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ON THE POWER OF PARALLEL COMMUNICATING
GRAMMAR SYSTEMS WITH RIGHT-LINEAR COMPONENTS (*)

by S. DUMITRESCU (*) and G. PÂUN (*)

Abstract. - We settle hère two problems concerning the gene rat ive power of parallel
communicating grarnmar Systems with right-Unear components: (1) each linear language can
be generated by a non-centralized returning System, (2) the family of languages generaled by
centralized returning Systems is incomparable with the family of languages generated by non-
returning centralized Systems. It is also proved that centralized returning Systems with right-Unear
components are strictly more powerful than Systems with regular rules in the restricted sensé.

1. INTRODUCTION

A parallel communicating (PC) grammar System is a construct consisting
of several usual grammars, working synchronously, each on its own sentential
form, and communicating by request; special (query) symbols are provided,
Q%, with the subscript identifying a component of the System; when a
component j introduces a query symbol Qi, the current sentential form
of the component i is sent to the component j , where it replaces the
occurrence(s) of Qi in the sentential form of component j . The language
generated by a specified component of the System (the rnaster), after a series
of such rewriting and communication steps (each component starts from its
axiom), is the language generated by the System.

Many papers were devoted in the last years to the study of PC grammar
Systems. We refer to [2], [4] for details.
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Many of these papers deal with PC grammar Systems with regular
components, where "regular" means in gênerai "right-linear". However, a
series of basic problems are still open in this area.

Two important classifications of PC grammar Systems concern the
communication graph and the returning feature: a System is called centralized
when only the master may introducé query symbols and non-centralized in
the non-restricted case; a System is called returning if after communicating a
component résumes working from its axiom and non-returning when it has
to continue processing the current string.

Centralized returning PC grammar Systems with right-linear components
are known to generate only semilinear languages, but ail other types
(non-centralized returning, centralized non-returning, and non-centralized
non-returning) can generate non-semilinear languages. However, it is not
known whether there are centralized returning Systems which cannot be
simulated by non-returning centralized Systems. We show that this is the
case, hence the two families are incomparable.

Another important open problem concerns the relationships between the
families of linear and of context-free languages and those of languages
generated, in the returning or non-returning way, by non-centralized Systems
with right-linear components. For instance, in [1] it is proved that there are
context-free languages which cannot be generated by returning centralized
regular PC grammar Systems, unless CF Ç N LOG (which is not at all
expected). We solve here the problem for linear languages: returning non-
centralized PC grammar Systems with right-linear components can generate
all linear languages. (We conjecture that this is not true for the non-returning
mode.)

Finally, we show that at least in the returning centralized case, there is a
différence between using right-linear rules and using regular rules in the strict
sense. This shows that for PC grammar Systems this distinction is important.
In almost all cases in formai language theory, there is no différence from
the generative capacity point of view between mechanisms using regular
rules and those using right-linear rules. One of the basic features of a PC
grammar system is the synchronization of the rewriting steps, hence the
"speed" of producing strings on various components. This is the place where
right-linear rules prove to be strictly more powerful than the regular ones.
In fact, as we shall see, the chain rules are essential, not the rules of the
form A —> xB with A} B nonterminals and x a terminal string of the length
greater than or equal to two: every right-linear system, centralized or not,
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ON THE POWER OF PARALLEL COMMUNICATING 333

returning or not, can be simulated (modulo À) by a System of the same type
and having only rules of the forms A -» aB, A —> B, A —> a, with A, B
nonterminals and a terminal.

2. PARALLEL COMMUNICATING GRAMMAR SYSTEMS

For an alphabet V, we dénote by V* the free monoid generated by V\
À is the empty string, |rr| is the length of x E F*, \x\u is the number of
occurrences of symbols in U Ç V in x E V*. REG, CF, CS, RE dénote
the families in the Chomsky hierarchy. For further f acts of formai language
theory we shall use in the sequel, we refer to [12].

A PC grammar system of degree, n, n > 1, is a construct

where N, T, K are pairwise disjoint alphabets, with K = {<2i,..., Qn,},
Si E N, and Pi are finite sets of rewriting rules over NUTU K, 1 < i < n;
the éléments of Â  are nonterminal symbols, those of T are terminals;
the éléments of K are called <?w£ry symbols; the pairs {P^Si) are the
components of the system (often, we call the sets Pi components). Note
that, by their indices, the query symbols are associated with the components.
When discussing the type of the components in the Chomsky hierarchy, the
query symbols are interpreted as nonterminals.

For(ari,...,a;„), (2/1,..., Ï/„), with ar», yi E (NuTuK)*, 1 < i < n (we
call configuration such an n-tuple) with x\ £ T*, we write (rei, . . . , xn) =>r

(z/i> • • • ) Un) if one of the foliowing two cases holds:
(i) \XÏ\K — 0 for all 1 < i < n\ then x\ ^p.yi or x% = yi E T*, 1 <

i < n;
(ii) there is z, 1 < i < n, such that \XI\K > 0; we write such a string x%

as xt = z1Qïlz2Ql2 ...ztQitzt+u for t > l,zt E (JVUT)*,1 < i < t + 1;
if I^ ÏJK = 0 for all 1 < j < t, then y?; = z\Xi±Z2Xl2 . . . ^t^ït^t+.i, [and
y-, = 5Zjj 1 < j < t]; otherwise yi = xi. For all unspecifïed i we have

2/i = x%-
Point (i) defines a rewriting step (componentwise, on all components

whose current strings are not terminal), (ii) defines a communication step:
the query symbols Qió introduced in some x% are replaced by the associated
strings X{., providing that these strings do not contain further query symbols.
The communication has priority over rewriting. The work of the system is
blocked when circular queries appear, as well as when no query symbol is
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present but point (i) is not performed because a component cannot rewrite
its sentential form, although it is a nonterminal string.

