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SEMANTICS OF FLOWCHART PROGRAMS
AND THE FREE CONWAY THEORIES (*)

by L. BERNATSKY (") and Z. Esix *

Communicated by W. BRAUER

Abstract. — Several useful identities involving the fixed point or iteration operation are
consequences of just the Conway theory axioms. In this paper we gzve several characterizations of
the free Conway theories including a concrete description based on aperzodlc homomarphzsms of
flowchart schemes. It follows from this concrete description that the equations that hold in Conway
theories are exactly the valid “group-free” equations of iteration theories, moreover, the equational
theory of Conway theories is PSPACE-complete. © Elsevier, Paris

Résumé. — Plusieurs identités mettant en jeu les opérateurs de point fixe ou d’itération sont
conséquences des seuls axiomes de la théorie de Conway. Nous donnons dans ce papier plusieurs
caractérisations des théories libres de Conway, dont une description concréte basée sur des
morphismes “apériodigues” de systemes d’organigrammes. Cette description concréte entraine
que les équations valides dans les théories de Conway sont exactement les équations valides “sans-
groupes” des théories d'itération, et de plus, que la théorie équationnelle des théories de Conway
est PSPACE-compléte. © Elsevier, Paris

1. INTRODUCTION

The algebraic study of flowchart schemes and flowchart algorithms was
initiated in [13] and further developed in [3, 20, 7], to mention only a
few references. Schemes may be defined as locally ordered, vertex labeled,
finite digraphs with distinguished begin and exit nodes, each labeled by a
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36 L. BERNATSKY, Z. ESIK

non-negative integer, so that each scheme has source n and target p for
some non-negative integers n, p. (We use N to denote the set of nonnegative
integers.) The other nodes are consistently labeled by letters in a ranked
or doubly ranked alphabet, or signature. Schemes over a signature ¥ are
equipped with several constants and the operations of sequential composition,
pairing or separated sum, which may be viewed as some sort of parallel
composition, and a looping operation called iteration. (The paper [7] uses
feedback instead of iteration.) In [3], schemes over a signature Y have been
characterized as the free algebra generated by X in a variety of N x N-
sorted algebras axiomatized by a finite number of equation schemes. See
also [20, 7] for refinements of this result.

Besides being IN x N-sorted algebras, flowchart schemes over a signature
3 may be viewed as a small category whose objects are the integers IN and
whose morphisms n — p are the ¥-schemes with source n and target p.
Unless X is trivial, coproducts do not exist in this category, so that ¥-schemes
do not form an algebraic theory in the sense of Lawvere [18]. Nevertheless,
schemes are commonly interpreted in such theories which are enriched by a
fixed point operation modeling iteration. For example, the theories Seq4 of
sequacious functions [11] on a set A are used to model the stepwise behavior
of flowchart algorithms, while the theories Pfn 4 of partial functions on A
serve as semantic models for input-output behavior. Another common class
of interpretations of schemes is as continuous functions over cpo’s. A scheme
may be regarded as the graphical representation of a recursive system of
fixed point equations. When A is a cpo with a bottom element, and when
each letter in ¥ is interpreted as a continuous function on A of appropriate
arity, the semantics of a scheme n — p is a continuous function A? — A",
i.e., a morphism n — p in the theory Th4 of continuous functions over
A. This function is obtained as the least solution of the recursive system of
equations corresponding to the scheme.

The theories Seq 4, Pfn 4 and Th 4 are all examples of “iteration theories”
originally defined in [1, 2] and [15] and studied in [5]. It is shown in [5] that
the variety of iteration theories is generated by the theories Seq 4, where A is
a set, or by the theories Th 4, where A is a cpo with a bottom element. (The
theories of the form Pfn, generate the subvariety consisting of the iteration
theories with a unique morphism 1 — 0.) Thus two schemes are strongly
equivalent, i.e. equivalent under all interpretations in the theories Seqy
(or in the theories Thy) iff they are equivalent under all interpretations
in iteration theories. For this reason iteration theories may be called the
“standard interpretations for flowchart schemes.
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FREE CONWAY THEORIES 37

It is shown in [5] that the problem of deciding whether an equation
holds in all iteration theories can be solved in polynomial time, i.e., the
equational theory of iteration theories belongs to-P. It follows that the strong
equivalence problem of flowchart schemes is also in P.

In this paper we obtain corresponding results about “nonstandard”
interpretations of flowchart schemes. By a nonstandard interpretation we
mean a theory enriched with an iteration operation satisfying all equations
true of flowcharts. One of the main results, Theorem 3.1 shows that these
theories are exactly the Conway theories, axiomatized by a small set of
equations including the well-known composition identity (11) which implies
Elgot’s fixed point equation (12). See [5]. Thus the least congruence on
>-schemes whose quotient is a theory gives the free Conway theory on X.
The second main result, Theorem 6.1, provides an explicit description of the
free Conway theories. The description uses aperiodic morphisms of flowchart
-schemes, a concept borrowed from automata theory. See [19]. It follows that
the equations that hold in Conway theories are exactly the valid “group-
free” equations of iteration theories. Finally, we use the explicit description
" to prove that the Conway-equivalence problem of flowchart schemes is
PSPACE-complete, cf. Theorem 6.2. It then follows that the equational
theory of Conway theories is also PSPACE-complete. Theorems 3.1 and 6.1
answer open problems raised in [3] and [5].

Aside from serving as nonstandard interpretation domains for flowchart
schemes, our interest in Conway theories stems from several mathematical
facts. First, iteration theories are axiomatized by the Conway theory axioms
together with a complicated equation scheme, the commutative identity [15],
or the group-identities [14]. (This latter result may be seen as a generalization
of Krob’s result [17] confirming a conjecture of Conway [9] on the
axiomatization of the regular identities.) Comparing the structure of the
free Conway theories with that of the free iteration theory, we obtain a
clear picture of that part of the equational theory of iteration theories which
is captured by the commutative identity, or the group identities. Also, our
work explains the role of the commutative identity: it separates nonstandard
models from the standard ones by equations. Second, Conway theories are
interesting in themselves.

e In a matrix theory [12, 5] equipped with a unary operation a — a*, the
Conway axioms are the two well-known sum and product identities

(a+b)* = (a*b)*a* (1)
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38 L. BERNATSKY, Z. ESIK

and
(ab)* = a(ba)*b + 1. (2)

Conway’s book [9] contains many interesting identities which are
consequences of just the Conway axioms. See also [17, 16].

e It is shown in [5], that a general Kleene-type theorem is a logical
consequence of just the Conway axioms.

e It was proved in [4] that the soundness, and relative completeness of
the Floyd-Hoare calculus in expressive models, is a consequence of the
Conway theory axioms. Thus, even under nonstandard interpretations,
one can reason about the correctness of flowchart programs using the
Floyd-Hoare rules.

1.1. Basic notions and notations

The set of positive integers is denoted [w]. Recall that N is the set of
nonnegative integers. For n € N, [n] denotes the set {1,2,...,n}, so that
[0] is just another name for the empty set (. A ranked set or signature is a
set ¥ of symbols each having a specified rank in N. The collection of those
symbols having rank  is denoted %,. For a set A, A* is the set of all finite
words over A, including the empty word e. For a binary relation f C A x B,

dom(f):={a€ A | b€ B (a,b) € f}

and
rg(f):={b€ B | Ja€ A(a,b) € f}

are the domain and the range of f, respectively. The inverse of the relation
f is denoted f~1. When f is a partial function A — B, its kernel kery is
the equivalence relation on dom(f) defined by

zkeryy & f(z)= f(y),

for all z,y € dom(f). Suppose that S is a set and p is an equivalence
relation on S. Then S/p is the set of all equivalence classes of p and, for
an element s € S, s/p is the equivalence class of s. The composite of two
relations o € A x B and 8 C B x C is denoted a o 3, or just af.

2. FROM CATEGORIES TO ITERATION THEORIES

A (small) category C consists of a set Ob(C) of objects, and for each pair
a, b of objects, a set C(a, b) of morphisms or arrows with source a and target
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FREE CONWAY THEORIES 39

b. We write f : a — b to indicate that f is a morphism having source o and
target b. A category is equipped with an operation of composition
C(a,b) x C(b,c) — C(a,c)
(f7 g) = f "9,

for all triples a,b,c of objects in C. There is a distinguished morphism
1, : a — a for each object a. The composition operation is required to be
associative, when defined, and the morphisms 1, are neutral elements with
respect to composition, i.e.,

a-f = f = [,

for all objects a,b and morphisms f : a — b.

An N-category is a category whose objects are the nonnegative integers.
An algebraic theory, or theory for short, is an N-category 7" such that for
each n > 0, there are n distinguished morphisms

in:l—on

with the following coproduct property. For any p > 0 and each family
fi,---, fn of morphisms 1 — p there is a unique morphism f : n — p
such that

in- f=fi,

for all 7 € [n]. The morphism f determined by the family f;, i € [n], is
called the (source) tupling of the family, and is denoted

(fisoos fn)-

Lastly, the distinguished morphism 1; : 1 — 1 is the identity 1,, ie.,
13 = 1. It follows that

1, =(In,...,nn)
and
f={) f:l1-0p

hold in every theory.
The source tupling of the empty family of morphisms 1 — p yields a
unique morphism 0, : 0 — p, for all p > 0. Morphisms formed from the
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40 L. BERNATSKY, Z. ESIK

distinguished morphisms ¢, with source tupling are called base morphisms.
A theory T is called nontrivial if the two base morphisms 12 and 23 are
different in 7. If T is a nontrivial theory, the base morphisms form a
subtheory in 7' isomorphic to the theory Tot of all functions [n] — [p]. In
Tot, composition is function composition, the identity morphism 1, : n — n
is the identity function idj,) : [n] — [n], and for each ¢ € [n], n > 0, the
distinguished morphism ¢, : 1 — 7 is the constant function with value 7.
We call a base morphism p : n — p surjective/injective if the corresponding
function p : [n] — [p] is surjective/injective.

