) dénote the size of
a smallest depth k circuit with AND, OR, and ffi gates that computes EQU^alf.
Thus, by équation (1) above, we can realize MAJJ-ZL] with less than n-sizefc(EQu£alf)
gates in depth k + 1. Hence, by Theorem 3.2,

n"1 * sizefe+1(MAJrfl) = n'1

for some suitable constant a^ > 0 that dépends only on k. D

For technical reasons, since we want to apply the above circuit lower bound to
obtain relat ivized BPP®P-immunity, we will now give an equivalent définition of
the class B P P e P in terms of a hierarchy denoted PH0 . As explained later, PH e



IMMUNITY AND SIMPLICITY FOR EXACT COUNTING 165

will only serve as a tooi in the upcoming proof of Theorem 3.1. PH0 generalizes
the polynomial hierarchy by allowing—in addition to existential and universal
quantifiers—the parity quantifier 0 , where (©tu) means "for an odd number of
strings w."

Définition 3.4. Let A be any oracle set.
1. For each k > 0, a set L is in PH®'A if and only if there exists a polynomial

p and a predicate a computable in PA such that for all strings x,

xeL <=> (Qitüi) ( Q 2 I Ü 2 ) •••(Qfeïüfc)[cr(a;)iüi)ïx;2)... ,wk) = 1],

where the Wj range over the length p(\x\) strings, and the quantifiers Q^ are
chosen from {3, V, ©} .

2. Define PHe>A = (Ji>0 PHf 'A.
3. We write PH® for PH®'0 and PH e for PH0 '0.

We stress that PH® is not a new complexity class or hierarchy, since it is just
another name for the class BPP®P, as can be proven by an easy induction from
the results of Toda [45] and Regan and Royer [36] which state that ©PB P P ,
NP B P p e P , and coNPBPpeP each are contained in BPP®P 2. Rather, the purpose
of PH® is merely to simplify the proof of Theorem 3.1. In particular, when using
PH® in place of BPP 0 P , we do not have to deal with the promise nature of BPP
and, more importantly, we can straightforwardly transform circuit lower bounds
for constant depth circuits over the basis {AND,OR, ©} into computations of
PH® oracle Turing machines.

Furst et al. [15] discovered the connection between computations of oracle
Turing machines and circuits that allows one to transform lower bounds on the cir-
cuit complexity of boolean functions such as parity into séparations of relativized
PSPACE from the relativized polynomial hierarchy. (We adopt the convention
that for relativizing PSPAGE, the space bound of the oracle machine be also a
bound on the length of queries it may ask, for without that convention the problem
of separating PSPACEA from PHA becomes trivial, see [15].) Sufficiently strong
(ie-, exponential) lower bounds for parity were then provided by Yao [53] and
Hâstad [20], and were used to separate PSPACE'4 from PH'4. Yao and Hâstad
also proved lower bounds for variations of the Sipser functions [41] in order to
separate all levels of PHA from each other; see also Ko [25].

A technical prerequisite for this transformation to work is that the computation
of any E?' machine can be simulated by a S^_x machine that has the property
that on all computation paths at most one query is asked and this query is asked
at the end of the path; see Furst et al. ([15], Cor. 2.2). An oracle machine having

2 In particular, due to these results, PH® in f act consists of only four levels not known to be the
same: PH® = P, PH® = NPUcoNPU©P, PH® = NPN PUcoNPN P UNP®P UcoNP®pU®PNP ,
and PH® = PH® = BPP®P. Note also that in [45], Toda preferred the op erator- based notation
BP • ©P, which due to the closure of ©P under Turing réductions is equivalent, ie . , BP • ©P =
BPP®P.
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this property is said to be weak. Similarly, the computation of any PH®' machine
can be simulated by a weak PH^!1 machine. The computation of a weak oracle
machine MA on some input x can then be associated with a circuit whose gates
correspond to the nodes of the computation tree of MA(x), and whose inputs
are the values XA(Z) fc>r all strings z G £* that can be queried by MA(x). This
correspondence can straight for war dly be extended to the case of weak PH®'
oracle machines and is formally stated in Proposition 3.5 below. The proof of
Proposition 3.5 is standard—see, e.g., Furst et al ([15], Lem. 2.3) and Ko ([15],
Lem. 2.1) for analogous results—and thus omitted.