The above considered relation =>r is said to be performed in the returning
mode: after communicating, a component résumes working from its axiom. If
the brackets, [and y^ = Si., 1 < i < £], are removed, then we obtain the non-
returning mode of dérivation: after communicating, a component continues
the processing of the current string. We dénote by =ïnr the obtained relation.

The language generated by F is the language generated by its first
component (G\ above), when starting from (Si , . . . ,Sn) , that is

Lf{Y) = {w G T*\(SU .. . ,S n ) =>}(w, a2,... ,a„) ,

for a% e (NUTUK)*, 2 < i < ra}, ƒ G {r,nr}.

(No care is paid to strings in the components 2 , . . , , n in the last configuration
of a dérivation; clearly, the work of V stops when a terminal string is
obtained in the first component.)

Two basic classes of PC grammar Systems can be distinguished: centralized
(only G\, the master of the System, is allowed to introducé query symbols),
and non-centralized (no restriction is imposed on the introduction of query
symbols). Therefore, we get four basic families of languages: we dénote
by PC(X) the family of languages generated in the returning mode by non-
centralized PC grammar Systems with rules of type X (and of arbitrary
degree); when centralized Systems are used, we add the symbol C, when
the non-returning mode of dérivation is used, we add the symbol N, thus
obtaining the families CPC{X), NPC(X), NCPCÇX). In what concerns X, we
consider here regular (REG), right-linear (RL) and context-free (CF) rules.

By regular rules we mean rewriting rules of the forms A —> aJ5, A —> a,
for A, B nonterminals and a terminal. By right-linear rules we mean rules of
the forms A —> xB% A —> x, with A,B nonterminals and x terminal strings.

In ail cases, we allow only A-free rules. If the language we consider
contains the empty string, then a rule S —» À is allowed in the master
grammar. (Note that, because the dérivation stops when using such a rule,
A cannot be communicated to another component.)

Here are two simple examples. Consider the System

Ti = ({S1,S2,S3},K,{a,b,c},(PuS1),(P2,S2),(P3,S3)),

P1 = {Si -* aSu Si - aQ2, S2 -> 6Q3, S3 -> c},

P2 = {S2 -> bS2},

P3 = {Sz - cS3}.
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The reader can easily see that

L r ( r i ) - L„P(r2) = {anbn+1cn+2\n > 1}.

Note that Tj contains regular rules only, but Lf(T) is not context-free,
ƒ E {r^nr}. Moreover, consider

T2 ^ ({S},K,{a},(P1,S),(P2,S))r

Pi = {S^aQ2, S^a},

P2 = {S->aS}.

We obtain

The language Lr(T2) is regular, but Lnr(T2) is not regular (it is not even
a matrix language, [8]). Again the system contains only regular rules.

The diagram in Figure 1 indicates the relations between the eight basic
families of languages diseussed in this paper, as well as their relationships
with families in the Chomsky hierarchy (MAT dénotes the f amily of languages
generated by matrix grammars with A-free context-free rules and without
appearance checking). The arrows indicate inclusions, not necessarily proper;
the families which are not connected by a path in this diagram are not
necessarily incomparable.

Proofs of these relations can be found in [2], [5], [9], [10].
We shall add to this diagram two important relations: LIN C PC(RL)

and CPC(REG)-NCPC(RL) ^ 0; in this way we obtain that CPC(RL)
and NCPC(RL) are incomparable, the only incomparability result known
in this moment in the PC grammar Systems area.

3. COMPARING THE PREVIOUS FAMILIES

At the first sight, because Systems with right-linear components generate
the strings "from the left to the right", linear languages of the form

L = {wcmi(w)\w G {a,6}*}

cannot be generated by such Systems. This is true for centralized Systems
(see the proof for point (iv) of Theorem 4.1, in [2], using the linear language
{anbmcbman\n,m > 1}, which is shown not to be in CPC(RL), and this
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336 S. DUMITRESCU, G. PÂUN

RE

PC(RL) NPC(RL)

is probably true also for non-centralized non-returning Systems. However,
the returning centralized framework provides tools for simulating linear
grammars by Systems with right-linear components.

THEOREM 1: LIN c PC(RL).

Proof: Clearly, we have to prove only the inclusion (PC(RL) contains
non-context-free languages).

Take a linear language L Ç T*. We can write

(dr
a dénotes the right derivative with respect to the symbol a). The family

PC(RL) is closed under union ([2], Theorem 7.56 and the remark after it),
hence it is enough to prove that each language d7

a{L){a] is in PC{RL).

The family LIN is closed under right derivative, hence dr
a(L) G LIN

for each a G T. Take a linear grammar Ga = (Na,T,Pa,Sa) such that

Informatique théorique et Applications/Theoretical Informaties and Applications
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L(Ga) = dr
a{L), a e T. Assume that

Pa = Pa,N U Pa,T,

Pa,N = {n : A% -f uiBiVi\l < i < n, At, Bt e Na, m, vt G T*},

Pa,T = {qi • Ct -» xi\\ <i<m,Ci€ Na, x% e T*}.

We construct the system

r „ = (N,K,T, (Po, SQ), (PU SI), (P{, S1,),..., (Pn,Sn), (P^S'J),

where

Po = 2 G

U {5o —

U{50;2

U{A"

A, -> A-, A'j -^ A"}, for r,; : Az -^ u 2 5 ^ z G Pa ï iV) 1 < i < n.

The query symbols Qt are associated with components P%. 0 < i < n,
and Q', with P/, 1 < i < n. All the symbols in JV" not in 7Va are new and
distinct from each other and from the symbols of Na U T.

