
INFORMATIQUE THÉORIQUE ET APPLICATIONS

L. BERNÁTSKY

Z. ÉSIK
Semantics of flowchart programs and the
free Conway theories
Informatique théorique et applications, tome 32, no 1-3 (1998),
p. 35-78
<http://www.numdam.org/item?id=ITA_1998__32_1-3_35_0>

© AFCET, 1998, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1998__32_1-3_35_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 32, n° 1-2-3, 1998, pp. 35-78)

SEMANTICS OF FLOWCHART PROGRAMS
AND THE FREE CONWAY THEORIES (*)

by L. BERNATSKY (*) and Z. ÉSIK (2)

Communicated by W. BRAUER

Abstract. - Several useful identities involving the fixed point or itération opération are
conséquences ofjust the Conway theory axioms. In this paper we give several characterizations of
thefree Conway théories including a concrete description based on "aperiodîc" homomorphisms of
flowehart schemes. It follows from this concrete description that the équations that hold in Conway
théories are exactly the valid "group-free" équations of itération théories, moreover, the equational
theory of Conway théories is PSPACE-complete. © Elsevier, Paris

Résumé. - Plusieurs identités mettant en jeu les opérateurs de point fixe ou d'itération sont
conséquences des seuls axiomes de la théorie de Conway. Nous donnons dans ce papier plusieurs
caractérisations des théories libres de Conway, dont une description concrète basée sur des
morphismes "apériodiques" de systèmes d'organigrammes. Cette description concrète entraîne
que les équations valides dans les théories de Conway sont exactement les équations valides "sans-
groupes" des théories d'itération, et de plus, que la théorie équationnelle des théories de Conway
est YSPACE-complète. © Elsevier, Paris

1. INTRODUCTION

The algebraic study of flowehart schemes and flowehart algorithms was
initiated in [13] and further developed in [3, 20, 7], to mention only a
few références. Sehemes may be defined as locally ordered, vertex labeled,
finite digraphs with distinguished begin and exit nodes, each labeled by a
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3 6 L. BERNÂTSKY, Z. ÊSIK

non-negative integer, so that each scheme has source n and target p for
some non-negative integers n,p. (We use N to dénote the set of nonnegative
integers.) The other nodes are consistently labeled by letters in a ranked
or doubly ranked alphabet, or signature. Schemes over a signature S are
equipped with several constants and the opérations of sequential composition,
pairing or separated sum, which may be viewed as some sort of parallel
composition, and a looping opération called itération. (The paper [7] uses
feedback instead of itération.) In [3], schemes over a signature E have been
characterized as the free algebra generated by S in a variety of N x N-
sorted algebras axiomatized by a finite number of équation schemes. See
also [20, 7] for refinements of this resuit.

Besides being N x N-sorted algebras, flowchart schemes over a signature
E may be viewed as a small category whose objects are the integers N and
whose morphisms n —> p are the E-schemes with source n and target p,
Unless E is trivial, coproducts do not exist in this category, so that S-schemes
do not form an algebraic theory in the sensé of Lawvere [18]. Nevertheless,
schemes are commonly interpreted in such théories which are enriched by a
fixed point opération modeling itération. For example, the théories Seq^ of
sequacious functions [11] on a set A are used to model the stepwise behavior
of flowchart algorithms, while the théories Pfn^ of partial functions on A
serve as semantic models for input-output behavior. Another common class
of interprétations of schemes is as continuous functions over cpo's. A scheme
may be regarded as the graphical représentation of a recursive System of
fixed point équations. When A is a cpo with a bottom element, and when
each letter in E is interpreted as a continuous function on A of appropriate
arity, the semantics of a scheme n —> p is a continuous function Ap —» An,
i.e., a morphism n —• p in the theory Th^ of continuous functions over
A. This function is obtained as the least solution of the recursive System of
équations corresponding to the scheme.

The théories Seq^, Pfn^ and Th^ are ail examples of "itération théories"
originally defined in [1, 2] and [15] and studied in [5]. It is shown in [5] that
the variety of itération théories is generated by the théories Seq^, where A is
a set, or by the théories Th^ , where A is a cpo with a bottom element. (The
théories of the form Pfn^ generate the subvariety consisting of the itération
théories with a unique morphism 1 —• 0.) Thus two schemes are strongly
equivalent, i.e. equivalent under ail interprétations in the théories Seq^
(or in the théories Th^) if f they are equivalent under ail interprétations
in itération théories. For this reason itération théories may be called the
"standard" interprétations for flowchart schemes.
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FREE CONWAY THEORIES 37

It is shown in [5] that the problem of deciding whether an équation
holds in all itération théories can be solved in polynomial time, i.e., the
equational theory of itération théories belongs toP. It follows that the strong
équivalence problem of flowchart schemes is also in P.

In this paper we obtain corresponding results about "nonstandard"
interprétations of flowchart schemes. By a nonstandard interprétation we
mean a theory enriched with an itération opération satisfying all équations
true of flowcharts. One of the main results, Theorem 3.1 shows that these
théories are exactly the Conway théories, axiomatized by a small set of
équations including the well-known composition identity (11) which implies
Elgot's fixed point équation (12). See [5]. Thus the least congruence on
S-schemes whose quotient is a theory gives the free Conway theory on S.
The second main resuit, Theorem 6.1, provides an explicit description of the
free Conway théories. The description uses aperiodic morphisms of flowchart
schemes, a concept borrowed from automata theory. See [19]. It follows that
the équations that hold in Conway théories are exactly the valid "group-
free" équations of itération théories. Finally, we use the explicit description
to prove that the Conway-equivalence problem of flowchart schemes is
PSPACE-complete, cf. Theorem 6.2. It then follows that the equational
theory of Conway théories is also PSPACE-complete. Theorems 3.1 and 6.1
answer open problems raised in [3] and [5].

Aside from serving as nonstandard interprétation domains for flowchart
schemes, our interest in Conway théories stems from several mathematical
f acts. First, itération théories are axiomatized by the Conway theory axioms
together with a complicated équation scheme, the commutative identity [15],
or the group-identities [14]. (This latter result may be seen as a generalization
of Krob's result [17] confirming a conjecture of Conway [9] on the
axiomatization of the regular identities.) Comparing the structure of the
free Conway théories with that of the free itération theory, we obtain a
clear picture of that part of the equational theory of itération théories which
is captured by the commutative identity, or the group identities. Also, our
work explains the role of the commutative identity: it séparâtes nonstandard
models from the standard ones by équations. Second, Conway théories are
interesting in themselves.

• In a matrix theory [12, 5] equipped with a unary opération a ^ a * , the
Conway axioms are the two well-known sum and product identities

(a + 6)* = (a*6)*a* (1)
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3 8 L. BERNÂTSKY, Z. ÉSIK

and
(ab)* =a(6a)*6 + l. (2)

Conway's book [9] contains many interesting identities which are
conséquences of just the Conway axioms. See also [17, 16].

• It is shown in [5], that a genera! Kleene-type theorem is a logical
conséquence of just the Conway axioms.

• It was proved in [4] that the soundness, and relative completeness of
the Floyd-Hoare calculus in expressive models, is a conséquence of the
Conway theory axioms. Thus, even under nonstandard interprétations,
one can reason about the correctness of flowchart programs using the
Floyd-Hoare rules.

1.1. Basic notions and notations

The set of positive integers is denoted [o;]. Recall that N is the set of
nonnegative integers. För n E N, [n] dénotes the set {1,2 , . . , , n}, so that
[0] is just another name for the empty set 0. A ranked set or signature is a
set E of symbols each having a specified rank in N. The collection of those
symbols having rank r is denoted E r . For a set A, A* is the set of all finite
words over A, including the empty word e. For a binary relation ƒ Ç Ax B,

dom(ƒ) :={aeA \ 36 E B (a, b) E ƒ}

and
r n g ( / ) : = { 6 G S | 3a e A (a,b) e f}

are the domain and the range of ƒ, respectively. The inverse of the relation
ƒ is denoted 7"1 . When ƒ is a partial fonction A —+ B, its kernel kery is
the équivalence relation on dom(/) defined by

x ker/ y & f(x) = f (y),

for ail x,y E dom(/). Suppose that 5 is a set and p is an équivalence
relation on S. Then S/p is the set of all équivalence classes of p and, for
an element s E 5, s/p is the équivalence class of s. The composite of two
relations a Ç A x B and j3 Ç B x C is denoted a o (3, or just af3.

2. FROM CATEGORIES TO ITERATION THEORIES

A (small) category C consists of a set Ob(C) of objects, and for each pair
a, b of objects, a set C(a, b) of morphisms or arrows with source a and target

Informatique théorique et Applications/Theoretical Informaties and Applications



FREE CONWAY THEORIES 39

b. We write ƒ : a —• b to indicate that ƒ is a morphism having source a and
target b. A category is equipped with an opération of composition

(f, 9 ) ^ f 'Sr

for all triples a, 6, c of objects in C. There is a distinguished morphism
l a : a..—• a for each object a. The composition opération is required to be
associative, when defined, and the morphisms la are neutral éléments with
respect to composition, Le.,

l a ' ƒ = ƒ - ƒ•!&,

for all objects ayb and morphisms f : a —> b.
An N-category is a category whose objects are the nonnegative integers.

An algebraic theory, or theory for short, is an N-category T such that for
each n > 0, there are n distinguished morphisms

in : 1 —• n

with the following coproduct property. For any p > 0 and each family
f \ , . . . , fn of morphisms 1 —> p there is a unique morphism ƒ : n —> p
such that

in' ƒ = ƒ*,

for ail i G [n]. The morphism ƒ determined by the family fi, i G [n], is
called the (source) tupling of the family, and is denoted

(II, ,fn).