Let CTlZ(ii t) dénote the collection of all depth i + 1 circuits with AND, OR,
and © gates, bottom fanin at most £, and fanin at most 2* at all remaining levels.

Proposition 3.5. Let A be any oracle and let M be any weak PH®' oracle ma-
chine running in time p for some polynomial p. Then, for each x ç S * of length n}

there exists a circuit CM,x in CTlZ(i,p(n)) whose inputs are the values of XA(Z)
for all strings z € E* with \z\ < p(n) such that CM,X outputs 1 if and only if MA

accepts x.
In particular, it follows from the bounded depth and fanin of the circuits in

CTH(i,p(n)) that the size of circuit CM,X is bounded by 2SM^ for some polyno-
mial s M depending only on M.

Now we are ready to prove our main resuit.

Proof of Theorem 3.1. For any set 5, define

Ls = {0^ | N > 1 and the number of length N strings in S equals 2N~1}-

Note that for each 5, Ls is in G=PS.
We will construct the set A such that LA G (M*A and LA is PHe'A-immune,

i.e., LA is infinité and no infinité subset of LA is contained in PH®' .
Since every PH®' machine can be transfermed into a weak PH®_j_1 machine, it

suffices to ensure the following two properties in the construction of A:

(a) LA is infinité, and
(b) for each weak PH®'"4 oracle machine M for which L(MA) is an infinité subset

of LA, it holds that MA does not recognize LA-

Fix an enumeration M{\ M^\ . . . of all weak P H e ' ^ oracle machines; we assume
the machines to be clocked so that for each f, the runtime of machine M^ is
bounded by Pi(n) = n% + i for inputs of length n. In particular, if i = (d,j),
the ith machine M^ in this enumeration is the j th weak PHd ^ oracle machine,
Af!1 d y, in the underlying enumeration of weak PH®'̂  oracle machines. Satis-
fying Property (b) above then means to satisfy in the construction the following
requirement Ri for each i > 1 for which MA accepts an infinité subset of LA'

Rn A ^
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We say that requirement Ri is satisfied if L(MfL) n LA / 0 can be enforced at
some point in the construction of A.

As a technical detail that is often used in immunity constructions, we require
our enumeration of machines to satisfy that for infinitely many indices i it holds
that M* accepts the empty set for every oracle X, which can be assumed without
loss of generality. We will need this property in order to establish Property (a).

Now we give the construction of A, which proceeds in stages. In stage i, the
membership in A of all strings up to length ti (for some suitable ti) will be decided,
and the previous initial segment of the oracle is extended to Ai. Strings of length
< ti that are not explicitly added to Ai are never added to the oracle. We define A
to be [Ji>0Ai. Initially, AQ is set to the empty set, and to = 0. Also, throughout
the construction, we keep a list C of unsatisfied requirements. Stage i > 0 is as
follows.

Stage i: Add i to C. Consider all machines M^y,... , M ^ corresponding to
indices £r that at this point are in £. Let k = max{dr | £r = (drjjr) and
1 < r < m} be the maximum level of the PH®'^ hierarchy to which these
machines belong (not taking into account the collapse of PH® = BPP®P

mentioned in Footnote 2). Let a.k+2 > 0 be the constant and 7ifc+2 £ N
be the number that exist for depth k -f 2 circuits according to Lemma 3.3.
Choose N = Ni > max{tï_i,logn^+2} to be the smallest integer such that

ak+2 • 2"/<2fc+8) > N + i +

where the polynomials s^r = SM£T correspond to the machines with indices
in C according to Proposition 3.5.

Distinguish two cases.
Case 1: There exists an r, 1 < r < 771, and an extension E Ç T,N of Ai-i

such that 0^ ^ LE and yet M£ '~lU accepts 0N. Let f be the smallest
such r. Cancel £f from £, set Ai to Ai_1 U E, and set U to Pi(N). Note
that requirement Ri~ has been satisfied at this stage.

Case 2: For all r, 1 < r < m, and for all extensions E Ç Y,N of Ai-i1

QN & LE implies that M^~ l U rejects 0N. In this case, no requirement
can be satisfied at this stage. However, to achieve Property (a), we will
force 0^ into LA- Choose some extension E Ç T,N of Ai-\ such that

(i): the number of length N strings in É equals 2N~1
) and

(ii): for each r, 1 < r < m, M^ l~1 rejects 0^.
We will argue later (in Claim 3.6 below) that such an extension E exists.
Set Ai to Ai-i U f?, and set U to Pi(N).

