INFORMATIQUE THEORIQUE ET APPLICATIONS

MAURICE MARGENSTERN

The laterality problem for non-erasing Turing
machines on {0, 1} is completely solved

Informatique théorique et applications, tome 31, n°2 (1997),
p- 159-204

<http://www.numdam.org/item?id=ITA_1997__31_2_159 0>

© AFCET, 1997, tous droits réservés.

L’acces aux archives de la revue « Informatique théorique et applications » im-
plique I’accord avec les conditions générales d’utilisation (http:/www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=ITA_1997__31_2_159_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informatics and Applications
(vol. 31, n°® 2, 1997, pp. 159-204)

THE LATERALITY PROBLEM
FOR NON-ERASING TURING MACHINES ON {0, 1}
IS COMPLETELY SOLVED (*)

by Maurice MARGENSTERN Q)

Abstract. — In a previous work, (2], we defined a criterion which allowed to separate cases when
all non-erasing Turing machines on {0,1} have a decidable halting problem from cases where
a universal non-erasing machine can be constructed. Applying a theorem which entails the just
indicated frontier and analogous techniques based upon a qualitative study of the motions of the
head of a Turing machine on its tape, another frontier result is here proved, based upon a new
criterion, namely the number of left instructions. In this paper, a complete proof of the decidability
part of the result is supplied. The case of a single left instruction with a finite alphabet in a
generalized non-erasing context is also delt with. Thus, the laterality problem, raised in the early
seventies, see [9], solved on {0,1} alphabet without restriction, is now completely solved in the
non-erasing case.

Résumé. — Dans un article antérieur, [2], nous définissions un critere permettant de séparer les cas
our une machine de Turing non-effacante sur {0, 1} posséde un probléme de I’arrét décidable de ceux
ou l’on peut construire une machine de Turing universelle. En appliquant un théoréme qui entraine
'existence de la frontiere qui vient d'étre indiquée et des techniques analogues fondées sur I’étude
qualitative des mouvements de la téte d’une machine de Turing sur son ruban, nous démontrons
ici un autre résultat de frontiére fondé sur un autre critére, a savoir le nombre d’instructions
gauches. Dans cet article, nous donnons une démonstration compléte de la partie “décidabilité”
de ce résultat. Nous traitons aussi le cas d’une unique instruction gauche avec un alphabet fini
quelconque dans un contexte non-effacant généralisé. Posé au début des années soixante-dix, voir
[9), le probléme de la latéralité, résolu depuis sur I’alphabet {0,1} sans restriction, est maintenant
completement résolu dans le cas non-effacant.

1. INTRODUCTION

1.1. Since Turing’s work of 1936, [17], it is well known that the halting
problem of a Turing machine is undecidable. In 1956, it was proved by
Shannon, [16], that the same problem remains undecidable when it is
restricted to deterministic machines with one head. and one tape, bi-infinite,
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160 M. MARGENSTERN

on alphabet {0, 1} . Which further restrictions must be set on Turing machines
in order to make the halting problem decidable for any machine of the class
thus obtained?

In the sixties and the early seventies, some effort was made in that
direction. To a large extent, this question appears to be more difficult if, as
we shall do in our sequel, we fix our attention only on deterministic Turing
machines with one head and one tape, bi-infinite. This had led to partial
answers which are far from closing the matter. The state of the art may be
summarized by figure 1 below.

On that figure, each point s x [ represents the set of all Turing machines
whose program contains s states, but the halting state(s), and uses [ letters,
including the blank of the tape. Let us call such a point decidable if the
halting problem is decidable for any Turing machine in the corresponding
set, and undecidable if the halting problem restricted to this set of machines
is undecidable.

In figure 1, black squares indicate sets which contain a universal Turing
machine. Consequently, the corresponding point is undecidable. By restricting
the number of states or the alphabet of the machine, it is easily seen that any
z X y universal machine of figure 1 says that for any couple n x m, with
n > z and m > y, the corresponding point is undecidable too. White squares
indicate points known to be decidable. Crosses indicate points, the status of
which is not known. Indices refer to the year and to the quoted literature.