Lastly, the distinguished morphism l i : 1 —> 1 is the identity la, i.e.,
Il = 11. It follows that

and
ƒ=(ƒ> , / : 1 - » P

hold in every theory.
The source tupling of the empty family of morphisms 1 —> p yields a

unique morphism 0^ : 0 —> p, for ail p > 0. Morphisms formed from the

vol. 32, n° 1-2-3, 1998



4 0 L. BERNÂTSKY, Z. ÉSIK

distinguished morphisms in with source tupling are called base morphisms.
A theory T is called nontrivial if the two base morphisms I2 and 22 are
different in T. If T is a nontrivial theory, the base morphisms form a
subtheory in T isomorphic to the theory Tot of all fonctions [n] —> [p]. In
Tot, composition is function composition, the identity morphism ln : n —> n
is the identity function id[n] : [n] —> [n], and for each i G [n], n > 0, the
distinguished morphism i„ : 1 —> n is the constant function with value i.
We call a base morphism p : n —> p surjective/injective if the corresponding
function p : [n] —> [p] is surjective/injective.

In every theory, the tupling opération can be generalized to morphisms
having a common target but arbitrary source by defining

\ J ) • • • ) ƒ / •— V / l Î • • • j J n 1 , . . . , ƒ ! , • . . , 7 n f c / )

for all k > 0 and morphisms /W : n% —»• p, i G [&], where /-^ dénotes
the jth component j n . • /W of /W. From now on, by tupling we mean
this generalized tupling opération. In the special case k — 2 we call this
opération pairing.

Suppose T and T' are théories. A theory morphism tp : T -^ Tf is a
function mapping each morphism t : n —» p in T to a morphism £(/? : n —> p
in T', n,p > 0. Moreover, ĉ? preserves the composition opération and the
distinguished morphisms in9 n > 0, % G [n]. It follows that v? preserves
the tupling opération and the identity morphisms ln. Thus any theory
morphism détermines a functor which preserves coproducts. Théories and
theory morphisms form a category TH. Note that Tot is initial object in
TH, i.e., for any theory T, there exists a unique theory morphism Tot —> T.

Algebraic théories can be considered as N x N-sorted algebras, where the
éléments of sort (n,p) are all morphisms ƒ : n —> p. As an algebra, a theory
has opérations of tupling and composition together with constants in, for all
n > 0, i G [n]. Each theory satisfies the following theory identities:

f-(9-h) = (f-g)-h (3)

! » • ƒ = ƒ (4)

ƒ • l p = ƒ (5)

in-(fl,...Jn) = fi (6)
< l n - / , - . . , n „ - / > = / (7)

11 = 11, (8)

Informatique théorique et Applications/Theoretical Informaties and Applications
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for all ƒ : n —> p, g : p —> q, h : q —> r, and /^ : 1 —> p, for j G [n]. Here we
regard ln as an abbreviation for { l r a , . . . , n n ) . The empty tuple of éléments
with target p is denoted 0p. When n = 0, équation (7) takes the form

for all ƒ : 0 —»• p. These équations provide an axiomatization of the class
of all algebraic théories.

In any theory T, the separated sum opération is defined by

f®9~ (f ' «p,s> ff ' V s ) : n + m -^ P + 9»

for all morphisms ƒ : n —> p and ^ : ra —• g, where

and

A preiteration theory T is a theory equipped with an itération or dagger
opération, mapping each morphism ƒ : n —> n + p to a morphism ƒ t : n —> p.
Preiteration théories are the objects of the category TH^\ The morphisms
of TH^, called preiteration theory morphism, are those theory morphisms
which preserve the dagger opération.

A Conway theory is a preiteration theory which satisfies the following
Conway identities:

PARAMETER IDENTITY

( / • ( I n 8 ff))^^ -ff, (9)

for all ƒ : n —* n + p and g : p —> g.

DOUBLE DAGGER IDENTITY

for all ƒ : n —> 2n + p.

COMPOSITION IDENTITY

(ƒ • <2,ou e ip))t = ƒ . <(fl. {/,om e i p » t , ip), ( i l )

for all ƒ : n —> m + p and # : m —> n + p.

vol. 32, n° 1-2-3, 1998



4 2 L. BERNÂTSKY, Z. ÉSIK

The term "Conway identities" comes from the form these identities take in
matrix théories over semirings equipped with a * opération, see [5]. For
example, the double dagger identity corresponds to the équation (1), and
the composition identity to the équation (2). Note that every Conway theory
satisfies Elgot's fixed point identity

/ t = / - { / t , i p ) , (12)

for ail ƒ : n —> n -f p. In * -semirings the fixed point identity takes the form

a* = aa* + 1.

A Conway theory T is called an itération theory if it satisfies the following
complicated équation scheme, the commutative identity:

<lm • P * ƒ • (pi 0 lp), • - •, mm - p • ƒ • (pm 0 lp))* = p • (ƒ • (p © lp))1,

where ƒ : n —> m + p, p : m. —*• n is a surjective base morphism and
Pi ? • • •, Pm : m —̂  m are base morphisms with p% - p — p^ % £ [m].

As many-sorted algebras, both Conway théories and itération théories form
an equational class, so that ail free Conway and itération théories exist. A
concrete description of the free itération théories has been known for a long
time, see [5], or Section 5.

Although Conway théories have a much simpler axiomatization than
itération théories, no concrete description of the free Conway théories was
known until now. Another interesting aspect is that in spite of the complicated
axiomatization of itération théories, it is decidable in polynomial time if an
équation holds in ail itération théories, Le., the equational theory of itération
théories is in P, In contrast of this fact, we prove at the end of the paper that
the equational theory of Conway théories is PSPACE-complete. Thus, it is
very unlikely to find an efficient (polynomial-time) algorithm which would
décide if an équation is a logical conséquence of the Conway theory axioms.

3. FLOWCHART SCHEMES

In order to help the reader understand the rather uninformative (but
technically useful) définition of a flowchart scheme, we begin with an
informative définition. Suppose E is a signature. A flowchart scheme over
E, or S-scheme for short, is a labeled finite directed graph S. There are
three types of nodes of S: input or begin nodes, output or exit nodes, and

Informatique théorique et Applications/Theoretical Informaties and Applications



FREE CONWAY THEORIES 43

internai nodes or states. A S-scheme S having n input nodes and p output
nodes is called a scheme from n to p, written S : n —» p. The zth input
node of S is labeled by ïn% and the jtb output node is labeled by outj,
for each i G [n] and j G [p]. The states are labeled by symbols a in E.
Input nodes have in-degree 0 and out-degree at most 1. Output nodes have
out-degree 0. A state s with label a G S m has out-degree at most ra and
each edge starting from s is labeled by some integer i G [m], such that
different edges have different labels. There is no restriction on the in-degree
of states and output nodes.

A S-scheme S can also be considered as a labeled deterministic finite-state
automaton with input alphabet [o;]. In the following "official" définition this
automata-theoretic approach is used.

DÉFINITION 3.1: Suppose E is a signature, A S-scheme is a 6-tuple
S — (5 , A,a., 5,n,j9), where

5 is the finite set of states, S n [u] = 0;

À : S —> E is the labeling function;

a : [n] —» S U \p] is the partial start function;

6 : S x [eu] —• S U \p] is the partial transition function satisfying

dom(<$) Ç {(s,i) G .S x [u] \ 3n t < n A A(s) G S n } r

n G N Z5 the source of S;

pi G N is the target of S.

Thus, in the official définition, the input and output nodes are not
considered to belong to the scheme. Suppose that i G [n\, If a(i) = s G S,
then, in the graphical représentation, the ith input node is connected by an
edge to the internai node s. When a(i) = j G [p], the ith input node is
connected to the jth output node. If a(i) is not defined, then the ith input
node has no outgoing edge. Intuitively, this corresponds to the case that,
when the flowchart scheme is entered at the zth input node, the computation
represented by the scheme diverges. The transition function is interpreted
in the same way. If 6($,i) = s', where s,s' G S and i G [o;], then, in
the graphical représentation, the out-edge of s labeled by i is connected
to s\ and to the jth output node if S(syi) — j . If 8{s.Ji) is not defined,
then 5 has no out-edge labeled by i. In [3], partially defined start and
transition fonctions are avoided by adding to each scheme a bottom vertex
representing divergence.

vol 32, n° 1-2-3, 1998



4 4 L. BERNÂTSKY, Z. ÉSIK

We let S,Sf,T,G and 7i dénote schemes with underlying state sets
5, S", F, G and H, respectively. When the scheme is S (or <S', respectively)
we dénote by À, a and 6 (À', c/ and 6\ respectively) the labeling, start and
transition functions of S (<S', respectively). For other schemes T, the default
notations are \j=, ap and 6j^. Due to these conventions, in most cases it
will be enough to specify the source and target of a scheme S by writing
S : n —> p. Even when a full spécification of S is required, we prefer writing
S = (5, À, a, S) : n —• p instead of S = (5, À, a, 5, n,p).

We extend 8 to a partial function (S U [n]) x [a;]* —> S U [p] by defining

\ _ ƒ-, \ _ ƒ 5 if u is the empty word e,
^ ' ^ | ô(6(St)yv) if u = tv for some £ E [a;] and v G [a;]

f 5(a(i),u) if <*{i) E S,
6(i,u) := < a(i) if a(i) G [p] and n = e,

[ undefined otherwise,

for alH G [n], 5 G 5 and n G [w]*. The partial functions 5W : SU[n] -> 5u[p]
are defined by

for ail s G 5 U [n] and u G [a;]*. Viewing 6U as a binary relation from
S U [n] to 5 U [p], we define

for ail C Ç 5 U [n] and D Ç 5 u [p]. Note that 5U[C, i?] is a partial function
C -+ D. The collection of ail nonempty partial functions ƒ : (7 —> D induced
by the words in .[a;]* is denoted A[C;JD], i.e.,

A[C,D} = {6U[C,D] | neM*}\{0}.