In every theory, the tupling operation can be generalized to morphisms
having a common target but arbitrary source by defining

<f(1)7"‘)f(k)> = (f1(1)7"'7 7(11)7"')f:§k)""’ 72&?)’

for all k& > 0 and morphisms f() : n; — p, i € [k], where fJ(Z) denotes
the jth component j,, - O of @, From now on, by tupling we mean
this generalized tupling operation. In the special case £ = 2 we call this
operation pairing.

Suppose T and T” are theories. A theory morphism ¢ : T — 7" is a
function mapping each morphism ¢ : n — p in T to a morphism {p : n — p
in T, n,p > 0. Moreover, preserves the composition operation and the
distinguished morphisms ¢,, n > 0, 7 € [n]. It follows that ¢ preserves
the tupling operation and the identity morphisms 1,. Thus any theory
morphism determines a functor which preserves coproducts. Theories and
theory morphisms form a category TH. Note that Tot is initial object in
TH, i.e., for any theory T', there exists a unique theory morphism Tot — T'.

Algebraic theories can be considered as N x N-sorted algebras, where the
elements of sort (n, p) are all morphisms f : n — p. As an algebra, a theory
has operations of tupling and composition together with constants i,, for all
n > 0, 1 € [n]. Each theory satisfies the following theory identities:

fAg-n)y=(f-9)-h (3)
Ly-f=f (4)

1= (5)

in - {f1,... fa) = fi (6)
(In-fr-omm - f)=f (7
1; =14, (8)
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forall f:n—p,g:p—qh:q—r,and f; : 1 — p, for j € [n]. Here we

regard 1,, as an abbreviation for (1,,...,n,). The empty tuple of elements
with target p is denoted 0,. When n = 0, equation (7) takes the form
Op = f ’

for all f : 0 — p. These equations provide an axiomatization of the class
of all algebraic theories.
In any theory T, the separated sum operation is defined by

f®g:= (f"‘m,q»g')‘p,q):n"“m_’p'*'q,
for all morphisms f : n — p and g : m — ¢, where

Kpg = (Lptgr---»Pptq) P — P+ q

and
Apg =@+ Vptgy-- s (P+ Dptrg) :a— P+ g

A preiteration theory T is a theory equipped with an iteration or dagger
operation, mapping each morphism f : n — n+p to a morphism ff : n — p.
Preiteration theories are the objects of the category TH'. The morphisms
of TH, called preiteration theory morphism, are those theory morphisms
which preserve the dagger operation.

A Conway theory is a preiteration theory which satisfies the following
Conway identities:

PARAMETER IDENTITY

(f-Mn@g) =14, 9)
forall f:n —>n+pandg:p— g

DouBLE DAGGER IDENTITY

(f ((1n,1n) & lp))T = fﬂy (10)
for all f:n — 2n+ p.

COMPOSITION IDENTITY

(f ’ (g,On @ ]-ID>)Jr =1 ((g . <f7 Om & 11’))1’ 173)’ (11)

forall f:n —>m+pand g:m — n+p.
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42 L. BERNATSKY, Z. ESIK

The term “Conway identities” comes from the form these identities take in
matrix theories over semirings equipped with a * operation, see [5]. For
example, the double dagger identity corresponds to the equation (1), and
the composition identity to the equation (2). Note that every Conway theory
satisfies Elgot’s fixed point identity

fT=r- (1 1,), (12)
for all f:n — n + p. In *-semirings the fixed point identity takes the form
a* =aad" + 1.

A Conway theory T is called an iteration theory if it satisfies the following
complicated equation scheme, the commutative identity:

<1m'P"f'(PlEBlp),---,mm'P'f'(PmEBlp»T:P'(f'(/’@lp)).lr,

where f :m — m +p, p: m — n is a surjective base morphism and
P1,---,Ppm 1 M — m are base morphisms with p; - p = p, 7 € [m].

As many-sorted algebras, both Conway theories and iteration theories form
an equational class, so that all free Conway and iteration theories exist. A
concrete description of the free iteration theories has been known for a long
time, see [5], or Section 5.

Although Conway theories have a much simpler axiomatization than
iteration theories, no concrete description of the free Conway theories was
known until now. Another interesting aspect is that in spite of the complicated
axiomatization of iteration theories, it is decidable in polynomial time if an
equation holds in all iteration theories, i.e., the equational theory of iteration
theories is in P. In contrast of this fact, we prove at the end of the paper that
the equational theory of Conway theories is PSPACE-complete. Thus, it is
very unlikely to find an efficient (polynomial-time) algorithm which would
decide if an equation is a logical consequence of the Conway theory axioms.

3. FLOWCHART SCHEMES

In order to help the reader understand the rather uninformative (but
technically useful) definition of a flowchart scheme, we begin with an
informative definition. Suppose ¥ is a signature. A flowchart scheme over
2, or 3-scheme for short, is a labeled finite directed graph S. There are
three types of nodes of S: input or begin nodes, output or exit nodes, and
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FREE CONWAY THEORIES 43

internal nodes or states. A Y-scheme S having 7 input nodes and p output
nodes is called a scheme from n-to p, written S : n — p. The ith input
node of S is labeled by in; and the jth output node is labeled by out;,
for each ¢ € [n] and j € [p]. The states are labeled by symbols ¢ in .
" Input nodes have in-degree 0 and out-degree at most 1. Output nodes have
out-degree 0. A state s with label o € ¥,, has out-degree at most m and
each edge starting from s is labeled by some integer ¢ € [m], such that
different edges have different labels. There is no restriction on the in-degree
of states and output nodes.

A Y-scheme S can also be considered as a labeled deterministic finite-state
automaton with input alphabet [w]. In the following “official” definition this
automata-theoretic approach is used.

DerNITION 3.1: Suppose ¥ is a signature. A 3-scheme is a 6-tuple
S = (S,\, a,6,n,p), where

S is the finite set of states, S N [w] = 0;

A 8 — X is the labeling function;

a : [n] — S U|p] is the partial start function;

§:8 x [w] = SUIp] is the partial transition function satisfying

dom(8) C{(s,t) e Sx [w] | Int<n A A(s) € ,},

n € N is the source of S;
p € N is the target of S.

Thus, in the official definition, the input and output nodes are not
considered to belong to the scheme. Suppose that ¢ € [n]. If a(3) = s € S,
then, in the graphical representation, the ith input node is connected by an
edge to the internal node s. When a(i) = j € [p], the ith input node is
connected to the jth output node. If «(z) is not defined, then the ¢th input
node has no outgoing edge. Intuitively, this corresponds to the case that,
when the flowchart scheme is entered at the :th input node, the computation
represented by the scheme diverges. The transition function is interpreted
in the same way. If §(s,i) = s/, where 5,5’ € S and ¢ € [w], then, in
the graphical representation, the out-edge of s labeled by i is connected
to ¢, and to the jth output node if §(s,z) = j. If §(s,4) is not defined,
then s has no out-edge labeled by 7. In [3], partially defined start and
transition functions are avoided by adding to each scheme a bottom vertex
representing divergence.
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44 L. BERNATSKY, Z. ESIK

We let S,8',F,G and H denote schemes with underlying state sets
S,S', F,G and H, respectively. When the scheme is S (or &', respectively)
we denote by A\, @ and § (), o’ and &', respectively) the labeling, start and
transition functions of S (&', respectively). For other schemes F, the default
notations are Ax, axr and §r. Due to these conventions, in most cases it
will be enough to specify the source and target of a scheme & by writing
S :n — p. Even when a full specification of S is required, we prefer writing
S =(8,10,6) : n — pinstead of S = (S, A, , 6,m, p).

We extend § to a partial function (S U [n]) x [w]* — S U [p] by defining

5(s,u) = { s if u is the empty word e,
L 8(6(s,t),v) if u = tv for some ¢ € [w] and v € [w]*,

6(afi),u) if a(i) € S,

8(i,u) == ¢ afi) if a(i) € [p] and u = ¢,
undefined otherwise,

foralli € [n], s € S and u € [w]*. The partial functions 6, : SU[n] — SU[p]
are defined by

bu(s) := 8(s,u),

for all s € SU[n] and v € [w]". Viewing &, as a binary relation from
S U [n] to SU [p], we define

8.[C, D] := 6, N (C x D),

for all C C SU|[n] and D C S U p]. Note that §,[C, D] is a partial function
C — D. The collection of all nonempty partial functions f : C — D induced
by the words in [w]* is.denoted A[C,-D], i.e.,

A[C, D] = {64[C, D] | u € [w]"} \{0}.

It is not hard to see that the graph-theoretic and automata-theoretic
definitions of a ¥-scheme are equivalent. The only reason we have chosen the
automata-theoretic definition is because we believe it makes proofs shorter.
Nevertheless, many of the proofs become much easier to understand once
a picture has drawn.
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DeriNITION 3.2: Suppose S : m — p is a scheme. We say S is a

partial base scheme if it has no states, i.e., if S = {,

base scheme if it is a partial base scheme and « is a total function [n] — [p].

Note that each (partial) base scheme & : n — p is totally determined by
(and therefore can be identified with) the (partial) function « : [n] — [p]. We
will frequently use the following (partial) base schemes:

For all n,p,q € N,

1, : n — n is the base scheme determined by the identity function
idy) ¢ [7] — [n], see Figure 1,

1

Figure 1. — The base scheme 1, : n — n.