The string to be generated circulâtes among components as suggested in
Figure 2.

Figure 2.
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The component PQ starts and ends the dérivation; at the first step, it
simulâtes the terminal rules of Po, at the last one, it introduces the symbol a
(the obtained language is Lr(Fa) = L(Ga){a}). In-between these steps, Po
only prépares the current string for the components P*, 1 < i < n. Each pair
Pii PU * ^ ^ — nî simulâtes a rule in Pa, namely that with the index i in
Pa,Ni Ti : Ai —> mBiV-i. The component Pi introduces the right "context"
Vi, whereas P[ introduces the left "context" U{. The dérivation in Ta goes
from the center of the string to its ends, on the path

W —> UixWVix —> U^U^WV^V^ —> . . . —• Uik . ...U^

that is in the reversed way of producing strings in Ga:
ur,V*k - > U,kUlk._1Vlk_1Vlk -^

. . . —> Utk . . . Ui1Vll . . . Vik —> Mafc . . ., Uit WVtl ...Vik.

Having these explanations in mind, let us examine in some details the
possible dérivations in Ta. When starting from its axiorn, each component
Pii Pi, 1 ^ i ^ n: c a n either choose an "active way" or an "inactive way".
The first way leads to a query symbol, hence to the communication of a
string, the second one means to use the "waiting rules" 5̂  —• 5^1, 5?.i —> Si
in P% and S\ —> 5- a , Sl

%l —> 5' in P/. In this way, the components Pj,
P/ can do nothing an even number of steps, being prepared after that for
an "active way" again.

We start from the configuration (5Q, S\,. 5 J , . . . , 5^, S!
n). For the first step,

we can distinguish several cases:

Case 1: The component Po introduces xsC3, for some C$ —> xs €
Pa,Ti 1 £ ^ < ^̂ 7 and no component P?;, 1 < i < n, introduces the
query symbol QQ. The dérivation is immediately blocked, because PQ cannot
rewrite its (nonterminal) string.

Case 2: PQ introduces the symbol So,i and no component Pu 1 < i < n,
introduces QQ. We get

(We have indicated the alternative possibilities of using rules in P/, for a
generic i, 1 < g <. n, by separating the possible strings obtained in different
variants by vertical bars.) We continue with
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If some P[ has introduced uiQi, then the dérivation is blocked
after the communication, because P\ cannot rewrite the string uiSi.
Therefore, in order to continue, we must have obtained the configuration
(£0,2, Si, S[,...., Sn,S!

n). Now, Po will introducé Q[- for some j , 1 < j < n.
If no Pi, 1 < i < n, introduces at the same time the symbol Qo, then the
dérivation is blocked: we communicate either £'• t or 5" to Po, and Po
cannot rewrite these symbols. If some P% has introduced Qo, then first we
communicate S[-1 or Sf- to PQ, then to Pi and now the dérivation is blocked
because P7 cannot rewrite these symbols.

Case 3: PQ introduces Sb,i and some component Pi, 1 < % < n, introduces
Qo- The symbol So,i is communicated to Pt and the dérivation is blocked,
because Pi cannot rewrite 5Q,I.

Therefore, at the first step of the dérivation at least one component Pi must
introducé Qo, whereas PQ must introducé some xsCs^ hence the obtained
configuration and the next step must be

(xsCSi..., Qo,S ' i |5" , . . . ) => r(Sb,...,XsCs,S'i^lS",.. .)•

Now, if Bi ^ C,s, then the dérivation is blocked. Therefore, exactly those
components Pi must introducé Qo> that are identified by xsCs: assume that
such a component is P?;. Thus, the beginning of the dérivation must be

(So,• • • • ) Si, Si, . . .) => r (xs Cs, . . . , Q o , ̂ , 1 1 fS'i Î • • ' ) ̂ ' , 17 ^ ^ l 7 • • • 0 ;

with all other components, like indicated for Pj, P ' above, using the "waiting
rules". We continue with

The dérivation is blocked when P[ has introduced S\ (no further dérivation
step is possible in Pi), and similarly when Po has introduced a new string
xtCt- Therefore we have

V^0,l4 • • • 7 •^s^i^-i', "'i^cii ' • • 7 ̂ j-> ^j i • • '}

=^ r(*?0,2ï • • • ;-SijlQü, UiXgViAiy. . .. , Sj:i |Qo, Sji \Sj , . . .).

The dérivation is blocked when any Qo appears (Sb,2 cannot be rewritten
in other components than Po), as well as when some Pf- has introduced £" : at
the next step it will introducé Q7, and the received string cannot be rewritten.
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Therefore, when P[ works, ail components Pi, Pj, Sj, 1 < j < n, j
must use "waiting rules". Thus, we have

^ r{Qki • • * Î *%> UiXsViAi , . . . , 5 j , 5 j , . . .)•

If k ^ i, then the dérivation will be blocked. If A; = i, then we get

where # is a generic index, 1 < g < n.

We are in a situation similar to that after the first step of the dérivation,
but having on the first component the string UiXsvtAi corresponding to two
rules in Pa,

Ai —» UiBtVi, C$ —> xs, for B\ = Cs.

They can produce the dérivation in G

Ai => u%B%Vi => UiXsvt,

In order not to block the dérivation, we must have exactly one occurrence
of Qo in the configuration (*), namely on a position g such that Ai — Bg\
correspondingly, P!

g must have Sg as a current string.

Consequently, we can continue the walk in the graph in Figure 2, at each
cycle (Po,Pi,P-) simulating the rule r% in Pa,N. When the string on the
first component is of the form wS^ hence a rule Sa —» utXvt has been
simulated, PQ can finish the dérivation using 5" —> a.