It is not hard to see that the graph-theoretic and automata-theoretic
définitions of a E-scheme are equivalent. The only reason we have chosen the
automata-theoretic définition is because we believe it makes proofs shorter.
Nevertheless, many of the proofs become much easier to understand once
a picture has drawn.

Informatique théorique et Applications/Theoretical Informaties and Applications
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DÉFINITION 3.2: Suppose S : n —» p is a scheme. We say S is a

partial base scheme ifit has no states, Le., if S — 0,

base scheme ifit is a partial base scheme and a is a total function [n] —> [p].

Note that each (partial) base scheme S : n —» p is totally determined by
(and therefore can be identified with) the (partial) function a : [n] —» [p]. We
will frequently use the following (partial) base schemes:

For ail n ,p , g G N ,

In : n —• n is the base scheme determined by the identity function
id[n] : [n] - • [n], see Figure 1,

0n : 0

Figure 1. - The base scheme l n : n —• n.

n is the unique base scheme 0 —> n, see Figure 2,

Figure 2. - The base scheme 0n : 0 —> n.

1 —> n is the base scheme determined by the map
see Figure 3,

i, for all i G [n],

t)
/-—\

Figure 3. - The base scheme in : 1 —> n.

vol. 32, n° 1-2-3, 1998



46 L. BERNÂTSKY, Z. ÉSIK

KP,q '- p -^ p+qi§ the base scheme determined by the inclusion \p] —• [p+g],
x 1—> x, see Figure 4,

Figure 4. - The base scheme

g —> p + g is the base scheme determined by the translated inclusion
[q] -^ \p + q], x *-> p -\- x, see Figure 5,

-L : 1

Figure 5. - The base scheme \p>q

0 is the unique partial base scheme 1

q -+ p + g.

-> 0, see Figure 6.

Figure 6. - The partial base scheme J_: 1 0.

Two E-schemes S and <S' are called isomorphic if they are isomorphic
as labeled directed graphs. We identify isomorphic schemes, so that S — Sf

means S and S' are isomorphic. Due to this convention, when needed, we
may assume without loss of generality that any two schemes S and <S; have
disjoint sets of states.

3.1. The category of S-schemes

E-schemes n —> p serve as morphisms n —> p in an N-category, which
we dénote by SSch. In SSch, the identity morphism ln : n —> n is the
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base scheme ln : n —> n. Foliowing [13] we define four opérations on the
morphisms of ESch.

DÉFINITION 3.3 Composition: Suppose S : n —» p and S1 : p -* q are
E-schemes with S n S' = 0. The E-scheme S * S' : n -> q has states S U S"
arcd satisfies

a(i) ifa(i) e S,

undefined otherwise,

{ 6(s, t) ifs G S and S(s, t) G 5,

«'(«(s, t)) ifs G 5 a^d 5(5, t) G [p],
undefined otherwise,

for ail i G [n], s E S U S' and t G [wj.
The graph représentation of S • 5 ' can be constructed from the graph

représentations of S : n —> p and «S' : p —> g in the following way: first
delete the output nodes of S and the input nodes of S' together with all
adjacent edges. Then take the disjoint union of the two graphs, and lastly,
add a new edge s —> s} whenever there was an edge s —> outj in S and
an edge irij—>s/ in Sf

9 for some j G [p\. See Figure !..

DÉFINITION 3.4 Pairing: Suppose S : n —> p and S' : m —» p are S-
schemes with S n Sf = 0. The E-scheme :{S,Sf) : n + m —* p has states
S U S1 and satisfies

(s) ifs G 5,

*) ifs G 5,

for ail i £ [n + m], s e S U S" an<i t G [CJ].

The graph représentation of (5,5 ') can be constructed from the graphs
of S : n —+ p and <S' : m —> p as follows: first change the label of the ith
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48 L. BERNÂTSKY, Z. ÉSIK

Figure 7. - Composition.

input node of <S' from in% to inn+i, for each ie [m]. Then take the disjoint
union of the graph of S and the modified graph of <S', and lastly, identify
the corresponding output nodes. See Figure 8. As the pairing opération is

Figure 8. - Pairing.

associative it can be extended to a many-argument tupling opération in a
natural way. Note that the empty tuple of S-schemes with target p is the
base scheme 0p : 0 —• p by définition.

Informatique théorique et Applications/Theoretical Informaties and Applications
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q areDÉFINITION 3.5 Separated sum: Suppose S : n —» p and <S' : m
Y,~schemes. The separated sum of S and Sf is the Yi-scheme

S © S' := (S • KPiQ, Sf • AM) : n + m -> p + 9.

One can construct the graph of S © <S' in two steps: first change the labels
in% to inn+i and the labels outj to outp+j in the graph of <S', for all i G [rn]
and j e [q], then take the disjoint union of the two graphs. See Figure 9.

Figure 9. - Separated sum.

REMARK 3.1: Since separated sum was defined in terms of the other
opérations and constants, it could be removed from the collection of the
basic opérations.

DÉFINITION 3.6 Itération: Suppose S : n —> n + p is a T,-scheme. Then
its iterate is the H-scheme

= (S, A, aa*P: : n

where a* is the reflexive and transitive closure o f a considered as a relation
a Ç (5 U [n + p]) x (5 U [n + p\), and where j3 : S U [n + p] -> S U \p]
is defined by

I3{s) = 3,

I j

for ail s G S and i G [n + p\.
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The graph of S^ is constructed from the graph of <S : n —• n + p in three
steps: first add a new edge s —> s' whenever there were edges

>out
• Î 2 ) in,. outi

in the original graph of <S, for some i\,.. .. , i m G [n], m > 0. Then delete
the first n output nodes out\y..., outn together with all adjacent edges, and
lastly, change the labels of the remaining output nodes from outn^.l to outt,
for all i e [pj. See Figure 10.

f ontij . •

Figure 10. - Itération.

It is not hard to see that the composition opération of schemes is associative
and the base schemes ln are left and right units. Thus SSch is a category.
On the other hand, ESch can be viewed as an N x N-sorted algebra with the
four opérations defined above along with constants in, for all n > 0, i G [n].
As such, it is generated by the signature E, more precisely, by the inclusion
77s : S —> SSch mapping each symbol a G Sp to the corresponding atomic
scheme a : 1 —> p, see Figure 11. Indeed, each E-scheme S : n —> p can
be written as

P ' \\0~l • pi, • . . , Cm • pm) , lp )

for some partial base scheme p : n —> m + p, atomic schemes <?z : 1 —> p«
and partial base schemes pi : pi —> m + p, i € [m], where a% G T,Pi for all
z G [m] and m is the number of states in $. See [13]. Each partial base
scheme p : n —> p can be expressed uniquely as an n-tuple of some schemes
ip : 1 —> p and J_p : 1 —> p, where ± p = _L • 0p — l\ • 0^.

Although ESch is an N-category, it is not a theory: it does not satisfy the
theory identities (6) and (7) unless E is empty, i.e., when every E-scheme
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Figure 11. - The atomic scheme o : 1 —»• p.

is a partial base scheme. Interestingly, ESch satisfies two of the defining
Conway identities, namely, the parameter and double dagger identities. It
also satisfies a weak form of the composition identity:

BASE COMPOSITION IDENTITY

(P•<ö,0neiP))f = P'{(G-(p,0meip))1, ip),

for all base schemes p : n —> m+p and arbitrary schemes Ç : m—> n + p.

DÉFINITION 3.7: For each signature E, let = s be the least congruence on
SSch such that the quotient ESch /^ s satisfies the theory identity (7).

When S is understood we omit the subscript in =g.

LEMMA 3.1: Suppose T :. n —> 2n + m + p and Ç : m -^ 2n + m + p
are E-schemes. Then

n -f m.where f3 dénotes the base scheme ( l ? ï , l r a ) ® l m : 2n + m

Proof: By the définition of =,

(In, In) • T = (hn ' (In, In) ' F\ • • • , (2n)2n * <ln,

It follows that
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Thus,

by the base composition identity applied to the base scheme (3 © 0p :

THEOREM 3.1: ESch/= isfreely generated by the signature E in the variety
of all Conway théories.

Proof: It is known that SSch is freely generated by E in the smallest
variety containing all structures ASch, for any signature A. A complete
axiomatization of this variety was given in [3]. Since each of those axioms
is a logical conséquence of the Conway identities, it follows that the E-
generated free Conway theory is the quotient SSch/~, where ~ is the least
congruence on ESch for which ESch/~ is a Conway theory. We are going
to show that = = ~.

The containment = C ~ is trivial. The converse containment = D ~
is proved by showing that E S c h / ^ is a Conway theory. Except for the
composition identity and the two theory identities (6) and (7), all defining
axioms of Conway théories hold in ESch, and hence in the quotient
ESch/™. As (7) holds in ESch/ = by définition, we are left to show
that ESch /= satisfies (6) and the composition identity.

First observe that for any integer p > 0, 0p /= is the only morphism 0 —> p
in SSch/= . Suppose T\%... ,Tn are S-schemes 1 —• p. Then, in SSch,

In ' \ ^ 1 Ï • • - )J~n) — (Ui * > l , • • • , Ui * A ' - l ) A ' ) Ui • > i + i , . . . ,Ui • J-n)

Now suppose that T : n —>• m-\-p and G '• m —• n + p are S-schemes and
let (3 dénote the base scheme ( l n , l n ) © lm : 2n + m -^ n + m. Then

(ln © 0 n + m )

^ • (02n ® lm+p), F • (02n ® lm+p), G • (0„ © 1„ © 0

' (02n © lm+p), Ö • (0n © l n © 0m © lp))

n © 0m) • (ƒ• • (0„ © l m + p) , ö • (ln © 0m © l
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by Lemma 3.1 and by the définition of the opérations in SSch. D

We say that two S-schemes are Conway equivalent if they are identified
by the congruence =. Although the previous theorem gives some kind of
characterization of =, it doesn't give an algorithm to décide the Conway
équivalence problem of flowchart schemes. Our next task is to find such an
algorithm, based on a structural characterization of =.