05, : 0 — n is the unique base scheme 0 — n, see Figure 2,

Figure 2. — The base scheme 0, : n.

in : 1 — n is the base scheme determined by the map 1 — 1, for all 5 € [n],

see Figure 3,

Figure 3. — The base scheme ¢, : 1 — n.
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46 L. BERNATSKY, Z. ESIK

Kp,q : P — p+q is the base scheme determined by the inclusion [p] — [p+q],
z +— z, see Figure 4,

I G

Figure 4. - The base scheme x,, : p — p+ ¢

Apg 1 @ — D+ q is the base scheme determined by the translated inclusion
lg] — [p+q], £ — p + z, see Figure 5,

Figure 5. — The base scheme X\, , : ¢ — p + g.
L : 1 — 0 is the unique partial base scheme 1 — 0, see Figure 6.

()

Figure 6. — The partial base scheme L1: 1 — 0.

Two X-schemes S and S’ are called isomorphic if they are isomorphic
as labeled directed graphs. We identify isomorphic schemes, so that S = &'
means S and &’ are isomorphic. Due to this convention, when needed, we
may assume without loss of generality that any two schemes S and S’ have
disjoint sets of states.

3.1. The category of >-schemes

3-schemes n — p serve as morphisms n — p in an N-category, which
we denote by ¥Sch. In ¥Sch, the identity morphism 1, : n» — n is the
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base scheme 1,, : » — n. Following [13] we define four operations on the
morphisms of »Sch.

Deemirion 3.3 Compeosition: Suppose S :m — pand S' : p — q are
Y.-schemes with SN S' = . The Y.-scheme S - S' : n — q has states SU S’
and satisfies

Ms) ifses,

N(s) ifse s,

o (1) if (i) € S,

as.s(i) = q (i) ife(i) € [p],

undefined otherwise,

6(s,1) if s € S and 6(s,t) € S,
a'(6(s,t)) ifs € S and 6(s,t) € [p],
§'(s,t) ifse s,

\ undefined otherwise,

As.si(s) = {

bs.s1(s,t) =

foralli € n), se SUS and t € [w].

The graph representation of S-S’ can be constructed from the graph
representations of S : n — p and &' : p — q in the following way: first
delete the output nodes of S and the input nodes of S’ together with all
adjacent edges. Then take the disjoint union of the two graphs, and lastly,
add a new edge s —, ¢ whenever there was an edge s SN out; in S and
an edge in;—s in &, for some j € [p]. See Figure 7.

DermniTioN 3.4 Pairing: Suppose S : n — pand S’ : m — p are T-
schemes with SN S' = 0. The L-scheme {(S,8') : n+ m — p has states
S U S’ and satisfies

[ Xs) ifses,
)‘(S,S’)(S) - { )\,(S) ifs c S’,

L fal) ifi €n],
a(s,s')(’) = {-a'(i —n) ifi€n+m]\[n],

) 5(S,t) ifses,
5(5,51)(5775) = {6’(S,t) ifse SI,

foralli € [n+m] s € SUS andt € [w].

The graph representation of (S,S’) can be constructed from the graphs
of S:n — pand S’ : m — p as follows: first change the label of the ith
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48 L. BERNATSKY, Z. ESIK

¢

S

S/

Figure 7. — Composition.

input node of &’ from in; to inn4;, for each ¢ € [m]. Then take the disjoint
union of the graph of S and the modified graph of &', and lastly, identify
the corresponding output nodes. See Figure 8. As the pairing operation is

o 00 &

S S’

Figure 8. - Pairing.

associative it can be extended to a many-argument tupling operation in a
natural way. Note that the empty tuple of ¥-schemes with target p is the
base scheme 0, : 0 — p by definition.
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DermNITION 3.5 Separated sum: Suppose S :n — pand S’ : m — q are
Y-schemes. The separated sum of S and &' is the %-scheme

S8 =(S kpy S Npg)in+m—op+g.
One can construct the graph of S @ &’ in two steps: first change the labels

1n; to inn.l_, and the labels out; to outp; in the graph of &', for all 7 € [m)]
and j € [q], then take the disjoint union of the two graphs. See Figure 9.

TEYYY

Sl

. outpy) - - - (0Ulpiqg

Figure 9. - Separated sum.

Remark 3.1: Since separated sum was defined in terms of the other
operations and constants, it could be removed from the collection of the
basic operations.

DerniTioN 3.6 Iteration: Suppose S : n — n + p is a X-scheme. Then
its iterate is the Y-scheme

(S, A, aa™B, 6a*B) :m — p,
where o is the reflexive and transitive closure of o considered as a relation
aC(SU[n+p])x(SU[n+p]), and where 8 : SU [n+p] — S U [p]
is defined by
B(s) =s,
_ -n ifi>n,
ﬁ(z) { undefined ifi < n,
forall s € S and i € [n+ p).
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The graph of ST is constructed from the graph of §$ : n — n 4+ p in three
steps: first add a new edge s L, ¢ whenever there were edges

t . ) . '
§ — outy,, n; ——ouly,, 1N, — ouly, ..., 1M, —§,

in the original graph of S, for some 1,...,%, € [n], m > 0. Then delete
the first n output nodes out, ..., out, together with all adjacent edges, and
lastly, change the labels of the remaining output nodes from out, 4+; to out;,
for all ¢ € [p]. See Figure 10.

mny | - - - | ing

)

N\

Figure 10. - Iteration.

It is not hard to see that the composition operation of schemes is associative
and the base schemes 1,, are left and right units. Thus ¥Sch is a category.
On the other hand, 3Sch can be viewed as an IN x N-sorted algebra with the
four operations defined above along with constants i, for all n > 0, i € [n].
As such, it is generated by the signature ¥, more precisely, by the inclusion
7% : ¥ — XSch mapping each symbol ¢ € X, to the corresponding atomic
scheme & : 1 — p, see Figure 11. Indeed, each Y-scheme S : n — p can
be written as

p- ((ap1770/-7?7pm)f71p)

for some partial base scheme p : n — m + p, atomic schemes &; : 1 — p;
and partial base schemes p; : p; — m + p, @ € [m], where o; € Yp, for all
1 € [m] and m is the number of states in S. See [13]. Each partial base
scheme p : » — p can be expressed uniquely as an n-tuple of some schemes
ip:1—9pand_Lp:1—>p,where_Lp=_L~0p=1];-0p.

Although ¥Sch is an N-category, it is not a theory: it does not satisfy the
theory identities (6) and (7) unless ¥ is empty, i.e., when every >-scheme
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Figure 11. - The atomic scheme 6 : 1 — p.

is a partial base scheme. Interestingly, ¥Sch satisfies two of the defining
Conway identities, namely, the parameter and double dagger identities. It
also satisfies a weak form of the composition identity:

Base CoMPOSITION IDENTITY
(P (6,0, @ 1L,)) = p- (G {p,0m & 1)1, 1),
for all base schemes p : n — m+ p and arbitrary schemes G : m — n+p.
DermviTiON 3.7: For each signature 3., let =x. be the least congruence on
¥ Sch such that the quotient 3Sch /=y, satisfies the theory identity (7).

When ¥ is understood we omit the subscript in =s..

LemmMa 3.1: Suppose F :n — 2n+m+pand G - m — 2n+m+p
are 3-schemes. Then

(F, F.o =5-((F,6)- (Be 1),
where [ denotes the base scheme (1,,1,) ® 1 : 2n+m — n + m.
Proof: By the definition of =,
(1n,1n) - F=(lon - (In,1n) - F,...,(20)2n - (1, 1) - F)
=(lp-F,...,np-F,1n-F,...,0nn - F)
= (F,F).
It follows that

ﬂ(f7g> = ((17za1n>'f>g> ((f)]:>7g> = (f,]:,g).
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Thus,
(F. 70 =B (F9)
=p-((F,0)- Bo 1)),
by the base composition identity applied to the base scheme 8 @ 0, :
2n+m — n+m+p. O

THEOREM 3.1: X Sch/= is freely generated by the signature 3 in the variety
of all Conway theories.

Proof: It is known that ¥Sch is freely generated by X in the smallest
variety containing all structures ASch, for any signature A. A complete
axiomatization of this variety was given in [3]. Since each of those axioms
is a logical consequence of the Conway identities, it follows that the -
generated free Conway theory is the quotient £Sch/~, where ~ is the least
congruence on X Sch for which ¥Sch/~ is a Conway theory. We are going
to show that = = ~.

The containment = C ~ is trivial. The converse containment = O ~
is proved by showing that ¥Sch/= is a Conway theory. Except for the
composition identity and the two theory identities (6) and (7), all defining
axioms of Conway theories hold in XSch, and hence in the quotient
¥Sch/=. As (7) holds in XSch/= by definition, we are left to show
that ¥ Sch/= satisfies (6) and the composition identity.

First observe that for any integer p > 0, 0, /= is the only morphism 0 — p
in ¥Sch/=. Suppose Fi,...,F, are X-schemes 1 — p. Then, in ¥Sch,

i (F],...,.'Fn> = (01 “F1,. 0,01 - Fic1, Fi, 0 -fi+1,...,01 ﬁ,)
' =(0p,...,0p,F;,0p,...,0p)
=F.
Now suppose that F : n — m +p and G : m — n + p are 3-schemes and
let 3 denote the base scheme (1,,1,) @ 1., : 2n + m — n + m. Then

F- ((g ’ <‘F)Om @ 117))1’119) =

= (1 ® Ontm)

AF (02 @ Linip), F - (020 ® Lingp), G+ (00 ® 1y, ® 0 @ 1))
= (1n D Ongm)

B ((F (020 @ Lingp), G- (0,01, ®0p, ® 1)) - (B 1))}

= (10 ®0m) - (F-(0p ® Linyp), G- (10 ® 0 @ 1)1

= (F(G,0n @ 1,))!
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by Lemma 3.1 and by the definition of the operations in XSch. O

We say that two 3-schemes are Conway equivalent if they are identified
by the congruence =. Although the previous theorem gives some kind of
characterization of =, it doesn’t give an algorithm to decide the Conway
equivalence problem of flowchart schemes. Our next task is to find such an
algorithm, based on a structural characterization of =.