End of Stage z.
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Note that by the définition of ti and by our choice of N^ the oracle extension
in stage i does not injure the computations considered in earlier stages. Thus,

(Vt > 1) [0Ni e LAi <=> 0N* e LA], and (2)

(Vz, j > 1) [Mf* accepts QN* <=>> M f accepts 0^] . (3)

The correctness of the construction will follow from the following claims.

Claim 3.6. For each i > 1, there exists an oracle extension É satisfying (i) and
(ii) in Case 2 of stage i.

Proof of Claim 3.6. Consider stage i. For each r G {1 , . . . ,m}, let CMir,o
N be

the circuit that, according to Proposition 3.5, corresponds to the computation of
Mir running on input 0^. Fix all inputs to these circuits except those of length
N consistently with A{-\. That is, for each r G {1 , . . . , m}, substitute in C^t QN
the value XAi-i{z) for aU inputs corresponding to strings z with \z\ < ti_i, and
substitute the value 0 for all inputs corresponding to strings z with ii-\ < \z\ < ti
and \z\ ^ N. Call the resulting circuits Q^O^J • • • >Cemto

N- ^y Proposition 3.5,
for each r, CirjQN is in CX1Z(kJp£r(N))1 its 2N inputs correspond to the length N
strings, and for each E Ç E^, it holds that

C£ri0N on input XE(0N) • -XE(1N) outputs 1 <==^ M^'1^ accepts 0N. (4)

Create a new circuit C2N — OK!^=lCMe JON whose 2N inputs correspond to the
length N strings and whose output gate is an OR gâte over the subcircuits
C^i.o^î •.. , Çgmj0Jv. Thus, C2N is a depth k + 2 circuit with AND, OR, and ©
gâtes whose size is bounded by

(Note that m < i.) By our choice of N, we have 2N > n^+2 and

Thus, by Lemma 3.3, circuit C2N cannot compute the function EQU2^lf correctly
for ail inputs. Since by the condition stated in Case 2 and by équation (4) above,
C2N behaves correctly for ail inputs corresponding to any set E of length N
strings with 0^ ^ L^, it follows that C2N must be incorrect on an input cor-
responding to some set É of length N strings with 0^ G L^\ le., C2N on input
XË(QN) ' ' ' XË(1N)

 ou*puts 0. Since C2N is the OR of its subcircuits, each subcir-
cuit outputs 0 on this input. Thus, équation (4) implies that for each r, 1 < r < m,

Mf;-lUÉ rejects 0". Dclaiin 3.6

Claim 3.7. LA is an infinité set.



IMMUNITY AND SIMPLICITY FOR EXACT COUNTING 169

Proof of Claim 3.7. Recall our assumption that the index set of the empty set is
infinité. Since no requirement Ri for which i is an index of the empty set can ever
be satisfied and since, by construction, some requirement is satisfied whenever
Case 1 occurs, this assumption implies that Case 2 must happen infinitely often.
By construction, some string is forced into LA whenever Case 2 occurs. Hence, LA
is an infinité set. This proves the claim and establishes Property (a). Dciaim 3.7

Claim 3.8. For every i > 1, M/4 does not accept an infinité subset of LA-

Proof of Claim 3.8. For each i, requirement Ri either is satisfied at some stage of
the construction, or it is never satisfied.

If Ri is satisfied at stage j , then Case 1 happens in stage j , and so 0 ^ €
) HLAJ. By équation (2) and équation (3), we have 0Nj G L(MA) O LA, SO

)%LA.
Now suppose that requirement Ri is never satisfied. We will argue that L(MA)n

LA then is a finite set. By construction, since we added to A only strings of lengths
TVj, where j > 1 and Nj is the integer chosen in stage j , LA contains only strings
of the form 0 ^ for some j > 1. Note that i is added to C in stage i and will stay
there forever. For each j > i, if QN* G LA (and thus 0Nj G LAj by équation (2)),
then Case 2 must have occurred in stage j . Consequently, Mi

 3 (and thus M f- by
équation (3)) rejects 0 ^ for every j > i. It follows that for each z, L(Mf-)C\LA has
at most i — l éléments, proving the claim and establishing Property (b). •claim 3.8