4. SIMULATIONS

In this subsection we define simulations, Le., structure preserving relations
between schemes. Congruences and homomorphisms of flowchart schemes
are then defined as simulations satisfying some further requirements.

In order to simplify our présentation we introducé the following notation:
when ƒ : A —• Af and g : B —> Bf are partial fonctions and p Ç Af x Bf is
a binary relation, we write ƒ (a) p g{b) for the statement

(a 0 dom( ƒ) A b £ dom{g)) V ( ƒ (a), g(b)) G p.

DÉFINITION 4.1: Suppose that S and S' are Yj-schemes n —> p. A binary
relation 7 Ç S x S" is called a simulation from S to S', written S \*y\ Sf, if

a(t) (7 Uidfc])<*'(«) (13)

and

S1s
f ^ A(s) = À'(s') A *(5,ï)(7Uid [p I)« /(5 /,*) (14)

hold for ail i G [n], s G S, s1 G Sf and t G \<J\. We write S « S' and
say that the two schemes S and <S' are strongly equivalent if there exists
a simulation from S to S'\ In the special case that the simulation relation
7 is a function S —> S', 7 is called a homomorphism from S to S'. A
bijective homomorphism is called an isomorphism. Another special case is
that S = S1 and the simulation 7 is an équivalence relation on S: then we
say 7 is a congruence on S.

Thus, if 7 is a simulation from S to 5' , then, by (13) and (14), the
following hold for their graphical représentations. First, for any i G [n], the
ith input node of S has an out-edge iff the zth input node of <S' has an
out-edge. Moreover, if the ith input node of S is connected by an edge to an
internai node 5, then the ith input node of S' is connected by an edge to an
internai node s' with (s, s') G 7. If the ith input node of S is connected to an
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output node, then the ith input node of S' is connected to the corresponding
output node of S'. And if s G S and s' G 5 ' with {5, s') G 7, then, by (14),
s and sf have the same label, and for any t G [u], s has an out-edge labeled
by t if f s' has one. Moreover, if the target of the out-edge of s labeled by t
is an internai node v, then so is the target vf of the corresponding out-edge
of s', and (v,vf) G 7. If the target of the out-edge of s labeled by t is
an output node, then the target of the out-edge of sf labeled by t is the
corresponding output node of Sf.

We usually write 7 : <S -^ Sf to indicate that 7 is a homomorphism from
S to <S'. Simulations have several nice properties, some of them are listed
in the following lemma. See also [20, 7, 5].

LEMMA 4.1: For all relations (prip and T*~schemes T,Q,W,f,Qs of
appropriate source and target,

1. T jidjr| T

3. T \tp\ Q A Q 1̂ 1 H => T ]tp o ̂ 1 H

4.F\ip\T! A G\ii>\gf =» {^Ivu^K^e ' )

7. ƒ• 1̂ 1 Ö ^ ^ f bl öf

& ^ M G A ^ 1̂ 1 G => ^ l ^ u VI ö
9. ^1^1 Ö A ^IVI G ^ T\^pÇ\i)\Q D

CoROLLARY 4.1: The strong équivalence relation ^ is a congruence on
the N x N-sorted algebra ESch. Moreover, when S and S' are strongly
equivalent schemes, there exists a smallest simulation

7
S |7l 5'

and a largest simulation

S&S' •= IJ 7
5|7|5'

fromStoS'. D
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LEMMA 4.2: Suppose S : n —> p and Sf : n —» p are strongly equivalent
E-schemes, Sf l [p] = 0. Then

s sTs< sf <£> 3i G [n] 3u G [wj* s — ô(i,u) A s = 8!(i,u)

and

s ses> sf & Vu e H * (A u idip]){«{5,«)) = (V u idjp, )($'(*',«)),

/or ail s £ S and sf G 5'. Moreover, $®S is the largest congruence on S. D

We shall write 9 ^ for s ©S-
Thus, two states s G S and s' G 5' are related by the smallest simulation

iff there exist a word u G [u]* and an integer z G [n] such that 5 is the target
of the directed path, labeled by u, from node a(i) of 5 , and sf is the target
of the directed path from ot{i) labeled by the same word n. Moreover, s is
related to s/ by the largest simulation iff for all words u G [w]* there is a
directed path labeled by u from s iff there is a directed path labeled by u
from s', and the labels of the targets of these paths agree.

DÉFINITION 4.2: Suppose S : n —» p is a Yl-scheme and p is a congruence on
S. The quotient scheme S/p : n —» p with states in the set S/p is defined by

ifa{i)eS,

/ a(0 if<*(%) e [p]5

^ undefined if a(i) is undefined,

(6(s,t)/p if6(s,t)eS,
fis/pi*/p, t) = } 6(s, t) if6(s, t) G [p],

\ undefined ifô(s^t) is undefined,

for ail i G [n], s G S and t G [CJ].

Congruences and homomorphisms of flowchart schemes behave just
like congruences and homomorphisms of algebras. For example, if (p
is a homomorphism from a S-scheme 5 to a E-scheme S' then ker^
is a congruence on S and there exists a surjective homomorphism
tpi : S —• S/keiip and an injective homomorphism cp2 : <S/ker^ -^ Sf

such that ip — ipi o y?2- Conversely, if p is a congruence on a scheme <S, the
function mapping each state s to the congruence class s/p is a surjective
homomorphism, the natural homomorphism from S to S/p.
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In the next définition we adopt the universal algebraic concept of a
subalgebra to flowchart schemes.

DÉFINITION 4.3: Suppose S : n —» p and S' : n —• p are ü-schemes. S' is
a sub-scheme of S if Sf Ç S and the inclusion S1 <—> S is a homomorphism
front S1 to S. We call Sf a proper sub-scheme of S if it is a sub-scheme
of S and Sf C S.

Each sub-scheme of a scheme S is totally determined by (and is usually
identified with) its set of states. Note that when cp is a simulation from S to
<S', dom((p) is a sub-scheme of <S and rng(c^) is sub-scheme of <S'.

DÉFINITION 4.4: Suppose S : n —» p is a Y>-scheme. A state s £ S is called
accessible if s — 6(i) u) holds, for some i 6 [n] and u G [a;]*, Le., when in
the graphical représentation, s lies on a directed path from an input node.
Moreover, s is called strongly accessible if s — a(i) for some i G [n], Le.,
when s is the target of an edge from some input node. We call S a (strongly)
accessible scheme if each of its states is (strongly) accessible.

We dénote the set of ail accessible states of S by Acc(<S). It is not hard
to see that Acc(<S) is the smallest sub-scheme of S, called the accessible
part of S. Therefore, a scheme is accessible if and only if it has no proper
sub-schemes.

LEMMA 4.3: Suppose S and S* are strongly equivalent Y>-schemes. Then
= Acc(<S) and rng(sTs') = Acc(<S'). Moreover,

= Acc(<S)rS' = sTAcc(Sf) = Acc(S)^Acc(Sf)-

D

LEMMA 4.4: Suppose S : n —> p and Sf : n —• p are Yi-schemes and
cp : S —> Sf is a homomorphism. Define ip :— cp H (Acc(<S) x S*), so that ip
is the restriction of (p to the accessible states of S. Then $ ~ $Ts* and tp is
a surjective homomorphism Acc(<S) —» Acc(<S/).

Proof: Î(J is clearly a homomorphism from Acc(<S) to Sf and, by
Lemma 4.3, $rs> = Acc($)Fs> Q ip- Since dom^r^/ ) = dom(^) =
Acc(<S) and ^ is a function, it follows that ip = sFs> and rng(^) =

= Acc(5')- •

The next lemma gives various (well known) characterizations of the strong
équivalence relation « of flowchart schemes. See [5], for example.
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LEMMA 4.5: Suppose S : n —> p and S' : n —> p are Yi-schemes, S Pi \p] = 0.
the following statements are equivalent:

L S and Sf are strongly equivalent

2. Vz e [n] Vu € M* (AUidb])(5(i,u)) = (V U id^Ô'(i,u)).

3. The relation

{(s, s')eSxS' | 3% G [n] 3u G M* 5 = ^ t , n) A sf = ^ ( i

z's a simulation front S to Sf.

4. The two schemes ACC(<S)/6ACC(<S)
 and Acc(<S')/@Acc^/) are isomor-

phic.

a
Every simulation relation 7 from a scheme 5 to a scheme S' détermines

a scheme whose states are the ordered pairs in 7.

DÉFINITION 4.5: Suppose S : n —* p and Sf : n —> p are strongly equivalent
H-schemes and 7 is a simulation from S to S'. Then we define the Y,-scheme
[7] : = (7,A[7],öf[7],5[7]) : n -> p, where

r(a(i),a'(*)) ifa(i)eS,
a{l](i) = < a(i) ï/a(i) G [p],

[ undefined if'a(i) is undefined,

[ undefined îy*<5(s, t) is undefined,

for ail i G [n], (5, 5') G 7, i G [n] ÛWO? t G [a;]. 1% CÖ// the schemes [sIV] and

[565 ] the minimal and maximal direct product of S and Sf
 y respectively.