As it was pointed out recently in [12] and [14], although the number of
points with an unknown status is finite, the problem of splitting points just in
two classes — one containing all decidable points, the other one containing
all undecidable points — is far from being closed.

It is of course a striking fact that only a few points of figure 1 outside the
axises are known to be decidable. By looking closer at the methods involved
for solving the halting problem about the corresponding sets of machines,
we see that one way, for tackling the problem, as it was introduced in [6],
consists in finding out an integer valued function ¢ defined on the considered
set M of Turing machines with the following property : there is an integer
f such that the halting problem is decidable for any machine T from M
such that ¢(T") < f, and for any k£ > f one can always construct a universal
machine U in M such that ¢(U) = k. In that case, c is called decidability
criterion and f is called its frontier value.

The number of symbols of the machine alphabet provides a simple example
of a decidability criterion. It is plain that any Turing machine on a one-letter
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symbols

2x 181996 {14]

+

3Ix 101993,[13],[14]

+
+ +
+ o+
+ o+
4x61982,(11]
+ + K
5x51982 [11]
+ o+
+ o+
2x31973 10x 31992 {12)
& :
21x2y996,(15]
O +
2x2 states
——0—

Figure 1. — The present state of the art.

alphabet has a decidable halting problem. Shannon’s result, see [16], shows
that starting from two letters for the machine alphabet, it is always possible
to construct a universal Turing machine. The same paper shows that the
number of states also provides a decidability criterion with also two as a
frontier value.

1.2. In this paper, we focus our attention on one criterion, the laterality
number, see later below, applied to subsets of non-erasing Turing machines.

Non-erasing Turing machines were first considered by Wang, see [18], as
Turing machines on alphabet {0, 1} which are not allowed to erase the non
blank symbol (usually 1). Nevertheless this strong restriction, it was proved
by Wang that non-erasing Turing machines turn out to also possess universal
abilities. Consequently, the whole previous discussion is still meaningful for
these machines, but it remained unexplored since Wang time until [2].

vol. 31, n° 2, 1997



162 M. MARGENSTERN

The non-erasing constraint has certainly connections with phenomena
studied in mathematics or nature sciences where heavy conservative
properties fall under observation. From this point of view, there are
connections between the non-erasing constraint and monotonicity or
positivity in mathematics, with entropy in physics, with conservative
properties in biology, especially in genetics and embryogenesis. Indeed,
following Zykin’s proof of Wang theorem, see [19] and [2], in the non-
erasing world, universality is proved by copying the encoding of some
Turing machine configuration into the encoding of the next one since both
configurations differ by at most two contiguous cells. This process reminds
the conservation mechanisms of life reproduction in which evolution is
made possible by mutations occurring at isolated places along a discrete
time. On the other hand, the marking process involved by copying the
current configuration into the next one reminds the ultimate degradation of
material according to entropy law. On the tape of the simulating non-erasing
machine, the evolving part of the tape may appear as the living upper part
of a coral block, while the rest of the configuration corresponds to the
under-water, inert and unchanged part of that same block.

Inside practical computer science, two hardware features do implement
the non-erasing situation : punch-cards and CD-ROMs for which a hole
can never be filled out. Wang theorem shows that the theoretic power of
these computational tools is the same as the theoretic power of ordinary
computer processing.

These reasons. make it worth of interest to investigate the non-erasing
world. In spite of the strong constraint imposed by non-erasing, results in
this domain are not at all trivial as, we think, the reader will be convinced
by reading carefully [2] and this paper.

1.3. Although not at all stated in these terms, Pavlotskaya’s paper [9]
considers the number of instructions ordering a move to the left as a possible
decidability criterion. The paper just proves that any Turing machine on
{0, 1} with a single instruction to the left has a decidable halting problem.
The proof is not a all trivial and this function on Turing machines happened
to be proved a decidability criterion only very recently, see [7], after the
result of this paper was proved. That criterion result closes the laterality
problem for Turing machines on {0,1} in general. Of course, it does not
therefore follow that the same problem would also be closed for any subset
of Turing machines with respect to the discussion depending on the number
of letters in the machine alphabet and the laterality number.