4. SIMULATIONS

In this subsection we define simulations, i.e., structure preserving relations
between schemes. Congruences and homomorphisms of flowchart schemes
are then defined as simulations satisfying some further requirements.

In order to simplify our presentation we introduce the following notation:
when f: A — A" and g : B — B’ are partial functions and p C A’ x B’ is
a binary relation, we write f(a) p g(b) for the statement

(a ¢ dom(f) Ab ¢ dom(g)) V (f(a), g(b)) € p.

DerINITION 4.1: Suppose that S and S' are Y-schemes n — p. A binary
relation v C S x S’ is called a simulation from S to S', written S || S, if

a(i) (yUidpy) 0 b (13)

and
sys = As)=N() A 8(s,t) (vU idp)) 6'(s', ) (14)

hold for all i € [n), s € S, s € S' and t € |w]. We write S =~ §' and
say that the two schemes S and S' are strongly equivalent if there exists
a simulation from S to S'. In the special case that the simulation relation
v is a function S — S', v is called a homomorphism from S to S'. A
bijective homomorphism is called an isomorphism. Another special case is
that S = §' and the simulation vy is an equivalence relation on S: then we
say <y is a congruence on S.

Thus, if v is a simulation from S to &', then, by (13) and (14), the
following hold for their graphical representations. First, for any 7 € [n], the
ith input node of S has an out-edge iff the ith input node of &’ has an
out-edge. Moteover, if the ¢th input node of S is connected by an edge to an
internal node s, then the ith input node of S’ is connected by an edge to an
internal node s’ with (s, s’) € «. If the ith input node of S is connected to an
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output node, then the ith input node of S’ is connected to the corresponding
output node of &’. And if s € S and s’ € S’ with (s,s') € v, then, by (14),
s and s’ have the same label, and for any ¢ € [w], s has an out-edge labeled
by ¢ iff s’ has one. Moreover, if the target of the out-edge of s labeled by ¢
is an internal node v, then so is the target v’ of the corresponding out-edge
of &', and (v,v') € 4. If the target of the out-edge of s labeled by ¢t is
an output node, then the target of the out-edge of s’ labeled by ¢ is the
corresponding output node of &'.

We usually write v : S — &’ to indicate that «y is a homomorphism from
S to &'. Simulations have several nice properties, some of them are listed
in the following lemma. See also [20, 7, 5].

Lemma 4.1: For all relations o, and X-schemes F,G, H,F',G of
appropriate source and target,

1 Flidp| F

2. FlelG = Gl | F

3.FlelG ANGIYH = Fleoy|lH

4. FlolF AN GG = (FG) lpUd|(F,G)

S FlelF AN GG = F-GleUuy|F -G

6. FlolF' A GIWG = Fodlpuy|Fad

7. FlplG =  Fllp|dl

8 Flelg N FlplG = Fleuylg

9. FlolG A FIW|G = Fleny|G O

CorOLLARY 4.1: The strong equivalence relation = is a congruence on
the N x N-sorted algebra XSch. Moreover, when S and S’ are strongly
equivalent schemes, there exists a smallest simulation

and a largest simulation

fromSto 8. d
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Lemma 4.2: Suppose S : m — p and 8' : n — p are strongly equivalent
Y-schemes, ¥ N [p] = 0. Then

sslsi 8 & Fien]Iuew s=56Gu) A s =8(3,u)
and
$s9s 8 & VYue[w* (AU idp )(6(s,u)) = (A U idpp))(8'(s', u)),

forall s € S and s' € S'. Moreover, sOgs is the largest congruence on S. O]

We shall write ©g for s@g.

Thus, two states s € S and s’ € S’ are related by the smallest simulation
iff there exist a word u € [w]* and an integer ¢ € [n] such that s is the target
of the directed path, labeled by u, from node (i) of S, and s’ is the target
of the directed path from o/(7) labeled by the same word u. Moreover, s is
related to s’ by the largest simulation iff for all words u € [w]* there is a
directed path labeled by v from s iff there is a directed path labeled by u
from s', and the labels of the targets of these paths agree.

DErFmNITION 4.2: Suppose S : m — p is a 3-scheme and p is a congruence on
S. The quotient scheme S/p : n — p with states in the set S/p is defined by

As/p(s/p) = Als),
a(i)/p . ifali) €S,
as/p(i) = ¢ a(i) if a(i) € [p],
undefined if (i) is undefined,
8(s,t)/p if6(s,t) €S,
bs/p(s/pt) =< 6(s,t)  ifé(s,t) € [p],
undefined if 6(s,t) is undefined,

foralli € [n], s € Sandt € [w]

Congruences and homomorphisms of flowchart schemes behave just
like congruences and homomorphisms of algebras. For example, if ¢
is a homomorphism from a Y-scheme S to a Z-scheme &' then ker,,
is a congruence on S and there exists a surjective homomorphism
w1 : S — S/ker, and an injective homomorphism ¢z : S/ker, — S
such that ¢ = @1 0 3. Conversely, if p is a congruence on a scheme S, the
function mapping each state s to the congruence class s/p is a surjective
homomorphism, the natural homomorphism from S to S/p.
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In the next definition we adopt the universal algebraic concept of a
subalgebra to flowchart schemes.

DerFINITION 4.3: Suppose S : n — p and S8’ : n — p are X-schemes. S' is
a sub-scheme of S if S’ C S and the inclusion S’ — S is a homomorphism
from 8’ to S. We call S' a proper sub-scheme of S if it is a sub-scheme
of S and S' C S.

Each sub-scheme of a scheme S is totally determined by (and is usually
identified with) its set of states. Note that when ¢ is a simulation from S to
&', dom(y) is a sub-scheme of S and rng(¢y) is sub-scheme of &'.

DermitioN 4.4: Suppose S : n — p is a 2-scheme. A state s € S is called
accessible if s = 6(z,u) holds, for some i € [n] and u € W], i.e., when in
the graphical representation, s lies on a directed path from an input node.
Moreover, s is called strongly accessible if s = «a(i) for some i € [n], ie.,
when s is the target of an edge from some input node. We call S a (strongly)
accessible scheme if each of its states is (strongly) accessible.

We denote the set of all accessible states of S by Acc(S). It is not hard
to see that Acc(S) is the smallest sub-scheme of S, called the accessible
part of S. Therefore, a scheme is accessible if and only if it has no proper
sub-schemes.

LemMa 4.3: Suppose S and S' are strongly equivalent Y-schemes. Then
dom(sTs/) = Ace(S) and tng(sTs/) = Acc(S'). Moreover,

slst = acs)l's’ = slace(s’) = Ace®)Tace(sy-
o

LemvA 4.4: Suppose S :n — pand S’ : n — p are L-schemes and
¢ : S — S is a homomorphism. Define 1 := ¢ N (Acc(S) x '), so that v
is the restriction of ¢ to the accessible states of S. Then 1p = sT's: and 1 is
a surjective homomorphism Acc(S) — Acc(S').

Proof: v is clearly a homomorphism from Acc(S) to &' and, by
Lemma 4.3, sI's: = pcs)Ts C ¢ Since dom(sls/) = dom(y)) =
Acc(S) and ¢ is a function, it follows that ¢ = s[s: and rng(y)) =
rng(sls/) = Ace(S"). O

The next lemma gives various (well known) characterizations of the strong
equivalence relation = of flowchart schemes. See [5], for example.
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LemMA 4.5: Suppose S : n — pand S’ : n — p are L-schemes, ¥N[p| = 0.
Then the following statements are equivalent:

1. S and S8 are strongly equivalent.
2. Vieg[n] Vu € [w]" (AUidp))(8(i,u)) = (N Uidy,))(8'(3,4)).
3. The relation

{(s,) e SxS | Jien] Juew" s=6Gu As =80,u)}

is a simulation from S to S'.

4. The two schemes Acc(S)/@pcc(s) and Acc(S')/Opce(sr) are isomor-
phic.
O

Every simulation relation  from a scheme S to a scheme S’ determines
a scheme whose states are the ordered pairs in -y.

DEFINITION 4.5: Suppose S : m — p and S’ : n — p are strongly equivalent
Y.-schemes and vy is a simulation from S to S'. Then we define the ¥-scheme

() = (" A Qs Oy)) = — b, where

A ((5:87) = As),
(a(i), 0/ (1)) if a(i) € S,
apy (i) = ¢ a(i) if a(1) € [p],
undefined if a(i) is undefined,
(8(s,1),6'(s',1)) ifé(s,t) €S,
6[7]((5731)’t) = 5(5:t) if(S(S,t) € [P],
undefined if 6(s,t) is undefined,

foralli € [n], (s,8') €, 1 € [n] and t € [w]. We call the schemes [sT's:] and
[s©s'] the minimal and maximal direct product of S and S', respectively.

Thus, for each ¢ € [n], the ith input node of the scheme [y] has an
out-edge iff the ith input node of S, and hence of S’, has an out-edge.
Moreover, when exists, the target of this out-edge is the ordered pair (s, s'),
where s and s’ are the targets of the out-edges of the ith input nodes of
S and &', respectively. However, if say s is an output node, the target of
the out-edge of the sth input node of [v] is the corresponding output node.
Let (s,s') € v and ¢ € [w]. Then, in the graphical representation of the
scheme [v], the node (s,s’) has an out-edge labeled by ¢ iff s, and hence
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s’ has an out-edge labeled by t. Suppose that v and v denote the targets
of these edges. Then, since v is a simulation, v is an internal node iff v’
is. In this case, the ordered pair (v,v') € -y is the target of the out-edge of
(s,s') labeled by t. Otherwise s and s’ are output nodes, and the target is
the corresponding output node of [v].