From the previous explanations, it should be clear that Lr(Ta) —
L(Ga){a}: which complètes the proof. D

From [2], Theorem 7.11, we know that each language in CPC{RL) is
semi-linear. The second example in the previous section proves that there
are non-semilinear languages in NCPC{REG). Consequently, NCPC(REG)
- CPC(RL) / 0. Also the reverse différence is non-empty, hence the two
families are incomparable.

THEOREM 2: CPC(REG) - NCPC(RL) ^ 0.

Proof: Let
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This language is in CPC(REG), because it can be generated by

T = ({S}iKi{aib}i(PhS)i(F2iS))9

Pi = {S -> aS, S -> aQ2, S2 -> a},

P2 = {S~^ bS}.

Any returning dérivation in F has the following form:

(5,5) =>*r(a
n*Q2,b

niS) =>r(a
nibn*S,S)

=>; (a n i 6n i a712 Q2 , 6"2 5) =*r (a n i 6n i a"26na 5, 5)

=*ï(anibni...ankbnhS,S) =>r(a
nibni ...an*bnta,bS),

for some t > 1, nz > 1, 1 < i < *. Consequently, Lr(F) = L.

We shall now prove that L g NCPC(RL). The intuitive idea of the
proof is that in a PC grammar system generating L we have a component
i communicating its string arbitrarily many times to the master. Due to the
non-returning mode of dérivation, the string of this component i will grow
from a communication to another one (at least it remains the same), hence
the string produced by the system must have as substrings a non-decreasing
séquence of strings. However, L contains strings which do not fulfil such
a restriction, a contradiction.

Let us formalize the previous idea. Suppose that L = Ln r(F), for some
centralized PC grammar system F = (N,K, {a, 6}, (Pi, S i ) , . . . , (P r , 5 r)),
with right-linear components. Because L £ REG, we must have r > 2.
Since the System is centralized, only communications from P3 to Pi are
performed, for 2 < j < r. Due to the non-returning mode of working, after
communicating, each Pj, 2 < j < r, keeps a copy of its sentential form
and continues to rewrite it.

For each word w G L,w = aUlbni .. .an±bnta, witht > 1, m , . . . ,nt > 1,
we call the z-th block of w the subword an*bn\ 1 < i < t.

Let w e L, w = anibni ...antbnta,t > l , n i , . . . ,n t > 1, and D be a
dérivation of tu,

for aj G (N U {a,6})*, 2 < j < r. For i, 1 < i < t, let A be the
subderivation of D which produces the i-th block of w in the string of the
component D\. Consequently, Di has the form
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where wm = a"1*"1 . . . - a ^ - 1 ^ - 1 , u' G Pre/(a" i+16 ï l i+1 .. .an*6n*a),
I Ü J , ^ - G {a,*}*, Aj,B,- GiVu{A},2<j < r, Ai ENuK.Bi E NU{\},

and, moreover, A is minimal, in the sensé that both the first and the last
dérivation step of Dj introducé at least one terminal symbol in the i-Xh
block of w. For a triple (w, D% i) as above, we dénote by k the number of
communication steps in D% where the transmitted string contains terminal
symbols, by m the maximum number of terminal symbols introduced in the
component Pi at a communication step, considering only symbols which
contribute to the i-th block, and by p the number of all terminal symbols
generated by the component Pi and which become a part of allibUi.

ASSERTION 1 : There is a natural number k§ > l such that, for each triple
(w^D^i) as above, we have

P < ko(k -j- l)(km + 1).

Proof of Assertion 1: Assume that this assertion is not true. Then there
is a triple (w,.D,i) for which

p > <?o(6#i + l)(k + l)(km + 1),

where

ço = inax-O1|A -» xB E Pi ; x E {a, 6}*, A EN, B E NöKu {A}},

q1 = card(NuK\J{\}).

Between the communication steps that introducé at least one terminal
symbol and possibly before the first communication and after the last one
of Di with this property, the component Pi produces at most k + 1 strings
of terminal symbols which participate to obtaining allibn*. The sum of the
lengths of these strings is p, therefore there is at least one such string x
with \x\ > £XY-

Let D1 be the subderivation of D% which produces x. It follows that D!

has the form

where Xj.Yj E N U {\},ZJ,XJ G {a,6}*,2 < j < r, z1)vuv2 E
{a,b}*yXi E N,YL E N U K, and v1 maybe different from A if D1 is
the subderivation of D\ which starts with the same configuration as D\ and
stops before the first communication step, v2 may be different from A if
D( is the subderivation of D% which follows after the last communication
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ON THE POWER OF PARALLEL COMMUNICATING 343

step, and v-[V2 = A if Df is a subderivation between two communication
steps. Note that, D1 contains rewriting steps and communications when
only nonterminals are transmitted. Consequently, x is a subword of aUibni.
Moreover, \XJ\ < m for those j , 2 < j < r, for which communications from
Pj to Pi will follow in D% (this follows from the définition of ra).