Informatique théorique et Applications/Theoretical Informatics and Applications
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Quoting the universality result also mentionned in [6], the attention is
drawn, in our sequel, on the decidability side of the laterality frontier
result there stated within the frame of non-erasing machines. However,
the proof given here is stronger than the proof sketched in [6] since in
that paper, as well as in [2], results are proved only for machines without
stationnary instructions (see the definition below, section 2). Those results
are summarized as indicated in figure 2, below, where black squares indicate
non-erasing Turing machine sets in which a universal machine can be
constructed and white squares indicate that for the corresponding non-erasing
Turing machine sets the halting problem is decidable. Call here too points
decidable or undecidable, accordingly.

laterality

n

3 |

2 O n

{} {} 3 e letters
1 2 3 n

Figure 2.

Theorem 1 states that point 2 X 2, i.e. 2 letters and 2 as a laterality number,
corresponds to a decidable halting problem. The undecidability of point 2 x 3
is the content of theorem 2, see [5]. As it will be seen in section 7, it therefore
easily follows that point 3 x 2 also is undecidable. The decidability of all
points n X 1 is the content of theorem 3. As suggested by figure 2, the status
of any point is known since point z x y is undecidable if so is point u X v
for some %, v with 4 < z and v < y.

In section 2, precise definitions are given, which are necessary to state
the decidability criterion theorems : colour number theorem and laterality
number theorem.

In section 3 a general analysis of the machine head motion on the tape is
provided. Various lemmas proved in that section will be intensively used in

vol. 31, n® 2, 1997



164 M. MARGENSTERN

the proof of theorem 1 most often without reference. In section 4 a general
pattern for proving the halting problem to be decidable when this is the
case is described, and specific tools are elaborated to be used in the proof
of theorem 1.

Section 5 and 6 are devoted to the proof of theorem 1 : section 5
for machines without stationnary instructions, section 6 for dropping that
restriction.

In section 7, the case of a single left instruction is considered. Various
extensions of the non-erasing setting are discussed and theorem 3 is there
proved.

Notice that the tools elaborated in sections 3 and 4 are general and do
not assume any non-erasing condition. In particular, two general results on
Turing machines are proved in section 4, which state necessary and sufficient
conditions for an ultimately periodical motion of the machine. One of those
theorems, periodicity lemma, was already stated in [6]. The second one is
a new result of this work.

2. TWO CRITERIA FOR THE HALTING PROBLEM

Remind that here, we consider only deterministic Turing machines with
one head and one tape, bi-infinite, on alphabet {0,1}, O taken as a blank
symbol.

Instructions of such a Turing machine may be represented by a quintuple
(I) izMyj where, if the machine scans symbol z on the tape in state i
of its finite control, then it rewrites symbol z to y on the tape, moves its
head in the direction M (to the right for M = R, to the left for M = L,
no move for M = S) and changes its state from i to j for performing the
next step of the computation. Symbol M is the move of instruction (I), and
we say, respectively, for non-halting instructions, left, right and stationnary
instruction as M = L, R or S.

Dermirion: The triplet z MYy is called colour of instruction iz Myj.

The colour of an instruction can also be viewed as a projection of the
corresponding instruction. Applying this projection to the whole program of a
Turing machine, say M, provides a set whose cardinality is, by definition, the
number of colours of machine M. The notion of colour that we introduced
in [1] and [2], is the simplification of a more complex notion of [9]. In fact,
in [9], L. Pavlotskaya shows merely that the number of colours over Turing
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machines on {0, 1} provides a criterion with a frontier value for the halting
problem of those machines. Reformulated in terms of colours, Pavlotskaya’s
results state : up to two colours, the halting problem of the machine is
decidable and starting from three ones, such an assortment of three colours
can be found that a universal Turing machine can be constructed, using only
colours of the assortment.