LemMa 4.6: Suppose S :m — pand S8’ : n — p are strongly equivalent
X-schemes. Then their minimal direct product [sT's/] is an accessible scheme.
Moreover, the two projection functions w : sU's: — S and ' : sT'si — S’
are homomorphisms, namely, © = ;v \I's and ' = [ ;r Fs

Proof: Suppose (s,s’) € sT's:. By Lemma 4.2, there is an integer ¢ € [n]
and a word u € [w]* such that

(373/) = (6(i7u)75l(i1u)) = 6[5F5:](7:’u)a

showing (s, s’) is an accessible state of [sI's/]. It is trivial that the two
projections are simulations, so they are homomorphisms. Now 7 = ;r I's
and ' = [ p 1 Ts/, by Lemma 4.4.

Lemma 4.7: Suppose S, S' and S are Y-schemes n — p, ¢ : S — S
and ¢' : S — S'. Then there exists a unique homomorphism v : Acc(S) —
[sTs]-

Proof: By Lemma 4.4, the only possibility for ¢ is the least simulation
relation gl'(,r,}, which is defined, since S, S', S and [sTs/] are strongly
equivalent. To prove it is a function assume that 6z(i,u) = 65(j,v) is a
state of Acc(S), for some integers i, j € [n] and words u,v € [w]*. Then

6s(t,u) = @(85(,uw)) = ¢(5(45,v)) = 85(5,v)
and
bsi(i,u) = ¢'(65(i,u)) = ¢'(85(j,v)) = ds:(4,v),
proving 8(,r, (%, ) = d,r,,1(d,v)- _ O
Lemma 4.8: Suppose S : n — p is an accessible Y-scheme and p is a

congruence on S. Then the minimal direct product [sTU's),| of S and S/p
is isomorphic to S.

Proof: Since S is accessible, the states of [sI's,] are all pairs (s, s/p),
s € S, and the projection 7 : [sT's/,] — S is an isomorphism. g
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4.1. Aperiodic congruences

In this subsection we define and study some special congruences
of flowchart schemes, namely minimal, regular, simple and aperiodic
congruences. Although the results of this subsection have little importance of
their own, they serve as a technical bases in the course of proving our main
result, the characterization of the Conway-equivalence of flowchart schemes.

When A and B are sets, we shall denote by Const[A, B] and Biject[A, B]
the set of all constant functions and the set of all bijections A — B,
respectively. Suppose that p is a congruence on a scheme S. The set of all
nonsingleton equivalence classes of p will be denoted by Cl(p). Recall from
Lemma 4.1 that the intersection of two (and in fact any nonzero number
of) congruences on S is again a congruence on S. It follows that if C’ is a
subset of an equivalence class C' of p then there exists a least congruence
©(C’) on S, called the congruence generated by C’, such that ©(C’)
identifies all the elements of C’. Note that ©(C') is the least equivalence
containing the relation

O0 = {(7(a),7(d)) | a,be C', T€ AIC,S]} C SxS

consisting of all pairs (¢,d) € S x S such that there exist a,b € C' and a
word u € [w]* such that c is the target of the directed path from a labeled by
u, and d is the target of the corresponding directed path from b. The relation
©g is usually not transitive, in which case Oy # ©(C’). Also note that if
|C’'| <1, ©(C") is the trivial congruence ids on S.

DEFINITION 4.6: Suppose S : n — p is a flowchart scheme and p is a
congruence on S. The rank of p, denoted by #p, is the cardinality of its largest
congruence class. A congruence of rank k is also called a k-congruence.
We say p is

minimal if it is nontrivial and minimal among all nontrivial congruences of
S with respect to set inclusion,

regular if it is generated by each one of its nonsingleton classes, i.e., if
0(C) = p,

for all C € Cl(p),
simple if

A[C, D] C Const[C, D] U Biject[C, D],
for all C,D € Cl(p),
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aperiodic if
spbls,u) = Fk>0 8(s,uF) = 6(s,u*T),

for all s € S and u € [w].

Note that a trivial congruence is simple, regular and aperiodic, by
definition. Also note that every 2-congruence is simple and every minimal
congruence is regular. However, there exist regular congruences which are
not minimal. (For the simplest example, take the scheme 0 — 0 having
three states labeled by a symbol o having no transitions. Then the relation
that collapses all three states is a regular congruence which is clearly not
minimal.)

The word “regular” is used here only as a technical term. The concept of
regular congruence has nothing to do with regularity as used in automata
theory. Nevertheless, the notion of aperiodic congruence stems from automata
theory, since a congruence p is aperiodic iff for each congruence class C,
the transformation semigroup (C,A(C,C)), or the semigroup A(C,C) is
aperiodic. See [19].

ReMARK 4.1: Suppose S : n — p is a flowchart scheme and p is a
congruence on S. Then the following statements are equivalent.
1. p is aperiodic on S.
2. None of the partial functions
{6.(C',C") | ue ], ¢’ C CeClip)}
is a nontrivial (cyclic) permutation.
YC € Cl(p) Vr € A[C,C] 3k € N 7F = 7k+1,

For all C € Cl(p), no subsemigroup of the monoid A[C,C] is a
nontrivial group.

In the next three lemmas we establish a few simple facts about the special
congruences defined above.

LEMMA 4.9: Suppose p is a simple congruence on the scheme S. Then p
is regular if and only if

|A[C, D] N Biject[C, D]} > 1,
for all C,D € Cl(p).
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Proof: If p is simple and the above condition holds then p is clearly
generated by any one of its nonsingleton equivalence classes. Now assume
p is simple and the above condition fails, so that there are two nonsingleton
equivalence classes C and D of p such that A[C, D] N Biject[C, D] = 0.
Then A[C, D] C Const[C, D] and the congruence generated by the class C
is properly contained in p, since it does not identify the elements of D. [

Lemma 4.10: Suppose p is a simple congruence on the scheme S. Then p
is aperiodic if and only if

A[C, C] N Biject[C, O] = {idc},

for all C € Cl(p).

Proof: Observe that the elements of A[C,C] N Biject[C,C| form a
subgroup in the monoid A[C,C]. By Remark 4.1, this group has to be
trivial. O

LemMa 4.11: Suppose p is a simple regular congruence on the scheme S.
Then p is aperiodic if and only if

|A[C, D] N Biject[C, D]| = 1,
for all C,D e Cl(p).

Proof: If p is simple and satisfies the above condition, then it is aperiodic by
Lemma 4.10. Now assume p is simple, regular and aperiodic. By Lemma 4.9
and Lemma 4.10, we only need to show that for all distinct nonsingleton
equivalence classes C, D of p, there is at most one bijection in A[C, D].
Assume 7 and 7' are bijections in A[C, D]. By Lemma 4.9, there exists a
bijection 7 € A[D, C]. Now both functions 7 o 7 and 7’ o 7 are bijections in
A[C, C], so they are equal, by Lemma 4.10. It follows that 7 = 7. O

~ Recall that when p’ C p are two equivalence relations on a set S, their
quotient p/p’, defined by

Vs,s' €S (s/p)pld (s']p) & spé,

is an equivalence relation on the set S/p’ of all equivalence classes of p'.
It is not hard to see that when p' C p are congruences on a scheme S
then the equivalence p/p is a congruence on the quotient scheme S/p’ and
(S8/0)/(p/p') is isomorphic to S/p. The following two lemmas show that
some nice properties of p are inherited to p’ and p/p’.
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Lemma 4.12: Suppose p is an aperiodic congruence on the scheme S. If
P C pis a congruence on S, then p' is aperiodic on S and the quotient
congruence p = p/p' is aperiodic on the quotient scheme S = S/p'.

Proof: 1t is trivial that p' is aperiodic. Suppose C 5 65(C,u) for some
word u € [w]|* and congruence class C = s/p'. Then s p §(s,u) and since p
is aperiodic, 6(s, uF) = &(s,u**1) € S, for some integer k > 0. It follows
that §5(C,u¥) = 65(C, u**1). 0

Lemma 4.13: Suppose p is a simple congruence on the scheme S. If o C pis
a congruence on S generated by a class C € S/p, then p' is simple on S and
the quotient congruence p = p/p’ is simple on'the quotient scheme S=S8 /0.
Moreover, if C € Cl(p) then |CL(p)| = |Cl(p)| — |C1(p')| < |CY(p)|.

Proof: The case |C| = 1 is trivial, so assume C € Cl(p). Then
Cl(Y) = {DeClp) | AlG,D|NBiject|C,D] £0} C Cl(p).