We divide the subderivation Df in subderivations such that at least km + 1
terminal symbols are produced in each of them in the string of Pi. Since go
is the maximal number of symbols that can be introduced in Pi at a rewriting
step (qo > 1 because p > 0), it follows that we can impose, in addition,
the condition that any of the generated strings of these subderivations does
nat have more than qo(km + 1) symbols, without losing the first condition.
Then, the total number of these subderivations is at least Ja'. , 1A. As

qo(km+l) '

\x\ > £+x and p > Qo(6qi H- l)(k + l)(km +1) , it follows that we have
at least 6g[ + 1 such subderivations. Since q[ is the maximum number of
different r-tuples (Yi, . . . , Yr), Y% E NUKU {A}, 1 < % < r, it follows that
there are (Zu . . . , Z,\ Z% € N U K U {A}, 1 < i < r, and seven different
configurations C i , . . . , C r , not two of them in the same subderivation as
defined above, such that C$ has the nonterminal Zj in the component j
(and maybe terminal symbols), 1 < j < r, 1 < s < 7. Assume that these
seven configurations occur in D1 in the order of their indices. Then in at
least one of the dérivations &i ^*nTC± and C4 ^*vrC6j occurrences of only
one terminal symbol are introduced (because in C2 ^*irCQ only terminal
symbols which contribute to anibUi are introduced; in order to be sure of
this we have left apart the configurations Ci and C7— they could be the
first and the last ones of A ) . Let us assume, without loss of the generality,
that C2 =»*rC4 is this dérivation. Then C2 = (2/1^1,2/2^2, - •., yrZr):

C4 = (yiuiZ1:y2U2Z2, ,yrurZr), u\ G {a}*, a G {a, b}. Clearly,
|ui| > km + 1. Replacing in D the subderivation C2 =^^rC4 by the
subderivation obtained by repeating C% =^*rC4 for q times, q > 2, we
obtain a terminal dérivation Z?7', which générâtes a word vJ E L having the
first i — 1 blocks identical with those in w. The i-th block of vJ has in addition
to the i-th block of w(q ~ l ) |^ i | occurrences of a generated by Pi and at
most {q — l)km occurrences of symbols introduced by the communication
steps (that follow after the itération of the subderivation C2

Since (q - l) |ui | > (q - l)(km + 1) > {q - l)fcm, it follows that the
number of occurrences of a in the i-th block of wf is not equal to the
number of occurrences of b in that block. This contradicts the relation
wf G L, hence concludes the proof of Assertion 1.
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ASSERTION 2: There is a natural number k\ > 1 such that

k < ki(rm+ 1),

for each triple (w,D,i) as above.

Proof of Assertion 2: Assume that this is not true, hence there is a triple
(ic, D,i) for which

k>5(q[ + l)(rm + l).

Consider the subderivation Di of D

We do not take into account the first and the last communication steps (when
strings from 6+a+(JV U {À}) can be communicated) and one step when a
string from a+b+N can be communicated. Then k — 3 communication steps
remain, when strings in {a,b}~*~N are communicated. It is clear that there
is a E {a, b} such that the number &', of communication steps when strings
in a+N are transmitted, is at least ^ ^ . Consequently,

These communications are consécutive (ail possible intermediate commu-
nications are transmitting only nonterminal symbols). Dénote by Df the
subderivation of DL which starts with the first and finishes with the last
of these communication steps. Since D' has at least (q[ + l ) ( r m + l )
communication steps when strings from a+N are transmitted and, because
between two communications at least one rewriting step is performed, it
follows that there is a subderivation D[ of Df with q[ + 1 communications;
moreover

z\ e {a,b}\ xi e a*,XuYi G NuK^z^z^ G {a,b}\X^Y3 e N U
{A}, 2 < j < r, and for the components Pj,2 < j < r, which communicate
strings to P\ in Z)' we have zf- — ZJ. Indeed, the number of dérivations
when in at least one component P3 which communicates to Pi in D\ at
least one terminal symbol is produced, is less than or equal to (r — l)m,
because m is the maximal number of terminal symbols that can appear in
such a component Pj in Df and (q[ + l)(rm + 1) > {q\ + l)(r - l)m.
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The dérivation D[ has q[ + 1 communication steps, hence there are
two configurations C\ and C2 which have the same nonterminals in
the corresponding components and the dérivation C\ => *vrC-2 contains
at least one communication step of those mentioned above. Then C\ —
{yiZi,y2Z2,...,yrZr), C2 = (yiuiZi,y/

2Z2i...,y
/
rZr), for some y\ E

{a,&}*,wa E a\Zl e NUK}Z3 e Nu{\},y3,y'3 E {a, 6}*, 2 < j < r,
and for each j , 2 < j < r, such that there is a communication from Pj
to Pi in Df, we have y'- = y3. It follows that \ui\ > 0 because at the
communication step in Df some terminal symbols have been introduced
in Pi. If we replace in D the subderivation C\ =>*rC2 by the dérivation
obtained by iterating it q times, q > 2, then we obtain a terminal dérivation
JD", generating a string IÜ'. This string must be in L and has the first i — l
blocks identical with those of w. In the i-th block, wf has in addition to w the
substring u\~ (due to the form of C\ and C2, the substring communicated
in Di are not modified after iterating C\ =^*rC2). As ti^~ is non-empty and
contains occurrences of only one symbol, it follows that wl does not have
the same number of occurrences of a and b in the i-th block, a contradiction
which complètes the proof of Assertion 2.

ASSERTION 3: Let D b e a terminal dérivation in F in which a communication
of a string xasbnayA is performed, for some x, y E ={a,6}*,4 E
JVU {A},n > 1,5 > 0. Then

s <

where

22 = max{|u||£ -^uC E Pj,wG {a,6}*,S E Â , C E iVu{A},l < j < n}.