In [2] and in [1], we extend this criterion to the non-erasing case obtaining,
of course, another frontier value : up to four colours, the halting problem
is decidable. Starting from five colours, one can find such an assortment
of colours that a universal non-erasing Turing machine can be constructed,
using only the assortment colours.

Let us turn now to the laterality criterion.

We first define the laterality of instruction (I) as follows. If instruction (I)
is, respectively, left, right, its laterality is also left, right. If instruction (I) is
stationnary, notice that the next instruction to be performed by the machine is
completely determined by y and j. Consequently, either a loop of stationnary
instructions is eventually performed after running (/), or a halting instruction
or an instruction (J) with move R or L occurs, possibly after a sequence
of stationnary instructions. In the latter case, we define the laterality of
instruction (I) to be the move of (J). The case of an eventual loop of
stationnary instructions is a trivial case of non-halting.

It is now possible to define our new criterion as the least number of
instructions with the same laterality, for instance with left laterality. Call it
the laterality number of the considered machine. It comes from the following
consideration : in [9], where machines with possibly stationnary instructions
are not considered, it is proved that if the program of a Turing machine
on {0,1} contains a single left instruction, but any given number of right
ones, then the halting problem is decidable for that machine. On the over
hand, if we consider the smallest universal Turing machine known up to
now on {0,1}, see [15], then we see that a universal Turing machine on
{0,1} can be constructed if twenty left instruction are allowed. The question
naturally arises whether this gap can be significantly shortened. The answer
is yes, since, as indicated in the introduction, the laterality problem has been
recently solved in the general {0,1} case, see [7], where it is shown that
the laterality criterion has two as a frontier value. In this paper, we give a
precise frontier value between a decidable halting problem and universality
for non-erasing machines as is stated by the following two theorems :
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166 M. MARGENSTERN

TaeoreM 1: (cf. [3]) The halting problem is decidable for any non-erasing
Turing machine on {0, 1} with a laterality number not greater than two.

Tureorem 2: (cf. [4]) There is a non-erasing universal Turing machine on
{0,1}, the program of which contains precisely three instructions with left
laterality. Moreover, such a machine with 218 states can be constructed.

In [4], we indicate with full explanations how to construct a universal non-
erasing machine on {0, 1} with precisely three left instructions and we give
the explicit program of such a machine with only 218 states, which has been
checked on a computer. See also [S] for a short account of .this construction.

We postpone to section 7 the statement of theorem 3 completely solving
the laterality problem since this statement needs to define extensions of-the
non-erasing notion.

Let us now turn to section 3 for definitions and lemmas used in the sequel.

3. DESCRIBING THE MOTION OF THE MACHINE HEAD ON THE TAPE

As indicated above, the number of colours occurring in a Turing program
appears to be a criterion with a frontier value for the halting problem of
Turing machines on {0,1}.

The notion of colour itself gives an account.of what happens on the tape,
considering the control unit of the machine as a black box. It indicates
changes of content in the cells of the tape as well as the moves of the head.
It can be viewed as an atom of the signal defined by the trajectory of the
head on a space-time diagram, as indicated by figure 3, below.

In our sequel, as we focus our attention on alphabet {0,1}, at least up

to section 6, we give particular names to these colours, according to the
following table :

0RO right blue 1R1 right green
0R1 right red 1RO right yellow
0L0 left blue 1.1 left green
0L1 left red 1L0 left yellow

In our sequel too, we shall use a condensed representation of this signal.
In order to do this, we have to go into more details of what is a qualitative
approach of the behaviour of a Turing machine head.

Basic definitions

Following [2], fix a bijection between cells on the tape and elements of Z,
calling address the image of a cell. Always assume that the right neighbour
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THE LATERALITY PROBLEM FOR NON-ERASING TURING MACHINES 167

of cell c is cell c+1 and that its left neighbour is cell c-1. In this way, any
interval [a,b] of Z, a or b possibly infinite, defines an aera of the tape that
we call zone [a, b]. For any d € Z, let [a,b] + d be [a+ d,b+ d]. In the finite
case, we say also segment [a,b]. Cells a and b are the ends of the segment.
An infinite zone has at most one end.