Since p is simple, it follows that o’ is simple. The nonsingleton equivalence
classes of p are of the form

D = {{d} | de D} = Dj/idp,

where D is a nonsingleton equivalence class of p which is not an equivalence
class of p’. The map D — D is a bijection from Cl(p) \ C1(p’) to Cl(p).
In particular, since Cl(p') C Cl(p) we have

ICI(B)| = [Cl(p)\ CL(Y)| = ICLp)| - ICI) < |CHp)L.
Suppose D and E are nonsingleton classes of 7. Then
sy w) = {e) & Sdu)=c,

for all d € D, e € E and u € [w]", showing that 8z [D,E] is
constant/bijective if and only if 6,[D, E] is constant/bijective. It follows
that p is simple. 0

LemMa 4.14: Suppose p is a simple congruence on the scheme S. Then there
exists a simple regular congruence p' C p on S such that the congruence
p = p/p is simple on the quotient scheme S = S/p'. Moreover, if p is
aperiodic so are p' and p, and if p is nontrivial then p' is nontrivial and
IC1(p)} = ICl(p)| — |CL(p")] < |CL(p)I-
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Proof: If p is trivial so is the claim, therefore assume that |Cl(p)| > 0.
Consider the congruences ©(D) generated by the nonsingleton classes D
of p. Since there are finitely many of them, there exists a minimal such
congruence, i.e., there is a nonsingleton equivalence class C' of p such that
whenever ©(D) C ©(C), for some D € Cl(p), then O(D) = O(C). Let
o be the congruence ©(C). Then clearly p' C p and both p’ and p are
simple, by Lemma 4.13. If p is aperiodic then p’ and p are also aperiodic, by
Lemma 4.12. By Lemma 4.13, |Cl(p)| = |Cl{p)| — |CL(p’)| < [Cl(p)]. To
prove that o' is regular assume that D is a nonsingleton equivalence class
of p'. Then ©(D) C ' and, as noted in the proof of Lemma 4.13, D is a
nonsingleton class of p. It follows by the minimality of p' that ©(D) = p'.0)

COROLLARY 4.2: Suppose p is a simple aperiodic congruence on the scheme

S. Then there exists an integer m > 1, a sequence S1,...,Sy of schemes
and a sequence pi,. .., pm—1 of simple, aperiodic and regular congruences
such that
S =S8,
Sm=S5/p and
Si+1 = Si/pi,

for all i € [m — 1].
Proof: By a straightforward induction on |Cl(p)|, using Lemma 4.14. O

Minimal congruences identify “as few states as possible”, minimal 2-
congruences are even more restricted. We end this subsection by showing
that every simple aperiodic congruence can be “decomposed” into a sequence
of minimal aperiodic 2-congruences.

Lemma 4.15: Suppose p is a nontrivial, simple, aperiodic and regular
congruence on the scheme S. Then there exists a minimal aperiodic 2-
congruence p' C p on S such that the quotient congruence p = p/p' is
simple, aperiodic and regular on the quotient scheme S=S / p’ . Moreover,
#p = #p - L

Proof: Let ¢! = {a,b} be a two-element subset of a congruence class
C € Cl(p) and p' := ©(C'). Then clearly p' C p and both p' and p
are aperiodic by Lemma 4.12. We know from Lemma 4.11 that each set
A[D, E] contains a unique bijection 7pg, for all D, E € Cl(p). It follows
that 7pg o Tgr = Tpr and Tpp = idp, for all D, E, F € Cl(p). Now p’
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is the least equivalence relation containing

B:=A{(r(a),7(b)) | 7€ A[C,S], 7(a) # 7(b)}
={(7cp(a),7cn(b)) | D € Cl(p)}.
Since 3 is transitive, p’ = U B! Uidg is a 2-congruence. To prove p’
is minimal assume that v C p’ is a nontrivial congruence on S. Then «
is generated by two states a’,b’ with (a’,b') € 3, say ' = 7¢p(a) and
b = 1¢p(b), where D is a nonsingleton class of p. But then

a = tpcld) v Tpc(®) = b

and since p’ is generated by {a, b}, it follows that v = p'. The congruence
classes of p are of the form

D/p
={ {{d}} if D={d},
{{d} | de D\ {rcp(a), 7cp(®)}}U{{7cp(a),7cp(b)}} if |[D]>1,

where D is an equivalence class of p. This shows #p = #p — 1 and that p
is simple and regular on S. O

COROLLARY 4.3: Suppose p is a simple aperiodic congruence on the scheme

S. Then there exists an integer m > 1, a sequence S1,...,Sm of schemes
and a sequence p1, . .., pm—1 of minimal aperiodic 2-congruences such that
S1 =8,
Sm=3S8/p and
Si+1 = Si/pi,

for all i € [m — 1]

Proof: By a straightforward induction on #p, using Corollary 4.2 and
Lemma 4.15. 0

4.2. Aperiodic homomorphisms

Suppose X is a signature and recall the definition of the category XSch
of ¥-schemes from the previous section.

This subsection is devoted to scheme homomorphisms having an aperiodic
kernel, or aperiodic homomorphisms, for short. Using these homomorphisms
we define two relations — and = on XSch, the first being strictly
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stronger than the second. Nevertheless we prove (see Lemma 4.16) that
the equivalences & and & generated by these relations coincide, and that
this equivalence is a congruence of BSch. We also show that & is just the
composite of <= with =. This is done in two steps: in Lemma 4.18, we
prove that the relation <= o = contains the relation = o <. In particular,
it follows that & = <o=>. Then in Lemma 4.19, we show that = is
reflexive and transitive, so that = = = and & = <.

DeriNiTiON 4.7: Suppose that S and S’ are Y-schemes and ¢ is a
homomorphism from S to S'. We write
st if ¢ is injective or ker,, is a minimal aperiodic 2-congruence on S,
S2s if ker,, is an aperiodic congruence on S.
We define two relations on X-schemes by
So8 o Jpsids
S=8 o Fpsis.
The inverses of these relations are denoted by the corresponding reversed
arrows and we use the standard notation for the various closures. For

example, = is the least reflexive and transitive relation containing = and &
is the equivalence relation generated by —.

Using these definitions we can rephrase Corollary 4.3 in the following

form.

CoroLLARY 4.4: If p is a simple aperiodic congruence on a scheme S then
S5S/p. O

We summarize the results of this subsection in the following proposition.
ProPOSITION 4.1: The two equivalence relations < and & agree on $Sch.

Moreover, & is a congruence relation on YSch and for all S,S8' :n — p
in ¥Sch,

S &S ifandonlyif S & |[sTs] z s,

where 7 : sT's — S and 7' : sTg: — S' are the two projections.

It is obvious that the relation = properly contains the relation —. We can
even give examples when S = S’ holds, but S ~, 8’ does not. However, the
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next Lemma shows that = is contained in the equivalence relation generated
by —, which is probably the most interesting technical result of our paper.

LEMMA 4.16: = C &,

Proof: Suppose S and F are Y-schemes n — p with & = F. Then there
exists a homomorphism ¢ : & — F such that ker, is an aperiodic congruence
on S. As noted before, every homomorphism admits a surjective-injective
factorization, i.e., there exist a surjective homomorphism ¢ : S — S/ker,
and an injective homomorphism ¢3 : S/ker, — F such that ¢ =‘g01 0 W3.
Let us denote ker, by p. Then S/ pﬁ F and the result follows if we show
that S & S /p. To prove this we use induction on #p. The base case #p = 1
is trivial, so assume for the induction step that #p > 1.

First we modify the start and transition functions of S to obtain a new
scheme &' = (S, \,o/,6') : n — p. The difference between § and §' is that
if C, D are congruence classes of p with |D| = #p and ¢ is an integer such
that 6;[C, D] is a non-surjective function C' — D, then we select an arbitrary
element d € D\rng(6:[C, D)) and define 6,[C, D] to be the constant function
with value d. Similarly, for all ¢ € [n], if a(:) € S and the congruence class
D = a(1)/p has exactly #p elements, then we select an arbitrary element
d € D\ {a(?)} and define &'(z) := d.

Note that for all words u € [w]* and congruence classes C,D of
p, either &, [C,D] = 6,[C, D] or 6,[C,D] is a non-surjective function
C — D and §JC,D] is a constant function C — D, such that
rng(8,,[C, D]) N ng(6,[C, D]) = . It follows that p is also an aperiodic
congruence on &' and

SBS/p = 8/)p2s.

Thus S &E[sT's/] z s, by Theorem 4.1.
Next we prove that

Vi€ [n] Vue [l (8i,u) €5 A 180, u)/pl = #0) = 8(i,u) # 8'(4, u).

(15)
The proof is by induction on the length of u. If u is the empty word € and
6(i,u)/p has exactly #p elements then

§(i,u) = a(i) # (i) = §(i,u),

by the definition of o’. Assume for the induction step that u = vt, where
v € [w]', t € [w]. Let ¢ := 6(i,v), ¢ = §(5,v), d := §(3,u) = 8(c,t),
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d = §@G,u) = §(,t), C:=c/p=C/p, D:=d/p = d/p. Suppose
moreover that |D| = #p. If the function 6:(C, D] is not surjective then
d ¢ rng(8;[C, D)), by the definition of &'. Since d = §(c, t) € rng(6:(C, D)),
d # d. If &[C, D] is surjective then &[C, D] = 6,[C, D] is necessarily a
bijection, since #p = |D| < |C| < #p. Using the induction hypothesis we
get ¢ # ¢, and thus

d = 6(c) # 8() = 6(d) = d.

Returning to the main proof, observe that p is not just a congruence on
the schemes S and S’ but it is also a simulation from S to S'. Since gT's
is the least simulation, sI's: € p. Moreover, it follows from (15) that

sTs: S p\{(s,s) | s €S, |s/pl = #p}.

Therefore, if (s,s') is a state of [sT's/] then

/ {(5,2) | 3 s/} i |s/o] < #0,
e < {0 TSNy S

showing that #ker; < #p. By the same argument, #kerr, < #p. Thus,
using the induction hypothesis, S <»[sTs/] <> S'.

Let p' denote the equivalence relation on S whose nonsingleton
equivalence classes are those equivalence classes C of p with 1 < |C] < #p,
1e.,

spsd o s=8 Vv (sps Als/pl <#p)

forall s,s' € S. Then p' is not necessarily a congruence on the scheme S, but
it is a congruence on S'. This follows from the fact that for any congruence
classes C,D of p with |C| < |D| = #p, As/[C,D] C Const[C, D).
Moreover, p' C p and #p' < #p. Let S denote the quotient scheme S'/p
and let 5 be the quotient congruence p/p’ on S. Then, by Lemma 4.12,
o' is aperiodic on S’ and 7 is aperiodic on S. We can apply the induction
hypothesis once again to obtain S’ & S.