Proof of Assertion 3: Assume that the assertion is not true, hence there is
a terminal dérivation D! in F of the form

>' : (S i , . . . , Sr) ^nr{zQj,..., xa5

, . . . , xa*bnayAy...) =>*r(«;, «2, - • -, Sr),

v/here x,y,z E {a,6}*,A E N U {\},6i E (iV U {.a,6})*,2 < i < r, for
some j , 2 < j < r, n > 1, and 5 > 52(^1 + 3). Then in the dérivation
Sj ^*rrxasbnayA in the component Pj at least q[ + 1 rewriting steps
using rules of the form B —> itC,tfc E a+,B,C E JV, were necessary for
obtaining the string as. At least two configurations of D from the beginning
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of these rewriting steps have the same nonterminals in the corresponding
components. Assume that Ci = (z\X\,z<iX2, • •• ,xafXy,..., zrXT) and
Ci — {zf

lX\,Z2X2,^^xatavX1)...,z
l
rXr)) are such configurations, zt,

z\ G {a, 6}*, 1 < % < r, i ï j , 'Xi G N U {A}, 1 < i < r, Xu X:j ? À,
t > 0, v > 1. We replace in D' the subderivation Ci =>*rC2 by an itération
of it for q times. In this way a terminal dérivation Df

q is obtained,

D' : (SU .. •, Sr) =>* r(/Qi, . - - ,

where z',wf
q G {a, 6}* ,^ G (iV U {a,b})*, 2 < i < r. Consequently,

ÎUÇ G L,g > 1. For ç = nyw
!
n contains the sub word as+nvbna, which

is not in L, a contradiction completing the proof of Assertion 3.
Let now w be an arbitrary word in L, w = a'llbni ... ant¥l±a,t > l , f l a

dérivation of w and Di a subderivation which produces the z-th block of w,
for some i, 1 < i < t. According to Assertions 1 and 2, we have

p< fco(fc + l)(À;m+l), (1)

fc<fci(rm + l), (2)

where p, k\ m are the numbers associated to the triple (w,D,i) and ko,
ki are constants.

The length of the i-th block of w is 2nz; p of the symbols appearing in
this block are introduced by Pi during the subderivation Di, and the other
symbols by the communication steps when strings xX, x G {a.b^.X e
NU {À}, are transmitted. As the number of symbols in x which contribute
to aRibni is at most ra, it follows that

2ni < p + km.

Using relations (1) and (2), we obtain

2n} < ko{k + l)(km + 1) + km < ko(k -h 2)(km + 1) <
1) + 2)(ki(rm+ l)m + 1) <

< ko(ki(rm + 1) + 2)3 = ko(hrm + ki + 2)3.

Consequently, 2n% < ko{k\rm + ki + 2)3. It follows that
J2r) •

V &0
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Consider the mapping ƒ : N —» R defined by

a/Sta _ k _ 2

ƒ(") = —

This is an increasing mapping and limÏWOO f(n) = oo. Dénote by no the
smallest natural number such that f(no) > 1.

From (4) we have m > f (ni) and ƒ (n^) does not depend on w or on Di,
but only on the length of the z-th block of w. Consequently, for any word
w e L and any dérivation D of a dérivation producing it, for obtaining a
block anbn of w, n > no, at least one communication step is performed,
when a string of the form xX,x e {a,b}*,X e N U {À}, is transmitted,
such that the number of symbols appearing in x which contribute to anbn

is at least equal to f(n). Note that f(n) < 2n.

Dénote &2 = <?2:(<?ï + 3). As limn^oo f(n) = oo, there are natural
numbers ^1,722,—,7i2r-i such that n\ > max(A:2,no) and for each i,
1 < i < 2r — 2, ƒ (n^+i) > 2n2;. Since ƒ(n) < 2n: for all natural numbers n,
it follows that n2r-i > ^2r-2 > . . . > ni, hence ni > &2,1 < i < 2r - 1.
Let w = ara2r-16™2'-1 . . . a n i 6 n i a in L, and let fl be a dérivation of w.
For each i, 1 < z < 2r - 1, there is a component P?..,2 < j ^ < r, which
communicates to Pi a string of the form Z{ = xïa

m^bmi~m-yiXi with
Si,ÎK ^ {a,6}*,^i € JVu{A},m; > 0,m, > / (^ ; ) , and am*bmi-<
contributes to the -̂th block. Dénote by pi this communication step,
1 < i < 2r - 1. It follows that 2r^ >ml> 2ni_i, 2 < z < 2r - 1.

Assume that jj = j 5 for some i, 5, 3 < i < 2r—1,1 < 5 < z—2. If pj — p s ,
then at this communication step also the (i — l)-th block is introduced in the
string of Pi, hence zu — xbani-1bni~1ayXj^x,y E {a,6}*. But m-\ > k2
and according to Assertion 3, a string like z3i cannot be communicated, a
contradiction. It follows that p% 7̂  ps. Because the step ps is performed after
Pi (and the System is non-returning), the string x%dP%lihm%~'m^y% is a subword
of zJs. Hence, when ZJS is communicated, also the string am'-brrii~mt- is
introduced, but this is not a subword of any block 5 , . . . ,i — 1, because
^ i > 2ni-\ > . . . > 2ns. Consequently, the communication step ps

contributes both to the s-th and to the z-th blocks of w and we obtain
the same conclusion as in the previous case.

In conclusion, j% / js,3 < i < 2r — 1,1 < 5 < i - 2. It follows
that J2r-i,j2r-3j • • - Ji are r different numbers. On the other hand, all
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of them are in the set {2, . . . , r } , which contains only r — 1 éléments.
Contradiction. D

4. REGULAR VERSUS RIGHT-LINEAR RULES

In many papers (this is true, for instance, for [2]), for "regular" PC grammar
Systems one works with right-linear rules, but the proofs are given (when
possible) for the stronger variant: using strictly regular rules in examples and
right-regular rules in proofs which can work in a gênerai set-up. However,
up to now no comparison of the two types of Systems is made. We will show
that such a comparison is necessary, there are cases when the right-linear
rules are strictly more powerful than the regular ones, a situation which is
quite unfrequent in formai language theory.

THEOREM 3: CPC(REG) C CPC(RL).

Proof: The inclusion is trivial, we.have to prove only its strictness. To
this aim, we consider the language

L = Lmwdm\m > l.w 6 {62, c3}*, H * + M i = ml.