Thus, for each i G [n], the ith input node of the scheme [7] has an
out-edge iff the zth input node of S, and hence of <S', has an out-edge.
Moreover, when exists, the target of this out-edge is the ordered pair (5, s'),
where s and sf are the targets of the out-edges of the ith input nodes of
S and <S\ respectively. However, if say s is an output node, the target of
the out-edge of the zth input node of [7] is the corresponding output node.
Let (5,5') G 7 and t G [w], Then, in the graphical représentation of the
scheme [7], the node (5,5') has an out-edge labeled by t iff s, and hence
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sf has an out-edge labeled by t. Suppose that v and vf dénote the targets
of these edges. Then, since 7 is a simulation, v is an internai node iff vf

is. In this case, the ordered pair (v,vf) G 7 is the target of the out-edge of
(s, sf) labeled by t. Otherwise s and sf are output nodes, and the target is
the corresponding output node of [7].

LEMMA 4.6: Suppose S' : n —> p and Sf : n —> p are strongly equivalent
Yi-schemes. Then their minimal direct product \$Ts*\ is an accessible scheme.
Moreover, the two projection functions TT : s^S' ~^ S and TT' : s^S> —* Sf

are homomorphisms, namely, TT = [^rv^s and %f = [^r^/]^'-

Proof: Suppose (5, s;) € s^S1- ^y Lemma 4.2, there is an integer i € [n]
and a word w G [o;]* such that

showing (5,5') is an accessible state of [sFs/]. It is trivial that the two
projections are simulations, so they are homomorphisms. Now ir — \STS,}^S

and 7T; = [^r^jr^', by Lemma 4.4. D

LEMMA 4.7: Suppose S, Sf and S are Tt-schemes n —* p, cp 1 S —> S
and (p1 : S —> Sf. Then there exists a unique homomorphism ip : Acc(S) —̂

Proof: By Lemma 4.4, the only possibility for ^ is the least simulation
relation 5 ^ 1 ^ , ] , which is defined, since S, Sf, S and [sF^/] are strongly
equivalent. To prove it is a function assume that S-g(i,u) = 6^(j^v) is a
state of Acc(5), for some integers i.j E [n] and words u.v G [o;]*. Then

and

proving <S[5rv](^ w) = 5^^,] ( j , v). . O

LEMMA 4.8: Suppose S : n —» p is an accessible T,-scheme and p is a
congruence on S. Then the minimal direct product [s^s/p] çf S and S/p
is isomorphic to S,

Proof: Since <S is accessible, the states of [s^s/p] a r e a^ Pairs (5> s/p)>
s G S, and the projection ?r : [s^s/p] -^ <5 is an isomorphism. D
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4.1. Aperiodic congruences

In this subsection we define and study some special congruences
of flowchart schemes, namely minimal, regular, simple and aperiodic
congruences. Although the results of this subsection have little importance of
their own, they serve as a technical bases in the course of proving our main
resuit, the characterization of the Conway-equivalence of flowchart schemes.

When A and B are sets, we shall dénote by Const[A, B] and Biject[Â, B]
the set of all constant fonctions and the set of all bijections A —> J3,
respectively. Suppose that p is a congruence on a scheme <S. The set of all
nonsingleton équivalence classes of p will be denoted by Cl(p). Recall from
Lemma 4.1 that the intersection of two (and in fact any nonzero number
of) congruences on S is again a congruence on S. It follows that if C" is a
subset of an équivalence class C of p then there exists a least congruence
•0(C') on <S, called the congruence generated by C', such that 0(C")
identifies all the éléments of C". Note that 0(C') is the least équivalence
containing the relation

a , b e C f , r E A [ C , 5 ] } Ç S x S

consisting of all pairs (c, d) E S x 5 such that there exist a, b G G1 and a
word u E [o;]* such that c is the target of the directed path from a labeled by
u, and d is the target of the corresponding directed path from b. The relation
00 is usually not transitive, in which case Go / Q(Cf). Also note that if
jC'l < 1, @(Cf) is the trivial congruence ids on $.

DÉFINITION 4.6: Suppose S : n —»• p is a flowchart scheme and p is a
congruence on S. The rank of p, denoted by #p, is the cardinality ofits largest
congruence class. A congruence of rank k is also called a fc-congruence.
We say p is

minimal if it is nontrivial and minimal among all nontrivial congruences of
S with respect to set inclusion,

regular if it is generated by each one ofits nonsingleton classes, Le.y if

e(c) = p,
for all C G Cl(p),

simple if

A[C, D) Ç Const[C, D] U Biject[C, D],

for all C,D G Cl(p),
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aperiodic if

s p 6{s,u) => 3k > 0 S(s7u
k) = 6(s,uk+1),

for all s e S and u G [u]*.

Note that a trivial congruence is simple, regular and aperiodic, by
définition. Also note that every 2-congruence is simple and every minimal
congruence is regular. However, there exist regular congruences which are
not minimal. (For the simplest example, take the scheme 0 —> 0 having
three states labeled by a symbol ao having no transitions. Then the relation
that collapses all three states is a regular congruence which is clearly not
minimal.)

The word "regular" is used here only as a technical term. The concept of
regular congruence has nothing to do with regularity as used in automata
theory. Nevertheless, the notion of aperiodic congruence sterns from automata
theory, since a congruence p is aperiodic iff for each congruence class C,
the transformation semigroup (C, A(C, C)), or the semigroup A(C, C) is
aperiodic. See [19].

REMARK 4.1: Suppose S : n —> p is a flowchart scheme and p is a
congruence on S. Then the following statements are equivalent

L p is aperiodic on S.

2. None of the partial functions

{Su[C\cf) | u e M*, c' çce ci(p)}

is a nontrivial (cyclic) permutation.

5. VC G Cl(p) Vr G A[C,C] 3k G N rk = rk+\

4. For all C G Cl(p), no subsemigroup of the monoid A[C, C] is a
nontrivial group.

In the next three lemmas we establish a few simple facts about the special
congruences defined above.

LEMMA 4.9: Suppose p is a simple congruence on the scheme S. Then p
is regular if and only if

for all C,D G Cl(p).
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Proof: If p is simple and the above condition holds then p is clearly
generated by any one of its nonsingleton équivalence classes. Now assume
p is simple and the above condition fails, so that there are two nonsingleton
équivalence classes C and D of p such that A[C:D] n Biject[C, D] = 0.
Then A[C, D] Ç Const[C, D] and the congruence generated by the class C
is properly contained in p, since it does not identify the éléments of D. D

LEMMA 4.10: Suppose p is a simple congruence on the scheme S. Then p
is aperiodic if and only if

A[C, C] n Biject[C, C] =

for all C e Cl(p).

Proof: Observe that the éléments of A[C, C] n Biject[C,C] form a
subgroup in the monoid A[C, C\. By Remark 4.1, this group has to be
trivial. D

LEMMA 4.11: Suppose p is a simple regular congruence on the scheme S.
Then p is aperiodic if and only if

|A[C,L>].nBiject[C,L>]| - 1,

for all C,D e Cl(p).

Proof: If p is simple and satisfies the above condition, then it is aperiodic by
Lemma 4.10. Now assume p is simple, regular and aperiodic. By Lemma 4.9
and Lemma 4.10, we only need to show that for all distinct nonsingleton
équivalence classes C, D of p, there is at most one bijection in A[C, £>].
Assume r and r ' are bijections in A[C, D\. By Lemma 4.9, there exists a
bijection TT G A[D, C], Now both functions r OTT and r ' o ?r are bijections in
A[C, C], so they are equal, by Lemma 4.10. It follows that r = rf. D

Recall that when p' Ç p are two équivalence relations on a set 5, their
quotient p/p\ defined by

Vs,s'eS {slp')plp' (s'/p1) O 5 p S ' ,

is an équivalence relation on the set S/p' of ail équivalence classes of pf.
It is not hard to see that when p' Ç p are congruences on a scheme <S
then the équivalence p/p1 is a congruence on the quotient scheme S)p1 and
(S/p/)/(p/p/) is isomorphic to S/p. The following two lemmas show that
some nice properties of p are inherited to p' and p/pf.
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LEMMA 4.12: Suppose p is an aperiodic congruence on the scheme S. If
p1 Ç p is a congruence on S, then pf is aperiodic on S and the quotient
congruence p = p/pf is aperiodic on the quotient scheme S = <S/p'.

Proof: It is trivial that p' is aperiodic. Suppose C p 6-^(Cyu) for some
word u G [o/]* and congruence class C — sjp1. Then s p <5(s, u) and since p
is aperiodic, 8(s,uk) = 5(s, ufc+1) G 5, for some integer k > 0. It follows
that 6j(C, uk) = 6^(Cru

fc+1). •

LEMMA 4.13: Suppose p is a simple congruence on the scheme S, IfpfÇp is
a congruence on S générâted by a class C G S/p, then pf is simple on S and
the quotient congruence ~p ~ p/pf is simple on the quotient scheme S = $/p!>
Moreover, if C e Cl(p) then |CI(p)| = |Cl(p)| - |C1(//)| < |Cl(p)|.

Proof: The case \C\ = 1 is trivial, so assume C G Cl(p). Then

CI(p') - {D G Cl(p) | A[C,D\ n Bïject[C, D] ^ 0} C Cl(p).