Lastly, each nonsingleton congruence class of p has exactly #p elements
and, by the definition of S’, 7 is a simple congruence on S. By Corollary 4.4,
it follows that S 5 S/5 = S'/p = S/p, completing the proof. O

COROLLARY 4.5: & = &. O

Next we prove that & is a congruence on YSch by showing that the
relation = preserves the operations of pairing, composition and iteration. It
then follows that = also preserves the separated sum operation.
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Lemma 4.17: Suppose F,G,F' G are Y-schemes of appropriate sorts.
Then

FEF AGRg = (F,0)FNF.0)
FEF AGRg = F.gHF.¢
Fig = rFtigh
Proof: The first two implications can be handled in the same way, therefore
we only prove the first one. Suppose that F = 7 and G 4 G'.By Lemma4.1,
@ U is a simulation from (F,G) to (F',G’). Since the set of states of
(F,G) is the disjoint union of those of F and G, ¢ U+ is a function
and ker,yy = ker, U kery. If C is a congruence class of kergyy then C
is either a congruence class of ker, and A(r gy[C,C] = Afg[C,C] or C
is a congruence class of kery and Ar g)[C, C] = Ag[C, C). Since kery
is aperiodic on F and kery is aperiodic on G, kery,yy is aperiodic on
(F,G). As for the last implication, if F <> G then ¢ is a homomorphism
from F' to G, by Lemma 4.1. Suppose C is a congruence class of ker,.
Looking at the definition of the iteration operation it is not hard to see that
Ari[C,C) C Ag[C,ClU Const[C, C]. By Remark 4.1, ker,, is aperiodic
on FI. O

COROLLARY 4.6: & is a congruence relation on £Sch. O

Our last goal in this subsection is to give a simple characterization of
the congruence <. After proving two lemmas, the results are summarized
in Theorem 4.1.

LemMA 4.18: (= o <) C (<= o =).

Proof: Suppose that S £p>§_ gS’ for some E-schemes S,8',S : n — p.
Then S and &' are strongly equivalent, so their minimal direct product [sT's/]
exists. By Lemma 4.6, the two projection functions 7 : sI'ss — S and
n’ : sT'si — S’ are homomorphisms from [sT's/] to S and &', respectively.
In order to prove that ker, is aperiodic on [s['s/] assume that

(3’ 'SI) kery 5[51"5/]((8) Sl)v ’LU),
for some word w € [w]|* and state (s, ') of [sT's/]. Let us write (r,r) for
OsTs((5,8"),w), so that 7 = §5(s,w) and 7’ = 65:(s', w). Since [sTs/] is
an accessible scheme, there exist an integer ¢ € [n] and a word u € [w]"
such that

(sasl) = 5[51"5:](7:771') = (6s(i,u),8s: (3, u)).
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Thus
s =bs(i,u)
s’ = 6s/(i,u)
r=06s(s,w) = 6s5(i,uw)
/

v =6s(s,w) = b8s(i,uw).

By Lemma 4.4, there is a unique homomorphism from [s['s/] to S. By
Lemma 4.1, both functions wo¢ and 7’ o¢’ are homomorphisms [sT's/] — S,
so they are equal. It follows that

p(s) = ¢'(s)
and
p(r) = ¢'(r').
Since (s, s') kers (r,7'), we have s = r and
P(s") = wls) = o(r) = (),

so that s’ keryr ' = 6s/(s',w). Since ker, is aperiodic on &', there exists
an integer k£ > 0 such that '

bs/(s',wk) = bs: (s, wkth).

On the other hand, since s = r = §g(s,w),

ds(s, wk) = 6s(s, 'wk+1).

It follows that

6[5[‘5,]((87 3/), ’wk) = 6[5F5/]((3) 5/)7wk+1)7

proving ker; is aperiodic on [sI's/]. A similar argument shows that kery is
aperiodic. O]

COROLLARY 4.7: & = (&oS). O

*

Lemma 4.19: = = =

Proof: We have to show that = is reflexive and transitive. Since each trivial
congruence is aperiodic, = is reflexive. To prove it is transitive assume that

Fig % . Then the composite function ¢ o) is a homomorphism from F
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to H, and the result follows if we can prove that kery,y, is aperiodic on F.
Suppose skergoy 67 (s, 1) for some word u € [w]" and state s of F. Then

o(s) kery @(65(s,w)) = 6g((s), ).

Since kery is aperiodic, there exists an integer & > 0 such that
6g(p(s),u*) = 8g(p(s),u*t1). Let us write s’ for 67 (s, u*). Then

(') = 6g(o(s),u*)
= bg(ep(s),u* )
= 66(6g(p(s),u"),u)
= 6g(p(s'),u)
= (57 (su).

Thus s’ ker, 67(s’,u) and since ker, is aperiodic on F, there exists an
integer [ > 0 such that

§r(s,u" ) = §£(s ) = (s, ut) = 5}_(5’111(/9_*,1)_,_1).

O
COROLLARY 4.8: & = (< o =). 0

THEOREM 4.1: Suppose S and S' are $-schemes n — p. Then S & S’ if

and only if S and S' are strongly equivalent and S &[sT's/] %S, where T
and 7' are the two projections.

Proof: Trivially, the above condition is sufficient. To prove it is necessary
assume that S & S’. Then S and S’ are strongly equivalent schemes, therefore
[sTs/] exists. By Corollary 4.8, there also exists a scheme S such that

SL£34 S’ Let v and ' be the restrictions of ¢ and ¢’ to the accessible
states of S, respectively. Then v : Acc(S) — S and v : Acc(S) — S', by
Lemma 4.4. Further, ker,, and ker, are aperiodic congruences on Acc(S), so

we have S <& Acc(S) 2> S'. Let ¢ be the unique surjective homomorphism
from Acc(S) to [ss:], which exists by Lemma 4.7. It follows by Lemma 4.4
that ¢y ow = v = gI's and ¢ o 7’ = o' = gTs:. Lastly, Lemma 4.12 shows
that the congruences kery, ker; and ker, are all aperiodic, completing the
proof. 0

COROLLARY 4.9: Suppose S is an accessible Y.-scheme and p is a congruence
on S. Then S & S/p if and only if p is aperiodic.
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Proof: By Lemma 4.8 and Theorem 4.1. O

5. THE FREE ITERATION THEORIES

Although our interest is in the free Conway theories, we briefly review
the description of the free iteration theories. All results in this section are
well known and can be found in the book [5].

Note that any signature may be considered as an IN x N-sorted set in
which the sort of a p-ary symbol is the pair (1,p) € N x N.

Suppose X is a signature and recall from Corollary 4.1 that the strong
equivalence relation =5 is a congruence on XSch.

THEOREM 5.1: The quotient category £Sch/= is freely generated by ¥ in
the variety of all iteration theories. O

REMARK 5.1: Another description of the free iteration theory on a signature
3 uses regular X-trees, cf. [5]. (For a detailed study of infinite and regular
trees see also [10].)

The reader might say that, since iteration theories (Conway theories) form
a variety of N x N-sorted algebras, the generator set of a free iteration
theory (Conway theory) should be an arbitrary IN x N-sorted set and not just
a signature. But every free iteration theory (Conway theory, respectively) is
freely generated by a signature, see below.

Suppose that X is an N x N-sorted set. The collection of iteration terms
over X is defined to be the least N x N-sorted set I'Termx satisfying

z € ITermx|n,pl, for all z € X|n,p|, n,p > 0;
1, € ITermx(n,n], for all n > 0;
0, € ITermx|[0,n], for all n > 0;
in € ITermx{l,n], for all n > 0, ¢ € [n];
teITermyn,p|At' €ITermx{m,p] = (¢t,t') e ITermx[n+m,p|;
teITermy[n,p|At' € ITermy[p,q]= (¢t - t') €eITermx|n, g|;
teITermy [n,p|At' €ITermy[m, gl = (t®t') € ITermx [n+m, p+ql;
t € ITermy[n,n +p] = tI € ITermy[n,p].

Here, ITermyx [n,p] denotes the subcollection of all iteration terms of

sort n — p, n,p > 0. I'Termy can be viewed as an N x N-sorted algebra
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with constants 1,, 0, and iy, n > 0, ¢ € [n], and the straightforward
operations of pairing, composition, separated sum and iteration. As such, it
is the absolutely free algebra generated by the N x N-sorted set X, i.e.,
if 7" is an N x N-sorted algebra with the same constants and operations
and ¢ : X — T is a sort-preserving function, then there exists a unique
homomorphism @ : ITermyx — T such that §(z) = ¢(z), forall z € X. In
particular, this holds when T is a preiteration theory. Suppose that ¢ : n — p
and t' : n — p are iteration terms over X . We say that T satisfies the equation
t =t if §(t) = P(t') holds for all sort-preserving functions p : X — T,
where » : ITermy — T is the unique homomorphic extension of ¢. Note
that the theory identities (3—7) and the three Conway identities are infinite
collections of equations between iteration terms.

When X is an N x N-sorted set, the signature ¥(X) corresponding to
X is defined by

S(X)p:={zi | € X[n,pl,i € [n]},

for all p > 0. Replacing each letter z € X(n,p] in an iteration term
t € ITermx|m, q] with the n-tuple (z1,...,z,) we get an iteration term
¥(t) € ITermg x)[m,q|.

Lemma 5.1: Suppose that T is a preiteration theory and X is an N x N-
sorted set. An equation t = t' between iteration terms t,t' € ITermy holds
in T if and only if the equation ¥.(t) = %(t') does. |

ProrosiTiON 5.1: Suppose V is a variety of preiteration theories and X is
an N x N-sorted set. Then the X -generated free algebra in V is isomorphic
to the (X )-generated free algebra in 'V, the isomorphism is determined by
the map

z € X[n,p] — (z1,...,Zx).

a

In particular, this applies to the variety of iteration theories and the variety
of Conway theories.