Hence, LA is a PH®'^-immune set in ÖPA . Since BPP®P = PH e holds true in
the présence of any fixed oracle, we have that LA is BPP® -immune, completing
the proof of Theorem 3.1. D

In particular, Theorem 3.1 immediately gives the following corollary. All strong
séparations in Corollary 3.9 are new, except the PHA-immunity of PSPACEA (and
of P p p J \ since (\/B) [®PB Ç Ppp*]), which is also stated (or is implicit) in [11,26],
and except the BPPc-immunity of PPC (and its superclasses) proven in [4]. We
also mention that Bovet et al [10] noted that P P 0 strongly séparâtes from Y^D

for some oracle D.

Corollary 3.9. Let C\ be any class chosen among &P ; PP ; p<3=p
? P p p

? and
PSPACE; and let C2 be any class chosen among BPP 0 P , BPP ; PH, and ©P.
There exists some oracle A such that Cj4 contains a C£-immune set.

What about the converse direction? Does BPP0 P , or even some smaller class,
contain a GHP-immune set, or even a PP-immune set, relative to some oracle?
Note that Torân [47,48] provided a simple séparation of this kind: There exists an
oracle A such that NP £ QPA; see [5] for a simplification of the proof of Torân's
resuit. We strengthen this resuit by showing that the séparation is witnessed by a
G=P -immune set in NP for another oracle set B. Indeed, the only property of
Q=P needed to obtain a relativized séparation from NP with immunity is that G=P
is closed under finite unions,3 and this closure property relativizes.

3It is known that <W is closed even under polynomial-time "positive" Turing réductions;
see [27] for the définition. The proof of this closure property of G=P is implicit in the methods
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Lemma 3.10. For every oracle A, QPA is closed under finite unions. That is,
given any finite collection 7Vi,JV2,... ,Nk of NPOTMs, there exists an NPOTM
N such that for each input x, NA accepts x (in the sense of GP) if and only if
for some j , NA accepts x (in the sense ofQtP); Le., for each x G £*,

) ^==> (3j : 1 < j < k) [Q,CCNA(X) = r e j ^ (x)].

Theorem 3.11. There exists some oracle B such that NPB contains a G=PB-
immune set

Proof. The witness set here will be L#, where for any set 5,

Ls = {0n | n > 1 and there exists a string of length n in S}

is a set in NP5 . Fix an enumeration N['\ N^\ . . . of all NPOTMs, again having
the property that the index set of the empty set is infinité regardless of the oracle.
Throughout this proof, "acceptance" means "&P acceptance" as in Lemma 3.10.
As in the proof of Theorem 3.1, we try to satisfy for each i > 1 for which N?
accepts an infinité subset of LB, the requirement Ri : L(Nf) n LB ^ 0.

Again, the stage-wise construction of B — Ui>o ^ ^s initialized by setting BQ to
the empty set and the restraint function to to 0, and we keep a list C of currently
unsatisfied requirements. Stage i > 0 is as follows.

Stage i: Add i to C Consider all machines Ng\... ,iVJ' corresponding to
indices tr that at this point are in C Let N^ be the machine that exists for
Nfi' , . . . , iV^ by Lemma 3.10; Le., for every oracle Z and for each input x,

N£ accepts x <̂ => (3r : 1 < r < m) [Nfr accepts x\. (5)

Let pc be the polynomial bounding the runtime of N^ . Choose n = rii
> U^i to be the smallest integer such that 2n > 2pc(n). Choose an oracle
extension E Ç £ n of B^x such that

E = 0 ^^ N^~lUE accepts 0n. (6)

It has been shown in [5] that an oracle extension E satisfying équation (6)
exists if n is chosen as above. Set Bi to B^_i U E, and set U to pc(n). If the
extension E chosen is the empty set, then by équation (6) and équation (5),
there exists an r, 1 < r < m, such that N£

 %~1 accepts 0n. Let f be the
smallest such r, and cancel £? from £.