Since p is simple, it follows that p' is simple. The nonsingleton équivalence
classes of p are of the form

D = {{d} | deD} - DfidDi

where D is a nonsingleton équivalence class of p which is not an équivalence
class of pf. The map D ^ D is a bijection from Cl(p) \ Cl(p;) to Cl(p).
In particular, since Cl(p') Ç CI(p) we have

= \c\{p)\c\{fl)\ =

Suppose D and E are nonsingleton classes of p. Then

for all d e J), e e £ and u G [ta]*, showing that 8^u[D,E) is
constant/bijective if and only if bu\D,E\ is constant/bijective. It follows
that p is simple. D

LEMMA 4.14: Suppose p is a simple congruence on the scheme S. Then there
exists a simple regular congruence pf Ç p on S such that the congruence
p = p/pf is simple on the quotient scheme S = S/p*. Moreover, if p is
aperiodic so are p' and ~p, and if p is nontrivial then p' is nontrivial and

[ < \C\{p)\.
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Proof: If p is trivial so is the claim, therefore assume that |Cl(p)| > 0.
Consider the congruences &(D) generated by the nonsingleton classes D
of p. Since there are finitely many of them, there exists a minimal such
congruence, i.e., there is a nonsingleton équivalence class C of p such that
whenever 9(L>) Ç 0(C% for some D E Cl(p), then @(D) = 0(C). Let
pf be the congruence 6(C). Then clearly pf Ç p and both p' and p are
simple, by Lemma 4.13. If p is aperiodic then p' and p are also aperiodic, by
Lemma 4.12. By Lemma 4.13, |Cl(p)| = [Cl(p)| - |Cl(p')| < [Cl(p)[. To
prove that p' is regular assume that D is a nonsingleton équivalence class
of p'. Then ®(D) Ç p' and, as noted in the proof of Lemma 4.13, D is a
nonsingleton class of p. It follows by the minimality of p' that Q(D) — p'.D

COROLLARY 4.2: Suppose p is a simple aperiodic congruence on the scheme
S. Then there exists an integer m > 1, a séquence Si,..., <Sm of schemes
and a séquence p\,..., pm_i of simple, aperiodic and regular congruences
such that

Si = S\

Sm = S/p and

Si+i = Si/pi,

for ail i G [m — 1].

Proof: By a straightforward induction on |Cl(p)|, using Lemma 4.14. D

Minimal congruences identify "as few states as possible", minimal 2-
congruences are even more restricted. We end this subsection by showing
that every simple aperiodic congruence can be "decomposed" into a séquence
of minimal aperiodic 2-congruences.

LEMMA 4.15: Suppose p is a nontrivial, simple, aperiodic and regular
congruence on the scheme S. Then there exïsts a minimal aperiodic 2-
congruence p1 Ç p on S such that the quotient congruence p = p/pf is
simple, aperiodic and regular on the quotient scheme S — S/p1. Moreover,

Proof; Let C1 — {a, b} be a two-element subset of a congruence class
C G CI(p) and p' := 0(C"). Then clearly p' Ç p and both p' and p
are aperiodic by Lemma 4.12. We know from Lemma 4.11 that each set
A[D,E] contains a unique bijection r p ^ , for ail D,E G Cl(p). It follows
that TDE ° TEF = T&F and TDD = id^r for ail D,E,F G Cl(p). Now pf
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is the least équivalence relation containing

r € A[C,S], r(a)

Since (3 is transitive, p' = j3 U f3~l U ids is a 2-congruence. To prove //
is minimal assume that 7 Ç pl is a nontrivial congruence on <S. Then 7
is generated by two states a',6' with (a',6') G ƒ?, say a' — TCD(^) and
6' = TCD(b), where £> is a nonsingleton class of p. But then

o» — TDc{d) 7 rDc(bf) = 6

and since p' is generated by {a, 6}, it follows that 7 = p'. The congruence
classes of ~p are of the form

D/p'

= ({{d}} ÜD = {d},

\{{d}\deD\{TCD(a),TCD(b)}}u{{TCD(a),TCD(b)}} X\D\>1,

where D is an équivalence class of p. This shows # p = # p — 1 and that ~p
is simple and regular on S. D

CoROLLARY 4.3: Suppose p is a simple aperiodic congruence on the scheme
S. Then there exists an integer m > 1, a séquence S i , . . . , Sm o/ schemes
and a séquence p i , . . . , pm_i of minimal aperiodic 2-congruences such that

S m = S/ p and

Si+i = Si/ pi,

for all i E [m — 1].

Proof: By a straightforward induction on #p, using Corollary 4.2 and
Lemma 4.15. D

4.2. Aperiodic homomorphisms

Suppose E is a signature and recall the définition of the category SSch
of S-schemes from the previous section.

This subsection is devoted to scheme homomorphisms having an aperiodic
kernel, or aperiodic homomorphisms, for short. Using these homomorphisms
we define two relations —> and => on ESch, the first being strictly
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stronger than the second. Nevertheless we prove (see Lemma 4.16) that
the équivalences <-> and <£> generated by these relations coincide, and that
this équivalence is a congruetice of ESch. We also show that 4$ is just the
composite of <£= with =>. This is done in two steps: in Lemma 4.18, we
prove that the relation <É= o => contains the relation => o <=. In particular,
it follows that <£> = <^o4>. Then in Lemma 4.19, we show that => is
reflexive and transitive, so that 4> = => and <= = <=.

DÉFINITION 4.7: Suppose that S and Sf are Y,-schemes and cp is a
homomorphism from S to <S'. We write

S ^S! iftp is injective or ker^ is a minimal aperiodic 2-congruence on <S,

^ f if ker^ is an aperiodic congruence on S.
We define two relations on T,-schemes by

The inverses of these relations are denoted by the corresponding reversed
arrows and we use the Standard notation for the various closures. For
example, => is the least reflexive and transitive relation containing ^ and <-»
is the équivalence relation generated by —».

Using these définitions we can rephrase Corollary 4.3 in the following
form.

COROLLARY 4.4: If p is a simple aperiodic congruence on a scheme S then

We summarize the results of this subsection in the following proposition.

PROPOSITION 4.1: The two équivalence relations A and <ê> agrée on SSch.
Moreovery O is a congruence relation on SSch and for all S,Sf : n —» p
in SSch,

5 ^ 5 ' ifandonly if S £ [STS'\ 4 S\

where TT : $F$' —» S and TT' : sTs> —> Sf are the two projections.

It is obvious that the relation ==> properly contains the relation —». We can
even give examples when S => Sf holds, but S —» Sf does not. However, the
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next Lemma shows that => is contained in the équivalence relation generated
by —», which is probably the most interesting technical result of our paper.

LEMMA 4.16: => Ç A.

Proof: Suppose <S and JT are S-schemes n —» p with S => J7. Then there
exists a homomorphism cp : 5 —» JF such that ker^ is an aperiodic congruence
on S. As noted before, every homomorphism admits a surjective-inj écrive
factorization, i.e., there exist a surjécrive homomorphism <p\ : S —» «S/ker^
and an injective homomorphism tp2 : <S/ker^ —> ƒ* such that <p = <pi o <p2.
Let us dénote ker^ by p. Then <S/p ̂  JF and the result follows if we show
that S <-» S/ p. To prove this we use induction on #p. The base case # p = 1
is trivial, so assume for the induction step that # p > 1.

First we modify the start and transition functions of S to obtain a new
scheme S1 — (5, À, a\Sf) : n —> p. The différence between 6 and 6f is that
if C, .D are congruence classes of p with |D| = # p and t is an integer such
that StlC, D] is a non-surjective function C -* D, then we select an arbitrary
element d £ D\mg(St[C, D]) and define ^[C, J5] to be the constant function
with value d. Similarly, for all i G [n], if a(i) G S and the congruence class
D = a(i)/p has exactly # p éléments,, then we select an arbitrary element
d G D\ {a(i)} and define af(i) := d.

Note that for all words u G [w]* and congruence classes CyD of
p, either 5^[C,I?] = SU[C,D] or 5U[C,J5] is a non-surjective function
C —> D and 5^[C, D] is a constant function C -* D, such that
rng($(JC, Z)]) Pi rng(5u[C,i5]) = 0. It follows that p is also an aperiodic
congruence on <S' and

5^5/p = S'jp^S'.

Thus 5 ^ [ 5 r S l ] 4 5 ' , by Theorem 4.1.
Next we prove that

V* e [n] V« e M* (^(i.u) e 5 A |«(t,«)/p| = #p) =» «(t,«) # «'(i.'u).
(15)

The proof is by induction on the length of u. If u is the empty word e and
6(i,u)/p has exactly # p éléments then

by the définition of af. Assume for the induction step that u — vt, where
v G [w]*, * G [Ü;]. Let c := 6(i,v), ë := 6f(i,v), d := £(i,u) = <5(c,i),
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d! := 6'(i,u) = «V»0. C := C/P = C 'M # := <*/P = rf'M Suppose
moreover that |JD| = #p. If the function ^[C,!?] is not surjective then
d! g rng(5t[C, £>]), by the définition of 6'. Since d = 5(c, t) E mg(^[C, £>]),
d / d'. If 5t[C,Dl is surjective then 8t\C\D] = S't[C7D] is necessarily a
bijection, since # p = |Z?| < \C\ < #p. Using the induction hypothesis we
get c ^ ë\ and thus

d - ^(c) ^ ^(c') = 6f
t(c

f) - d7..

Returning to the main proof, observe that p is not just a congruence on
the schemes S and Sf but it is also a simulation from S to <S'. Since
is the least simulation, s^Sf Q P< Moreover, it follows from (15) that

Q f > \ { ( s , s ) \ s e S , \

Therefore, if (sys
f) is a state of [sTs*] then

5j:r) f x G s / ^ if 's/pl < #pï

(5,a:) | x e s/pr x^s} if \s/p\ = #p,
showing that ^ker^ < #/>. By the same argument, #ke iv < #p . Thus,
using the induction hypothesis, «S^-^sPs']*-»^.

Let pf dénote the équivalence relation on S whose nonsingleton
équivalence classes are those équivalence classes C of p with 1 < \C\ < #/>,

s pf sf & s = sf V (s p s A

for ail 5, s* E S. Then p' is not necessarily a congruence on the scheme S, but
it is a congruence on <S'. This follows from the fact that for any congruence
classes C\D of p with |Ct < \D\ = #p , A5,[C,i?] Ç Const[C,L>].
Moreover, pA Ç p and #pA < #p . Let 5 dénote the quotient scheme S'fp*
and let ~p be the quotient congruence p/pf on 5. Then, by Lemma 4.12,
// is aperiodic on S( and p is aperiodic on S. We can apply the induction
hypothesis once again to obtain <S' *-• S.