DerFINITION S5.1: Let X be a fixed N x N-sorted set such that X[n,p] is
countably infinite, say X|[n,p| = {xln’l’),xgn,ﬂ), ...}, for all n,p € N. The
equational theory of a variety V of preiteration theories is the set Eq(V)
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of all equations t = t' between iteration terms t,t' € ITermy which hold
in every preiteration theory T € V.

PropOSITION 5.2: It can be decided in polynomial time if two 3-schemes are
strongly equivalent. Consequently, there exists a polynomial time algorithm
which decides if an equation t = t', t,t' € ITermy, holds in all iteration
theories. ]

6. THE FREE CONWAY THEORIES

In this section we finally complete the characterization of the free Conway
theories.

Let us first review what happened so far. In Definition 3.7, we defined = to
be the least congruence on the category >Sch of all ¥-schemes such that the
quotient ¥ Sch /= satisfies the theory identity (7). In Theorem 3.1, we proved
that XSch/= is the free Conway theory generated by the signature 3. Then
we defined two more congruences <» and < using aperiodic simulations
of flowchart schemes and proved that they are equal. A characterization of
& was given in Theorem 4.1.

LEmMA 6.1: = = &,

Proof: In order to prove the containment = C & we need to show that
ESch/<i> satisfies the theory identity (7). Suppose that 7 : n — p is a
Y-scheme and let G := (1, - F,...,n, - F). Then each state s of F has
n copies $1,...,8, in G. Let ¢ : G — F be the function mapping each
copy s;, ¢ € [n], to s. If n = 0 then § = 0, and ¢ is the empty function,
which is trivially an injective homomorphism from G to F. Otherwise ¢ is a
surjective homomorphism and ker,, is a simple aperiodic congruence on G.
In fact, if C and D are two congruence classes of ker,, then |C| = |[D| =n
and Ag[C, D] C Biject[C, D]. By Lemma 4.4, G = G /ker,, = F.

The converse containment < C = follows if we show that — C =.
Assume that S 5 &' for S-schemes 8,8 : n — p and a homomorphism
@ : S — S If @ is injective then

S=a- (f? 111)
and
S=a- (1 ®0m) - (F - (Or4m 1p),G - (1, ® 0 @ 110))1, 1p),
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for some Y-schemes F : 7 — p, G : m — r + p and partial base scheme
a :n — 7+ p. Without going into the details we just note that F has the
same states as S and the states of G are those states of S’ not in the range
of . Moreover, 7 is the number of states in F, m is the number of states
in G and both F and G are strongly accessible. Since the equation

F=01,004) (F Orpm ®1,),6 - (1, ® O @ 1,))f

holds in any Conway theory, it follows by Theorem 3.1 that S = S'.

The second possibility is that ker,, is a minimal aperiodic 2-congruence on
S.Then SB s [ker,, #3 &', where (; is the natural homomorphism and @3
is injective. We have just proved above that S /ker, = §'. On the other hand,

S=a- <<F7f7g>f71p>

and
S/ker, = a- (B-((F,G) (B&1,))1,1,),

for some X-schemes F : r — 2r+m+p, G : m — 2r+m+ p and

partial base scheme « : n — 27 4+ m + p, where 8 denotes the base scheme

(1,,1;)® 1y : 2r+m — r+m. Now S = S/ker,, follows by Lemma 3.1.0]
We have proved the following

THEOREM 6.1: ZSch/é is freely generated by the signature ¥ in the class
of all Conway theories.

Proof: By Theorem 3.1, Corollary 4.5 and Lemma 6.1. 0

By Proposition 5.1, for an arbitrary IN x N-sorted set X, the free Conway
theory generated by X is isomorphic to the free Conway theory generated
by the signature (X ). Thus, Theorem 6.1 describes all of the free Conway
theories.

For an N x N-sorted set X, let us denote by ConwayEqy the set of
all equations ¢ = t' between iteration terms ¢,# over X which hold in all
Conway theories. Thus, according to Definition 5.1, ConwayEq, is the
equational theory of Conway theories.

Our last goal is to show that ConwayEq, is PSPACE-complete with
respect to logspace reductions.

Recall from Definition 4.4 that a strongly accessible X-scheme n — p is
one in which every state is a target of an edge starting from an input node
in;, 1 € [n]. We shall consider the following decision problems.
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Instance: A strongly accessible >-scheme S : n — 0.
AperSchs © (yyestion:  Is S x S an aperiodic congruence on S?
Instance: A strongly accessible -scheme S :n — 0
AperCongx : and a relation p C S x S.
Question: Is p an aperiodic congruence on §?

Instance: A pair (S,S’) of ¥-scheme.
SchBas :  Question: Does S = &' hold?

Assuming X contains a symbol of rank at least 2, all these problems
turn out to be PSPACE-complete, as well as the problem of deciding if
an equation ¢ = ' between iteration terms t,t € ITerms belongs to
ConwayEqy..

Recall that a deterministic finite-state automaton (DFA) A = (Q, Z, 6)
(where () is the set of states, Z is the input alphabet and 6 is the transition
function) is called aperiodic if

Yge QVue Z* 3k >0 8(q,u*) = 6(q, vFT1).

We are going to use the fact that the following decision problem is
PSPACE-complete with respect to logspace reductions, see [8].

Instance: A DFA A = (Q,{0,1},6).
AperDFAs . (egtion:  Is A aperiodic?

LemMA 6.2: Suppose that 3 is a signature containing a symbol oy of rank
m > 2. Then there exist logspace reductions

AperDFA — AperSchy — AperCongy.
— SchEqy — ConwayEqy — ConwayEq,,.

Proof of AperDFA — AperSchy: Suppose A = (Q,{0,1},64) is a
DFA, n := |Q|. We construct a strongly accessible scheme S : n — 0 such
that A is aperiodic if and only if S X S is an aperiodic congruence on S.
The states of S are the states of A, each is labeled by the symbol og. The
start function o of S is an arbitrary bijection [n] — Q and its transition
function ¢ is defined by

[ 6a(q,0) ift=1,
ola,t) = {6A(q,1) if 2 <t <m,
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for all ¢ € Q and t € [m].

Proof of AperSchs;, — AperCongsx.: The map S — (5,5 x §) is
trivially a logspace reduction.

Proof of AperCongsy. — SchEqsx.: Suppose & : n — 0 is a strongly
accessible X-scheme and p C § x S is a relation. If p is not a congruence
on S then (S, p) is mapped to some fixed pair (F,G) of Z-schemes such
that 7 # G. Otherwise (S, p) is mapped to the pair (S,S/p). All these
calculations can be done in logarithmic space. The correctness of the
reduction follows by Corollary 4.9.

Proof of SchEqy, — ConwayEqs: Let ¢ : ITermny;, — ¥Sch be the
unique homomorphism mapping each symbol o € X, to the corresponding
atomic scheme ¢ : 1 — q. It is easy to find a logspace algorithm which, given
a Y-scheme S : n — p, constructs an iteration term 75 € ITermy(n, p| such
that ¢(7s) = S. The map (S,S’) — (7s = 7s/) is a logspace reduction.

Proof of ConwayEqy, — ConwayEq,: Given an equation t = ¢’
between iteration terms ¢,t € ITerms, replace each symbol o € I,
appearing in ¢t or ¢ with a variable symbol of sort 1 — p in X such that
different symbols are replaced with different variables. O

Lemma 6.3: ConwayEq, € PSPACE.

Proof: We outline a nondeterministic polynomial space algorithm which
decides if an equation ¢ = ¢’ between iteration terms ¢, € ITermy fails
to hold in some Conway theory. The result then follows by Sawitch’s
theorem [6]. Recall the definition of the signature ¥(X) from the previous
section. Let us write A for ¥(X). By Lemma 5.1, it is enough to check if
the equation X(¢) = X(t') fails in some Conway theory, or equivalently, if it
fails in the free Conway theory ASch/=. Let ¢ : ITerma — ASch be the
unique homomorphism mapping each symbol o € A, to the corresponding
atomic scheme & : 1 — p. Then X(¢) = X(¢') fails in ASch if and only if
0(5(t)) £ ¢(Z(t')). The two schemes S := p(%(t)) and S’ := (X(t))
can be constructed in polynomial space, as well as their minimal direct
product [sT's/]. By Theorem 4.1, our algorithm only has to check if S and
&’ are not strongly equivalent or if at least one of the two congruences ker,
or ker is not aperiodic on [s['s/]. It is easy to test if two schemes are not
strongly equivalent, so the problem is reduced to testing if a congruence p
is not aperiodic on a scheme . This can be done by guessing a congruence
class C € Cl(p), a nonsingleton subset C' = {ci,...,cm} of C and a word
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u € [w]* such that

dr(ci,u) = c2, Or(ca,u) =cs3,...,05(cm=1,u) = Cm, 6x(cm,u)=c1.

(16)
Let n be the number of states in F. It is not allowed to store the whole word
u, since it can be approximately as long as (::1) -m). Instead, we guess wu letter
by letter and keep track only of its length and the states ¢; and 6r(c;, ),
i € [m]. The procedure stops if condition (16) holds or |u| > (/) -m!. O

THEOREM 6.2: Suppose ¥ contains a symbol of rank at least 2. Then all the
decision problems AperSchy, AperCongy, SchEqy, and ConwayEqys
are PSPACE-complete. It is also PSPACE-complete to decide if an equation
t = t’ between iteration terms t,t' € ITermy holds in all Conway theories.

Proof: This is an immediate consequence of Lemmas 6.2 and 6.3. O
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