End of Stage i.

of [19], as has been noted in [37] and, independently, in [7]. We refer to those sources for a proof
of Lemma 3.10.
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Note that if we have chosen E = 0 in stage z, then ön $ LE and requirement
Rt- has been satisfied. On the other hand, if E -^ 0 then, by équation (6) and
équation (5), we have ensured that (i) 0n G L#, and (ii) for each r, 1 < r < m,
N^~x rejects 0n. Now, an argument analogous to Claims 3.7 and 3.8 in the
proof of Theorem 3.1 shows that LB is a G=PB-iminune set in NPB , completing
the proof. O

Similarly, there exists some oracle C such that NPC has (and thus both PHC

and PP C have) a ©Pc-immune set—this result was obtained by Bovet et al [10],
based on their sufficient condition for proving relativized strong séparations and
on Torân's simple séparation of NP and ©P [48],

Since the inclusions NP Ç PP and coNP Ç GP hold relative to every fixed
oracle, Theorem 3.11 immediately gives the following corollaries.

Corollary 3.12. There exists some oracle B such that PP B contains a
B -immune set.

Recall from the introduction that a set is said to be simple for a complexity
class C (C-simple, for short) if it belongs to C and its complement is C-immune.
Homer and Maass [23] proved the existence of a recursively enumerable set A such
that NP"4 contains a simple set. Balcâzar [2] improved this result by making A
recursive via a novel and very elegant trick: his construction starts with a Juli
oracle instead of an empty oracle and then proceeds by deleting strings from it.
Balcâzar's result in turn was generalized by Torenvliet and van Emde Boas [49,50]
to the second level and by Bruschi [11] to all levels of the polynomial hierarchy.
Balcâzar and Russo [4] also proved, relative to some oracle, the existence of a simple
set in the one-sided error probabilistic class R, which is contained in NP n BPP.
Our result below that G=P has a simple set in some relativization (all our oracles
are recursive) extends those previous simplicity results that each are restricted to
classes contained in the polynomial hierarchy. Since of the classes we consider (PH,
PP, ©P, and &P), all classes except G=P are known to be closed under complement,
GP is the only class for which it makes sense to ask about the existence of simple
sets.

Corollary 3.13. There exists some oracle B such that G=PS contains a simple
set
Proof. Let B be the oracle constructed in the proof of Theorem 3.11, and let LB
be the witness set of this proof. Consider the complement LB of LB in E*. Since
LB £ NPB, LB is in coNPB and thus in G=PB. It has been shown in the proof of
Theorem 3.11 that LB> the complement of LB, is an infinité set having no infinité
subset in GPB . That is, Z ^ is <3PB-simple. D

4. IMMUNITY RESULTS FOR ©P AND THE P P P H HIERARCHY

The last section in particular showed that, in suitable relativizations, G=P (and
thus PP) is immune to both PH and ©P (Cor. 3.9), and NP is (and thus both
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PH and PP are) immune to G=P (Thm. 3.11 and Cor. 3.12) and to ©P [10]. In
this section, we will prove the existence of oracles relative to which P N P (and
thus PH) is immune to PP, and relative to which ©P is immune to PPP H . The
latter result strengthens the previously known relativized strong séparation of ©P
from PH [26] (cf. [11]), and it also implies the new relativized strong séparation
of ©P from PP. Noticing that G=P Ç PP holds in all relativizations, we thus have
settled all possible relativized strong séparation questions involving any pair of
classes chosen among PH, PP, ©P, and G=P, as claimed earlier.

We show these remaining results by improving known relativized simple
séparations to strong ones. Torân's simple séparation (EL4) [©PA %. PPA] ([47,48],
see also [5]) was strengthened by Green [18] to (3B) [©PB % P P P H B ] ,

Since the analog of Lemma 3.10 as well holds for PP,4 the following theorem can
be shown by the technique used to prove Theorem 3.11. First, we state the analog
of Lemma 3.10 in terms of weak p p P H oracle machines. The proof of this lemma
simply follows from the relativized version of the proof that PP is closed under
finite unions, which is a.special case of its closure under truth-table réductions [14].

Lemma 4.1. Lei A be any oracle set. Given any finite collection N\, JV2,... , N&
of weak PP P H oracle machines, there exists a weak PPP H oracle machine N such
that for each input x, NA accepts x if and only if for some j , 1 < j < k, N^
accepts x.