Let C; be the current configuration at time t. Its support is defined
inductively. For the initial configuration, the support is the smallest segment
of the tape containing both data and the scanned cell and outside which the
tape is empty. At time ¢+1, the current configuration support is the smallest
segment containing both the previous current configuration support and the
scanned cell at time ¢+1. The basis of the current configuration at time ¢
is the smallest segment, possibly empty, outside which all cells are empty
at time ¢t. The current bounds of the current configuration are the ends of
its support. A desert of 0’s is either of the infinite zones defined by the
complement on the tape of the support of C;. There is, of course, a right
desert and a left one.

¥\ 0

-5

5
N

o
I~
PR )

%‘

As the machine is here assumed to work on alphabet {0,1}, colours are
represented according to the following encoding :

\B \ ¢ 0RO @:IRI \Rr \ :0R1 E:mo
f% ; :0L0 fG ; 101 fR ; :0L1 E ; : 120
Figure 3. — Example of a space-time diagram.
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168 M. MARGENSTERN

The given bijection allows to define functions v, o anf n as follows :
— v(t) is the address of the cell scanned by the machine at time ¢;

- o(c,t) is the content of the cell with address ¢ at time ¢ ; if ¢ = v(¢),
o(c,t) is the symbol scanned by the machine;

— n(t) is the state of the machine when it reads the content of the cell,
scanned at time ¢.

We may, now, state a first property of Turing machines which says, in a
sense, that its head cannot jump from a position to another one which would
not be one of its two neighbours:

INTERMEDIATE CELL LEMMA : If a Turing machine scans cell b at time t1 and
cell a at time t2, with t1 < tg, then it scans at least once any cell ¢ with
¢ € [a,b] at time t with t € [t1,1t2].

The proof, for instance by induction on ¢ — tj, is left to the reader.

In our sequel, ¢ with or without indices always indicates fime. Assuming
a < b, define [a,b]; to be the word constituted of o(c,t) for ¢ running
over [a,b].

Say that cell ¢, scanned at time ¢ is a half-turn at that time if
v(t — 1) = v(t + 1) with v(t) # v(¢t + 1). Specify left or right half-turn
according to whether v(t + 1) > v(¢) or v(¢t + 1) < v(¢). Notice that at a
left half-turn, the machines goes back to the right and, symmetrically, at a
right one, it goes back fo the left. It is possible to define a partial recursive
function which enumerates the half-turns of the machine. From intermediate
cell lemma, it follows immediately that between two consecutive half turns
the machines always goes in the same direction and that a left half-turn is
thus followed by a right one and conversely.

Call sweeping a segment [a,b] of the tape, with a < b, such that either
a is a left half-turn at time ¢ and b 4 1 the position of the next half turn,
necessary a right one, or b is a right half-turn at time ¢ and a — 1 the
position of the next half-turn, necessary a left one. The initial position of the
machine and its possible halting one will also be considered as half-turns in
that definition. Say that a segment [a, b], a < b is scanned at maximal speed
if, scanning one end of the segment at time ¢, the machine scans the other
end at time ¢+b—a. From intermediate cell lemma we see that if segment
[¢,d], ¢ < d is contained in sweeping [a,b] with a as left half-turn and c
being scanned while the machines goes from a to b, then [c, d] is scanned
at maximal speed. An analogous conclusion holds if b is the right half-turn
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in sweeping [a, b], the machine going then from b to a : [c, d] is scanned at
maximal speed, cell d being scanned first.

If a left half-turn, say c, scanned at time ¢, is the last half-turn of the
machine starting from time ¢, then any segment with c as left end is scanned
at maximal speed starting from time ¢. This allows us to say that [c, +00|
is also a sweeping. We define analogously sweeping | — oo, ¢], where ¢ is
supposed to be a right half-turn, also the last half-turn of the machine.

The notion of sweeping allows us to introduce a condensed representation
of the motion of the machine head in a space-time diagram. Instead of
associating a line with each time ¢, we associate a single line with each
sweeping of the machine. In such a way, the space-time diagram of figure 3

NACATAY
/ ¢/ B/ %/
LA

Figure 4. — Previous space-time diagram, condensed version.