Lastly, each nonsingleton congruence class of p has exactly # p éléments
and, by the définition of <S', p is a simple congruence on <S. By Corollary 4.4,
it follows that S -^ <S/p — S1 fp — S/p, completing the proof. D

COROLLARY 4.5: A = <â>. D

Next we prove that <& is a congruence on SSch by showing that the
relation => preserves the opérations of pairing, composition and itération. It
then follows that => also preserves the separated sum opération.
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LEMMA 4.17: Suppose T, G, T', G' are 'S-schemes of appropriate sorts.
Then

T^T' A GAG' => {F,

' A g tg' =• T-

Proof: The first two implications can be handled in the same way, therefore

we only prove the first one. Suppose that T =^ T1 and Q => Gf. By Lemma 4.1,
tp U ty is a simulation from (F, G) to {F\Gf)* Since the set of states of
( ƒ*, (?) is the disjoint union of those of T and G, tp U ^ is a function
and ker^u^, = ker^ U ker^. If C is a congruence class of ker^u^ ü&n C
is either a congruence class of ker^ and A/^-gJC, C] = A^-fC, C] or C
is a congruence class of ker^ and A^^[C,C] = Ag[C, C]. Since ker^
is aperiodic on T and ker^ is aperiodic on G, ker^u^ is aperiodic on
{T,G)- As for the last implication, if T^G then cp is a homomorphism
from ƒ"!" to ö^, by Lemma 4.L Suppose C is a congruence class of ker^.
Looking at the définition of the itération opération it is not hard to see that
Ajrt [C, C] Ç Ajr[C, C) U Const[C, C]. By Remark 4.1, ker^ is aperiodic
o n ^ . D

COROLLARY 4.6: <k> is a congruence relation on ESch. D

Our last goal in this subsection is to give a simple characterization of
the congruence <&>. After proving two lemmas, the results are summarized
in Theorem 4.1.

LEMMA 4.18: (=> o <=) ç (^= o =>).

Proo/; Suppose that 5 ^ 5 ^ = 5 ' for some E-schemes 5 , 5 ^ 5 : n —̂  p.
Then <S and <S' are strongly equivalent, so their minimal direct product [sr$/]
exists. By Lemma 4.6, the two projection functions ?r : $F$' —» S and
7ry : 5 ^ / —> Sf are homomorphisms from [s^S1] to 5 and 5' , respectively.
In order to prove that kerx is aperiodic on [srs>] assume that

for some word w e [LU]* and state (s,s') of [ 5 ^ ] . Let us write (r^r') for
V s ' ] ( ( s ' s / ) ' ^ ' s o rï1^ r = às{s:W) and r ; = ^/(s'jti;). Since [5^ / ] is
an accessible scheme, there exist an integer i G [n] and a word u G [o;]*
such that
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Thus
s = Ss(i,u)
s' = Ss'(hu)
r = S's(s,w) — 8s(i,uw)

r' = 6s'(s,w) = 6s'(i,uw).
By Lemma 4.4, there is a unique homomorphism from [sTs*] to <S. By
Lemma 4.1, both functions Trocp and 7r'oy/ are homomorphisms [sFs/] —> 5,
so they are equal. It follows that

Vis) = <p'(s')

and
<p{r) = V'(r).

Since (s,s')kerw (r,r'), we have s — r and

¥>'(*') = ^(a) = <p{r) = ¥, ' ( /) ,

so that s'ker^ r' = ôsf(s\w). Since keiy is aperiodic on <S', there exists
an integer k > 0 such that

On the other hand, since 5 = r = Ss{s^w),

6s(s,wk) = 6s(s,wk+1).

It follows that

proving ker^ is aperiodic on [sFs']. A similar argument shows that ker^ is
aperiodic. D

COROLLARY 4.7: <S> = (<£zo=>). D

LEMMA 4.19: ^ = 4>

Proof: We have to show that => is reflexive and transitive. Since each trivial
congruence is aperiodic, ^> is reflexive. To prove it is transitive assume that
F ^Q^Ji. Then the composite function <p o ip is a homomorphism from T
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to H, and the result follows if we can prove that ker^0^ is aperiodic on T.
Suppose s ker^o^, öjr{s,u) for some word u E [to]* and state 5 of T. Then

ip(s) ker^ <p(6p(s,u)) = Sg(<p(s)yu).

Since ker^ is aperiodic, there exists an integer k > 0 such that
^ ) - L e t u s w r i t e 5 ' f o r ^ ( s , wfe). Then

Thus 5; ker^ 5j?{s\ u) and since ker^ is aperiodic on T, there exists an
integer l > 0 such that

•
COROLLARY 4.8: ^ = (<= o =^). D

THEOREM 4.1: Suppose S and S1 are Yi-schemes n —> p. 77ze?î 5 o S ' ?ƒ
only if S and Sf are strongly equivalent and S 4=[sIV] ^ 5', where ir

and TT7 are ?/ze ?wo projections.

Proof: Trivially, the above condition is sufficient. To prove it is necessary
assume that S <& Sf. Then S and Sl are strongly equivalent schemes, therefore
LsTs'] exists. By Corollary 4.8, there also exists a scheme S such that

S ^Ls=>S*. Let 7 and 77 be the restrictions of <p and tp! to the accessible
states of tS, respect!vely. Then 7 : Acc(<S) —»• S and 77 : Acc(<S) —> <S7, by
Lemma 4.4. Further, ker7 and ker7^ are aperiodic congruences on Acc(<S), so

we have S <^ Acc(iS) =̂> S!. Let ^ be the unique surjective homomorphism
from Acc(<S) to [^r^/], which exists by Lemma 4.7. It follows by Lemma 4.4
that ip o 7T = 7 = gT$ and ip o TT7 = 7' = ^ 5 / . Lastly, Lemma 4.12 shows
that the congruences ker^, ker^ and ker^/ are all aperiodic, completing the
proof. O

COROLLARY 4.9: Suppose S is an accessible T>-scheme and p is a congruence
on S. Then S O S/p if and only if p is aperiodic.
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Proof: By Lemma 4.8 and Theorem 4,1. D

5. THE FREE ITERATION THEORIES

Although our interest is in the free Conway théories, we briefly review
the description of the free itération théories. All results in this section are
well known and çan be found in the book [5].

Note that any signature may be considered as an N x N-sorted set in
which the sort of a p-ary symbol is the pair (l,p) E N x N.

Suppose £ is a signature and recall from Corollary 4.1 that the strong
équivalence relation ^ is a congruence on ESch.

THEOREM 5.1: The quotient category S S c h / ^ is freely generaled by £ in
the variety of all itération théories. D

REMARK 5.1: Another description of the free itération theory on a signature
E uses regular E-trees, cf. [5]. (For a detailed study of infinité and regular
trees see also [10].)

The reader might say that, since itération théories (Conway théories) form
a variety of N x N-sorted algebras, the generator set of a free itération
theory (Conway theory) should be an arbitrary N x N-sorted set and not just
a signature. But every free itération theory (Conway theory, respectively) is
freely generated by a signature, see below.

Suppose that X is an N x N-sorted set. The collection of itération terms
over X is defined to be the least N x N-sorted set I T e r m j satisfying

x E ITermx[n,p], for ail x E X[n,p], n,p > 0;

ln. E TTermx[n,n], for all n > 0;

0n E ITermx[0,n], for ail n > 0;

in E ITerrnx:[l,^], for ail n > 0, i E [n];

t E ITermx [n, p] A i1 E ITermx [m, p] => (t, t! ) E ITermx [n + m, p] ;

t EITermx[n,p] Atf E ITermx[p, q] => (t • tf) E ITermxfn, q];

t E ITermx [n, p] Atf E ITermx [™, Q] =^ C*©*7) € ITe rmx [n-fm,

Hère, ITermx [^ÎP] dénotes the subcollection of ail itération terms of
sort n —» p, n,p> 0. ITermx can be viewed as an N x N-sorted algebra
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with constants l n , 0/?j and in, n > 0, i E [n], and the straightforward
opérations of pairing, composition, separated sum and itération. As such, it
is the absolutely free algebra generated by the N x N-sorted set X, i.e.,
if T is an N x N-sorted algebra with the same constants and opérations
and ip : X —> T is a sort-preserving function, then there exists a unique
homomorphism (p : ITe rmx —> T such that (p(x) — tp(x), for all x G X. In
particular, this holds when T is a preiteration theory. Suppose that t : n —> p
and t' : n —• p are itération terms over X. We say that T satisfies the équation
t = t' if <£(£) = <?(O holds for all sort-preserving functions </? : X —> T,
where £> : ITermx —> T is the unique homomorphic extension of tp. Note
that the theory identities (3-7) and the three Conway identities are infinité
collections of équations between itération terms.

When X is an N x N-sorted set, the signature S(X) corresponding to
X is defined by

E(X)p := {xi | x £ X[n,p],% E [n]},

for all p > 0. Replacing each letter x G I[n,j>] in an itération term
t E ITermx[m,q] with the n-tuple (x i , . . . ,xn) we get an itération term

G

LEMMA 5.1: Suppose that T is a preiteration theory and X is an N x N-
sorted set An équation t = tf between itération terms £, t* € ITermyY holds
in T if and only ifthe équation £(£) ~ £ ( O

PROPOSITION 5.1: Suppose V is a variety of preiteration théories and X is
anN x N-sorted set Then the X-generated free algebra in V is isomorphic
to the Yi{X)-generated free algebra in V, the isomorphism is determined by
the map

x e X[n,p] H-> ( a r i , . . . , x n > .