Theorem 4.2. There exists some oracle D such that ©PD contains (and thus
both PppD and PSPACE^ contain) a P P P R D -immune set

Proof, Since the proof is very similar to that of Theorem 3.11, we only mention
the différences. The witness set here will be Lp, where for any set 5,

Ls — {0n I n > 1 and there exists an odd number of length n strings in 5}

is a set in ©P5 . Now, JVf \ iV̂  , • • - is an enumeration of all weak PPP H oracle
machines, and "acceptance" refers to the acceptance behavior of such machines.
In stage i of the construction, we again consider all machines iv£\ . . . , N^ cor-
responding to indices £r that at this point are in the list C of currently unsatisfied
requirements, and we let N^ be the machine (with polynomial time bound pc)

that exists for them by Lemma 4.1. Assume N^ is a PPSrf machine for some d.
Let Cd be the constant that exists for such machines by a result of Green ([18],
Thm. 5). Then, as shown in ([18], Thm. 7), choosing n = rti > U-i to be the
smallest integer such that

2pc(n) < mm{(2n)^d\cd2
n^^d2 - 1}

implies that there exists an extension E Ç S n of thç oracle as constructed so far,
Di-u such that 0n G LE if and only if N^-lUE rejects 0n. D

4In fact, PP is closed under polynomial-time truth-table réductions [14], and this proof
relativizes.
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Corollary 4.3. There exists some oracle D such that ®PD contains a set that is
immune to both PP and PH .

By essentially the same arguments, also the very recent result of Berg and Ulf-
berg [9] that there is an oracle relative to which the levels of the PP P H

= Ud>o PP hierarchy separate can be strengthened to level-wise strong sép-
arations of this hierarchy Note that this result generalizes Beigel's [6] result that
(BA) [FNpA % PPA]. The proof of Theorem 4.4 is omitted, since it is very similar
to the previous proofs, the only différence being that it is based on the construc-
tion given in [9]. The interested reader is referred to [38] for a complete proof of
this result.

Theorem 4.4. For any d>l, there exists some oracle F such that PSS' contains
a PP d~1-immune set. In particular, P N P (and thus PH ) has a WF -immune
set.

5. CONCLUSIONS AND OPEN PROBLEMS

In this paper, we have shown that all possible relativized séparations involving
the polynomial hierarchy and the counting classes &P, PP, and 0 P can be made
strong. In particular, we have extended to these counting classes previously known
strong séparations of Ko [26] and Bruschi [11], and we have strengthened to strong
séparations previously known simple séparations of Torân [47,48], Green [18], and
Berg and Ulfberg [9]. We have also shown that &P contains a simple set relative to
some oracle, complementing the corresponding results of Balcâzar and Russo [2,4]
for NP and R, and of Torenvliet and van Emde Boas [49,50] and Bruschi [11] for
S^, k > 1. However, many questions remain open. The most obvious question
is whether these immunity results can be strengthened to bi-immunity or even to
balanced immunity results; see, e.g., Hemaspaandra et al [22] and Muller [31].

Regarding the existence of simple sets in G=PB, note that our construction of B
can easily be interleaved with other immunity oracle constructions to show results
such as: There exists an oracle A such that Q=PA contains a simple set and another
set that is P^-immune; see Balcâzar [2] for the analogous result for NP. Torenvliet
and van Emde Boas [49,50] have even constructed an oracle relative to which NP
contains a language that simultaneously is simple and P-immune. Can this also
be shown to hold for G=P?

Our main result that there exists some A such that G3?A contains a
BPP®P -immune set is optimal in the sense that for all oracles B, G=PB is con-
tained in PPB and thus in p p e p B , so G=P cannot have PP-immune or P P e P -
immune sets in any relativization. However, it is also known that BPP® Ç
Almost[©P] [36,46], where for any relativized class C, Almost[C] dénotes the class
of languages L such that for almost all oracle sets X, L is in Cx [32]. It is an open
problem whether BPP e P = Almost [©P]; see Regan et al [36]. So it is possible
that Almost [©P] is a strictly larger class than BPP e P . It is unlikely that GP is
contained in Almost [©P]. Is there an oracle relative to which G=P is even immune
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to Almost[®P]? We conjecture that this is the case. Relatedly, can any of the
immunity results of this paper be shown to hold with probability 1 relative to a
random oracle?

I am very grateful to Lane Hemaspaandra for his constant and warm encouragement, for
many incisive comment s and important suggestions that have much improved this paper,
and for careful proofreading. Interesting and helpful discussions with Gerd Wechsung
and Eric Allender are also acknowledged. I thank Christer Berg and Staffan Ulfberg for
providing me with an advance copy of their paper [9].
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