An exit is a time at which the machine head is outside the current bounds
of the just preceding configuration. An exit is extremal if and only if the
bound it sets to the configuration is, at that time, a half-turn. An extremal exit
is a right one or a left one according to what is the corresponding half-turn.

Parallel motion lemmas

In our sequel, we shall intensively use the following lemmas which are,
intuitively, sufficient conditions for parallel motions of the machine head.

Let us formulate this more accurately.

DeriniTion: The motion of the machine on [a, b] starting from ¢ is said to
be parallel to its motion on [a’, '] starting from #' if and only if:

) ad=a+b -0
() v(t)=aandv(t')=2d
i) Vr>0(((t+7)€lab &V <7 (v(t+1)E€]a,b]) =
(it +7)=v(t+7)+V b &n{t' +7)=n(t+ 1))
vol. 31, n°® 2, 1997



170 M. MARGENSTERN

We have the following sufficient condition for parallel motion:

REPLICATION LEMMA: Assume that o' = a + b — b, v(t) = a and v(¢') = o
with [a,b]; = [a', V'] and n(t) = n(t'). Then, the motion of the machine on
[a,b] starting from t is parallel to its motion on [d,b'] starting from t' as
long as the machine head remains in [a,b] starting from t.

The proof, for instance by induction on ¢; such that for all 7 < ¢;
v(t + 7) € [a,b] holds, is left to the reader.

A somewhat similar situation is described by the following lemma, also
a sufficient condition for parallel motion:

LEFTMOST POSITION LEMMA: Assume that there are two times t1 and ty of
right exits, t1 < ty and an address a such that:
(i) Vit € [t1,t2] v(t) > a
(ii)  if 6 =wv(tz) —v(t1) >0, then [a,v(t1)]:, = [a + 6, v(t2)]e,
(iii) (1) = n(ts)
Then the motion of the machine on [a,v(t2)] starting from ty is parallel to its
motion on [a + k.6, v(t1 + (k + 1). (t2 — t1)] for all k > 0.

Indeed, as the basis of induction on & is contained in the induction step, it
is enough to prove the lemma for k£ = 1, i.e. that the motion of the machine
on [a,v(t2)] starting from ¢; is parallel to its motion on [a + §,v(2. t2 — t1)]
starting from {2, which is obvious by induction on t3 — ¢;. W

Of course, there is a symmetrical rightmost position lemma with an
ultimately periodic motion of the machine to the left.

4. GENERAL REDUCTION FOR DECIDING THE HALTING PROBLEM

In order to prove the decidability of the halting problem, as the halting of
a Turing machine is definable by a recursively enumerable condition, it is
enough to prove that the non-halting also is recursively enumerable

Notice first the following property. Define a segment [a, b] of the tape to
be a trap zone for machine M if and only if there is a time ¢ starting from
which for all £ > ¢ the head of M remains in [a, b]. It is well-known that:

Segment [a,b] can be decided to be a trap zone in at most r¥. s + 1 steps
of the machine computation starting from to, where L = b —a + 1, r is
the number of letters of the machine alphabet and s is the number of the
machine states.

Indeed, if the machine has not yet halted after this time, two indentical
configurations must have occured.

We shall later refer to that property as trap zone lemma.
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THE LATERALITY PROBLEM FOR NON-ERASING TURING MACHINES 171

Notice, now, that in the non-halting situation, if the head occupies only a
finite part of the tape, this leads, by trap zone lemma, to the forthcoming of
two identical configurations, which is recursively enumerable. So, we may
assume that the head of the machine occupies an infinite part of the tape.
And this may be split to its turn into three new cases: either the whole tape
is occupied, or only a right semi-infinite zone of it or only a left semi-infinite
zone of it, where a semi-infinite zone is either of the form [c, +-o00[ or of the
form | — oo, ¢], ¢ finite in both cases.