Consider the centralized PC grammar System

T = ({S1,S2,S3,A,B,C,D},K,{a,b,c,d},(PuS1),(P2,S2),(P3,S3)),

with

P1 = {S1 -» Oi4,5i -^aQ2,A->aA,A-^aQ2,B -> Q3,D -^ d},

P2 = {S2 -» b2B, S2 -» c3B, B - • b2B, B -» c3B],

p3 = {Sz^C,C-^D,D-^ dD}.

Each returning dérivation in F is of one of the following forms:

(1) (Si,S2,S3) =>*r(a
mQ2,wB,<r-2D) =>*r(a

mwB,S2,d
m-2D)

=>r{amwdm,xx'B,C),

where m > 2, w G {b2, c3}+, ̂  + ^ = m, and x, x' G {b2, c3},

(2) (Si,S2,Si)=>*r(aQ2,wB,C)=>T(awB,S2iC)

^r(awQ3,xB,D) =$-r(awD,xB,S3) =>r{awd,xx'B,C),

where w,x,x' G {62,c3}.
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Consequently, Lr(T) = L, hence L G CPC(RL).

Let us now assume that L — Lr(T) for some centralized PC grammar
System with regular components, T = (TV. K,T, (Pi, S i ) , . . . , (Pn , Sn)),
T = {a,6,c,d}.

ASSERTION 1: There is a natural number k such that for any dérivation
(5 i , . . . , 5„ ) ^;(amwdn\a2,...,an) in r , where m > l,w € {&2,c3}+,
the number of the communication steps which contribute to w (hence the steps
when strings of the form xX,x G a*{6,c}+<i*,X G JV, are communicated)
is less than or equal to k.

Proof of Assertion 1: Assume that there is no natural numbers k satisfying
the required condition. Then there is a dérivation D : ( S i , . . . , S n ) =>*
(amwdm,a21...,an), w G {62 ,c3}+ , for which the number of the
communication steps that participate to obtaining the substring w is at
least (p + l ) n + 2, where p = card(N U if ). Let C\ be the configuration
obtained after the first such communication step and C2 that obtained before
the last such communication step. Then the string in the first component,
both in d and in C2, is of the form amxA,A G N U K,x G {&,c}+,
and the strings communicated during the subderivation C\ =>*C2 are of the
form yX, y G {6, c} + ,X G JV. Also, the subderivation Ci ^*C2 contains at
least (p + l)n steps (communication or rewriting steps), hence it has at least
(p + l)a + 1 configurations. As the maximal number of different n-tuples
of the form (Ai, . . .,An),Al G N U K U {A}, 1 < i < n, is (p + l ) n ,
it follows that there are two configurations C3 — (rriAi,. . . ,xnAn) and
C4 = (yiAi, . . . , ^ 4 ) , such that C\ ^ ^ C 3 =^*C4 =>*C2. Since the
grammar system is centralized and has regular productions, it follows
that y\ — x\z\yz\ / À. From the définition of C\ and C2, we obtain
zi G {&,c}+.

The dérivation steps between C3 and C4 can be repeated 5 times, for
any natural number 5. At each itération a symbol b or c is introduced
in the first component. If, after these s itérations of the subderivation
C3 => * C4, the dérivation is continued using the same steps as in
C4 =^*C2 => *(amiüdm,u!2,... , a n ) , then we obtain a dérivation of a
terminal word of the form amw/u,u G T*,wf e {6, c } + , |«/ | > 5. Take
5 — 4m. Then |K/| > 4m and

Hence amwfu g L, a contradiction finishing the proof of Assertion 1.
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For s > 1,2 < i < n,X,Y G N, we dénote

A(s , î , -X: ,y)={*>0| there is y G {&2,c3}+,|y|• = 5, |y[6 = t, and

there is a dérivation X =ï*yY in Pi which will

contribute to the génération of a string which will

be communicated to P\ during a terminal dérivation},

and for s > 1, X G iV, Y G N U Ky we dénote

A(s, 1}X7Y) ={t > 0| there is y G {&2,c3}+, \y\ = s, \y\b = t, and

there is a dérivation X =>lyY in Pi which is used

in a terminal dérivation in F}.

ASSERTION 2: card{A{s,i,X,Y)) < 1, 1 < i < n, X G TV, Y G N U K,
s > 1.

Proof of Assertion 2: We consider first the case z = 1. Assume that there
is 50 > 1 and XyY G N such that carrf(A(50, I JXJY") ) > 2. Then there
is a dérivation

where z G L, ^ G T*, y G {62, c3}"1", |y| = SQ and between the configurations
(xX\...) and (xyY,...) there is no communication step and, moreover, there
is y1 G {62,c3}+ such that X =^*yfY in Gi, | ^ | = s0 and |V|6 / . |y|6.

Then in the dérivation D we can replace the subderivation ( iX , . . . ) =ï>*
(rcyY,....) by (xX,...) =>> (ayy-'Y, ) (only the rewriting steps from the
first component are changed, the others remain the same). Thus we obtain
a terminal dérivation

D' :(S1,...)^;.(xX,...)^*r(xylY,...)^*r{z',...),

where, if z — xyu, then zf = xyru,u G T*. Since z G Lr(T) — L and
y G {62,c3}+, it follows that z = amviyv2dn\vi,V2 G {62 ,c3}+ , hence
2:' = amv\yfv2dm. From the définition of L, since z, z1 G £, we obtain

\v1yv2\b .\v1yv2\c

hence,

2 3 2
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We know that \y\c = \y\ - \y\b = s0 - \y\h and |y'|c = |y'| - \yf\b = s0 - |y'|&.
Replacing the corresponding terms in the equality above, we obtain
\y\b — W\,bi which contradicts our assumption. Hence Assertion 2 is proved
for i = 1.