D

In particular, this applies to the variety of itération théories and the variety
of Conway théories.

DÉFINITION 5.1: Let X be a fixed N x N-sorted set such that X[n,p] is
countably infinité, say X[n,p] = {x^ ,x^ , • - •}» for all n}p E N. T/ze
equational theory of a variety V of preiteration théories is the set Eq{V)
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of all équations t = if between itération terms t,tf G ITermx which hold
in every preiteration theory T G V.

PROPOSITION 5.2: It can be decided in polynomial time iftwo Ti-schemes are
strongly equivalent. Consequently, there exists a polynomial time algorithm
which décides if an équation t = t', £,£' G ITermx, holds in ail itération
théories, •

6. THE FREE CONWAY THEORIES

In this section we finally complete the characterization of the free Conway
théories.

Let us first review what happened so far. In Définition 3.7, we defined = to
be the least congruence on the category SSch of all E-schemes such that the
quotient ESch/= satisfies the theory identity (7). In Theorem 3.1, we proved
that ESch/= is the free Conway theory generated by the signature E. Then
we defined two more congruences A and <s> using aperiodic simulations
of flowchart schemes and proved that they are equal. A characterization of
<£> was given in Theorem 4.1.

LEMMA 6.1: = — A.

Proof: In order to prove the containment = Ç A we need to show that
SSch/A satisfies the theory identity (7). Suppose that T : n —> p is a
S-scheme and let G := {ln * T^..., nn • F). Then each state s of T has
n copies 5 i , . . . , 5 n in Q. Let tp : G —> F be the function mapping each
copy Si, i G [n], to s. If n — 0 then Ç — 0p and (p is the empty function,
which is trivially an injective homomorphism from Ç to T. Otherwise tp is a
surjective homomorphism and ker^ is a simple aperiodic congruence on Q.
In f act, if C and £> are two congruence classes of ker^ then \C\ — \D\ = n
and Aç[C,D] Ç Biject[C,D]. By Lemma 4.4, G A 0/ker^ - jr.

The converse containment A C = follows if we show that —» C =.
Assume that S^S' for S-schemes 5,<S' : n —> p and a homomorphism
<£> : 5 —• <S'. If y? is injective then

and

5 ' = a * <(lr © 0ro) • {T • ( 0 r + m 0 lp), G • (Ir © 0m 0 lp))1, lp),
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for some S-schemes\F : r —> p, 5 : m - > r - f p and partial base scheme
a : n —> r + p. Without going into the details we just note that ƒ" has the
same states as S and the states of Q are those states of 5 ' not in the range
of cp. Moreover, r is the number of states in T\ m is the number of states
in G and both T and G are strongly accessible. Since the équation

T = ( l r © 0m) • (T - ( 0 r + m © lp), G • (Ir © 0m © l p ) ) t

holds in any Conway theory, it follows by Theorem 3.1 that S = S'.
The second possibility is that ker^ is a minimal aperiodic 2-congruence on

<S. Then S -4 5/ker^ -4 S'r where ip± is the natural homomorphism and <pz
is injective. We have just proved above that S/kex^ = Sf. On the other hand,

and

S/k^ = a

for some E-schemes T : r —> 2r + m -h p, ö' : m —> 2r 4- m + p and
partial base scheme a : n —> 2r + m + p, where fi dénotes the base scheme
( l r , l r ) © l m : 2r + m —y r + m. Now S = S/ker^ follows by Lemma 3.1.D

We have proved the following

THEOREM 6.1: ESch/<=> is freely generated by the signature S in the class
of all Conway théories,

Proof: By Theorem 3.1, Corollary 4.5 and Lemma 6,1. D

By Proposition 5.1, for an arbitrary N x N-sorted set X, the free Conway
theory generated by X is isomorphic to the free Conway theory generated
by the signature E(X). Thus, Theorem 6.1 describes all of the free Conway
théories.

For an N x N-sorted set X, let us dénote by ConwayEqY the set of
ail équations t = tf bet ween itération terms t, tf over X which hold in ail
Conway théories. Thus, according to Définition 5.1, ConwayEqx is the
equational theory of Conway théories.

Our last goal is to show that ConwayEqx is PSPACE-complete with
respect to logspace réductions.

Recall from Définition 4.4 that a strongly accessible E-scheme n —> p is
one in which every state is a target of an edge starting from an input node
mi, i G [n]. We shall consider the foîlowing décision problems.
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Instance: A strongly accessible E-scheme S : n —» 0.
AperSch s : QuestiOn: Is S x 'S an aperiodic congruence on <S?

Instance: A strongly accessible S-scheme <S : n —> 0
AperCongy : anc^ a relation p Ç S x S.

Question: Is p an aperiodic congruence on 5?

Instance: A pair (S, S') of E-scheme.
SchEq s : Q u e s t i o n :

Assuming E contains a symbol of rank at least 2, all these problems
turn out to be PSPACE-complete, as well as the problem of deciding if
an équation t — i1 between itération terms t,t ' € ITermv belongs to
ConwayEq s .

Recall that a deterministic finite-state automaton (DFA) A = (Q,Z,S)
(where Q is the set of states, Z is the input alphabet and 6 is the transition
function) is called aperiodic if

Vg G Q Vu e Z* 3k > 0 6(q,uk) = S(q,uk+1).

We are going to use the fact that the following décision problem is
PSPACE-complete with respect to logspace réductions, see [8].

Instance: A DFA A = (Q, {0,1}, 6).
: Q u e s t i o n : I s A aperiodic?

LEMMA 6.2: Suppose that £ is a signature containing a symbol <JQ of rank
m > 2. Then there exist logspace réductions

AperDFA —> AperSch s —>- A p e r C o n g s

-* SchEq s —> ConwayEq s —> ConwayEq x .

Proof of AperDFA -» AperSch s : Suppose A = (Q, {0,1}, 6A) is a
DFA, n :— \Q\. We construct a strongly accessible scheme <S : n —> 0 such
that A is aperiodic if and only if S x S is an aperiodic congruence on S.
The states of S are the states of A, each is labeled by the symbol ao- The
start function a of S is an arbitrary bijection [n] —> Q an (l its transition
function 5 is defined by

6 ( a t ) _ f S A ( q , O )
l 9 ' j ~ \ ^ ( ç l )

if * = 1,
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for all q G Q and t G [m].

Proof of AperSchv; —• A p e r C o n g s ; The map <S \—> (S,S x S) is
trivially a logspace réduction.

o / A p e r C o n g s —> SchEq s ; Suppose <S : n —> 0 is a strongly
accessible E-scheme and p Ç 5 x 5 is a relation. If p is not a congruence
on S then («S, p) is mapped to some fixed pair (J?7, G) of S-schemes such
that T ^ Q. Otherwise (<S,p) is mapped to the pair (<S,<S/p). All these
calculations can be done in logarithmic space. The correctness of the
réduction follows by Corollary 4.9.

Proof of SchEqE -> ConwayEq s ; Let Î/J : I T e r m s - • ESch be the
unique homomorphism mapping each symbol a G S^ to the corresponding
atomic scheme a : 1 —* g. It is easy to find a logspace algorithm which, given
a E-scheme S : n —> p, constructs an itération term TS G ITerms [n,p\ such
that I/J(T$) = <S. The map (S,Sf) i—> (r^ = r^^) is a logspace réduction.

Proof of ConwayEq s —» ConwayEqx ; Given an équation t — tf

between itération ternis t,if G ITerm^, replace each symbol a G S p

appearing in t or ty with a variable symbol of sort 1 —> p in X such that
different symbols are replaced with different variables. D

LEMMA 6.3: ConwayEq x G PSPACE.

Proof: We outline a nondeterministic polynomial space algorithm which
décides if an équation t = tf between itération terms t,tf G ITerm x fails
to hold in some Conway theory. The resuit then follows by Sawitch's
theorem [6]. Recall the définition of the signature £(X) from the previous
section. Let us write A for S(X). By Lemma 5.1, it is enough to check if
the équation E(t) = £(£') fails in some Conway theory, or equivalently, if it
fails in the free Conway theory ASch/^. Let (p : ITermA —• ASch be the
unique homomorphism mapping each symbol a G Ap to the corresponding
atomic scheme a : 1 —> p. Then £(£) = E(£') fails in ASch if and only if
<?(£(<)) ^ V?(SCO)- T h e t w o schemes S := ip(E(t)) and S' := ^(E(t'))
can be constructed in polynomial space, as well as their minimal direct
product [sIV]. By Theorem 4.1, our algorithm only has to check if S and
<S' are not strongly equivalent or if at least one of the two congruences ker^
or ker71-/ is not aperiodic on [sIV]. It is easy to test if two schemes are not
strongly equivalent, so the problem is reduced to testing if a congruence p
is not aperiodic on a scheme T. This can be done by guessing a congruence
class C G Cl(p), a nonsingleton subset C" = {c i , . . . , cm} of C and a word
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G [w]* such that

(16)
Let n be the number of states in JF. It is not allowed to store the whole word
u, since it can be approximately as long as (™J -m!. Instead, we guess u letter
by letter and keep track only of its length and the states a and 8jr[cuu),
i G [m]. The procedure stops if condition (16) holds or \u\ > (7™) • ml. D

THEOREM 6.2: Suppose E contains a symbol of rank at least 2. Then all the
décision problems AperSch^, AperCongE, SchEq s and ConwayEq s

are VSYXCE-complete. It is also PSPACE-complete to décide if an équation
t = t! between itération terms t,tf E ITermx holds in ail Conway théories.

Proof: This is an immédiate conséquence of Lemmas 6.2 and 6.3. •
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