Let us look at these three cases more carefully. One may express them in
terms of exits in the following equivalent way:

— either there are infinitely many left exits and infinitely many right exits ;
— or there are only infinitely many left exits;
— or there are only infinitely many right exits.

We shall refer to the first case as the case of infinitely many traversals
and we shall discuss the behaviour of the machine during traversals from the
right to the left and during long enough traversals from the left to the right.

Let us consider, now, the two cases with infinitely many exits only on one
side of the tape. We may, for instance, look at the case of infinitely many
right exits. Either there are infinitely many extremal right exits or there are
only finitely many of them. In the latter case, we may assume that starting
from a certain time ¢, there are no more extremal exits. Indeed, consider the
first exit occurring after time ¢. By our assumptions, it is a right exit. The
next step of the machine is a right exit too. If this would not be the case, this
would be a contradiction with our assumption that after time ¢ there are no
more extremal exits. So, by induction on the number of computation steps,
it is plain that, after the first right exit occurring after time ¢, the machine
goes endlessly to the right. In such a case its motion becomes ultimately
periodic, which is thus recursively enumerable.

As, for our general goal, it is enough to prove that the remaining case
also is recursively enumerable, we may assume that there are infinitely
many extremal exits in the case when the machine head occupies only a
semi-infinite zone of the tape.

We shall later on refer to this splitting as the space splitting of a non-halting
situation.

Before turning to the proof of theorem 1, let us indicate a refinement of
the case with only infinitely many extremal right exits.
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Let us now look closer at the motion of the machine under this assumption.
There is a recursive function S which indicates, for all 2, the time of the
i** right extremal exit. Call leftmost position of the machine between S(4)
and (S(z+ 1) the address of the leftmost cell scanned by its head between
those times. Say, in short, Imp for leftmost position, and denote it by p;.
Call Imp time the first time when the machine head scans the content of cell
p; between S(i) and S(Z + 1) and denote it by p(¢). We say that Imp p; is
absolute if v(t) > p; for all t > S(z). We have then the following necessary
and sufficient condition for an ultimately periodic motion of the machine:

PeriopIcITY LEMMA ([6]): Let p; the sequence of absolute lmp’s, S; the
extremal right exit which just occured before lmp time corresponding to p;
and l; the distance from p; to v(S;). The motion of the machine is utimately
periodic if and only if:

lim inf [; < 400,

11— 00

and this condition is recursively enumerable.

The condition is obviously necessary since, in view of the ultimate
periodicity, all the [;’s are bounded.

Suppose, now, that we have lim infl; < +o00. As the [;’s are non negative

integers, since we assume that til—e}oeo are infinitely many right extremal exits
and no left exit, starting from a certain time, their lim inf, say J, is reached
infinitely often. So, in the sequence of those /;’s which are equal to A, we
may pick out two of them, say [, and [, with u < v, such that, denoting
by ¢, and t, the Imp times corresponding to, respectively, p, and p,, we
observe that [py, py + lut, = [Pv,Pv + lv]t, and n(ty) = n(t,) hold. As p,
and p, are assumed to be absolute Imp’s, the desired conclusion is obtained
by applying replication lemma. B

Of course, a symmetrical notion, namely that of rmp, rightmost position,
is defined for extremal left exits. An analogous periodicity lemma holds for
that case: in the above statement, replace Imp by rmp and extremal right
exit by extremal left exit.

A refinement of this situation can be formulated:
STRONG PERIODICITY LEMMA: Let p; the sequence of absolute lmp’s, S; the
extremal right exit which just occured before lmp time corresponding to p;

and l; the distance from p; to v(S;). The motion of the machine is utimately
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periodic if and only if:
lim inf(l; + p; — pi+1) < +o00,
1—00

and this condition is recursively enumerable.

The condition is obviously necessary since, in view of the ultimate
periodicity, all the {;’s and p;41 — p;’s are bounded.