Assume now that there are i, 1 < i < n, so > 1, and X, y E iV such that
card(A(sori,X,Y)) > 2. Then there is a dérivation in F

where 2: e L, ^ 1 , ^ 2 , ^ , 2 / 1 , 2/2 G T*? y G {6
B e NUK.C, Z e N, and between the configurations (x i i ? , . . . , y\X,...)
and (x\X2%2>Qi,. •.., yiyy2Z,...) there is no communication step, and,
moreover, there is y' e {62, e 3 } + such that X =^-*l/Y in P« and
[y'l = 3Q, [y'lfe 7̂  |yJ5„ Therefore, we can replace in D the subderivation

.) ^ ( a r i ^ C , . . . ^ ! ^ , . . . . ) by ( x i 5 , . -. ;yiY, . . .} =>£
, . . . ) (the change is performed only in the component

Pi). In this way we obtain a new dérivation, which générâtes the terminal
string zl — xiX2Xsyiyfy-2Ur where u E T*, z = x\X2X$y\yy2U. Continuing
as in the case i = 1 we obtain a contradiction; this complètes the proof
of Assertion 2.

For every s > 1, dénote

IJ

and

^'(s) = {t > 0| there is y E {62,c3}+, |y| = 5, [y[6 = t}.

Moreover, dénote ko = n-p2 . According to Assertion 2, eard(A(5)) < ko
for ail 5 > 1. Let 50 = 6A;o. Then card(A'(50)) > fco + 1. Indeed, let Xj =
66jc6(fc0-j))Q < j- < fco# T h e n ^ E {62

re
3}+ and \x\3 = 6fc0?0 < j < fc0.

Since card(A'(50)) > card'(A(s)), itfollows that there is 0̂ E A/(5o)~A
Let y E {&2,c3}+ such that \y\ = 5Q and |y|& = t0. Dénote m = ^ • +
(m is a natural number, because y G {J>2,c3}+). Clearly
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and y2(fc+1) G {6 2 ,c 3}+ , where k is the number in Assertion 1. Let
z = a2(k+i)my2(k+i)d2(k+i)m^ Obviously, z G L = i r ( r ) . According
to Assertion 1, any dérivation of z has at most k communication steps which
contribute to the string y2^*1) . It follows that there is a substring y' of
2/2(fc+1)) \y

f\ > |y2|, such that either y1 is generated entirely using rules in Pi,
or yfYf is generated in a component Pi, 2 < % < n, and then communicated
to Pi , for y ' G N. As |?/| > |?/2| = 2s0 and y' is a substring of </2(fc+1),
it follows that y is a subword of yf and, according to the définition of the
sets A(s,i,X,Y),s > 1,1 < i < n , J E iV,F G iVUif, it follows that
there are X E N.yY E N U Ky such that y satisfies the condition in the
définition of the set A(SQ,Î,X,Y). Consequently, \y\t> G A(SQ); however
\y\h — to & A(SQ), a contradiction. D

We dot not know whether the previous resuit is true also for non-centralized
Systems. Somehow surprisingly, the following counterpart of it is true,
proving that in right-linear Systems the chain rules are important, not the
rules A —> x,A —> xB,A —• xQ% with \x\ > 2.

THEOREM 4: For every PC grammar System T with right-linear rules,
centralized or not, there is a PC grammar System Tf, of the same type as F
as concerns centralization, with rules of the forms A —» oB, A —» J3, A —> c,
with A nonterminal, B nonterminal or query symbol, and c terminal, such
that Lf(T) - {A} = I f n / G {r,nr}.

Proof: Take Y - {N,K,T,{PuS{)y...,{Pn,Sn))- Dénote

q = max{|x | |A ^> x € Pt1l <i< n,A G N7x G T*(7V U K U {A})}.

If Q ̂  1) then F is already of the desired form. Assume that q > 2. We
construct the System

with

Nf = NU{[rJ]\r : A-+ou ...a3 e PiyA e N,

at E T,l < t < s - l,as e N U K UT,s > 1,1 < j < q},

P' = {A^ [ryl], [r, 1] - , [ r ,2] , . . . , [r,9 - 5] ̂  [r, q - s + 1],

[r,q - 5 + 1] —> a i [ r , g - 5 + 2], [r,g - s + 2] —> Qf2[r,ç - 5 + 3],

. . . , [ r , g - 1] -> a5_i[r,g],[r,g] -> as\r : A ^ a\ .. .as e P,

Ae N,at £Tyl<t<s-l,as e NuKl)T,s>l},
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for each i, 1 < i < n.

The equality Lf(T) - {X} — Lf(Tf) is obvious, for each ƒ G {rynr} :
each rule r : A —> ai . . . a s of F is simulated in F' by exactly q + 1
rules, starting with A —• [r, 1], and ending with [r,q] —> a5. Starting from
a configuration of F (initially we have (S i , . . . , Sn)), T

f produces in this
way another configuration of F. The query symbols can be introduced only
by rules [q,r] —> a$, hence the communication steps are performed as in
F, without involving symbols [r,j]. The type of dérivation — returning or
non-returning - plays no role in this argument. Clearly, F' is centralized
when F is centralized, which complètes the proof. D

The previous theorem corresponds to the obvious fact that each right-linear
grammar is equivalent (modulo À) with a grammar having rules of the forms
A —> oB, A —> J3, A —» c. In the case of context-free dérivations in a
Chomsky grammar, also the rules of the form A —y B can be eliminated. In
the case of PC grammar Systems the différence is due to the synchronization
of rewriting steps.

Note that the previous construction does not work for PC grammar system
with context-free components, because of multiple queries: it is necessary
that in each rule A —> x with \x\ > 2 we have x = x'a with x1 E (N U T)*.
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