Suppose, now, that we have lim inf(l; + p; — pi+1) < +oo. This means
1— 00

that there is an integer C such that p;1 > p; +1; — C infinitely often. There
are at least two indices, say u and v, such that py4+1 > py +ly — C, py+1 >
P+l —C, Putl — Pu — by = Pus1 — Do — lu, [tu -C, lu]tu = [lv -C, lv]t,,
and n(t,) = n(t,) where t; is the first time after p(¢) (Imp-time of p;) when
the machine head scans cell p; + /;. By definition of Imp’s, among Imp’s
occuring on the left of p;;; inbetween ¢; and p(7 + 1) if any, at least one
would be absolute which would be contrary to the absoluteness of lmp p;y1.
Consequently, the head never goes to the left of [, — C after ¢, nor to the
left of [, — C after t,. Leftmost position lemma applies to the situations
at times ¢, and %,. Hence the ultimate periodicity of the machine motion.
As it is clear that the just described situation is recursively enumerable, the
lemma is proved. W

5. PROOF OF THEOREM 1

As indicated in the introduction, we assume, in this section, that
the considered non-erasing Turing machine on {0,1} has no stationnary
instruction.

The proof consists in splitting the problem of the non-halting into cases
which will turn out to be recursively enumerable.

In a first step, we reduce the problem to the case when one of the left
instructions is blue and the other is green. Then we prove some preliminary
lemmas which allow, in particular conditions, to characterize motions of the
machine to the left and how such a motion halts. Afterwards, the proof is
split into cases according to the relations between the exit state of one left
instruction and the entry state of the other one, which we combine with
the space splitting of a non-halting situation. It will be seen that almost all
cases are most often characterized by ultimate periodic motions to which
periodicity lemma or replication lemma apply, and some of them are based
on a periodic lenghtening of the space which the machine head runs over. A
last case, more difficult, will be dealt with apart. In the course of the proof,
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several types of motion for the machine head will be encountered. All these
types are below illustrated in table 1 which will be used for further references,
avoiding tedious repetitions. Figures of table 1 represent motions according
to their successive sweepings in a way which needs no further explanation.

First reduction of the problem

A first, drastic reduction is made by the following considerations.

On alphabet {0,1}, there are at most eight colours in any program of
a Turing machine. If we assume the machine to be non-erasing, then two
colours are ruled out: left and right yellow which both replace a 1 by 0.
We call pure motion colour any colour among the following four ones: left
and right green, left and right blue. Notice that under these colours the
machine reads the tape without changing the information, written on it. We
proved in [1], [2] the following property, from which it is easily deduced
that the halting problem is decidable for a non-erasing machine with at most
four colours:

THEOREM A: The halting problem is decidable for any non-erasing Turing
machine on {0,1} in the program of which at least one pure motion colour
is missing.

Let us call an instruction stable if its exit state is the same as its entry
state, unstable if this is not the case. We then obtain 21 cases of couples
of left instructions according to their colour and their stability, as illustrated
on figure 5, below.

As among these 21 cases, one left pure motion colour is missing in 17
of them, we deduce from theorem A that the halting-problem is decidable
in these cases. And so, four cases remain to be examined, all with both
left colours blue and green.

We turn, now, to particular situations which will give us new tools for
the cases into which the proof is split.

Preliminary lemmas

Intuitively, what is the most important is to see the possible connections
between both left instructions of the machine. We say that instruction [
calls possibly instruction .J, or short calls instruction J, if the exit state
of instruction [ is the entry state of instruction J. For instance, a stable
instruction calls itself. We shall often specify ’instruction I calls instruction
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TABLE 1. — Types of non-halting motions.

—_—, e

fig. a. simple right motion fig. b. degenerated right motion
fig. c. simple left motion fig. d. two-folded left motion

—
fig. e. traversal é
motion C

r
fig. f. fixed-point I_E'—\

motion with [

right rebounds ' E

L
fig. g. motion with é_\
right rebounds —
without fixed-point é'

fig. k. fixed-point

motion with
left rebounds

J if a 3 is scanned’, in order to say that instruction J is the next instruction
performed by the machine after instruction I if symbol 3 is scanned at that
time, with 3 either O in both cases or 1.
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B |B

s | s

B|B|B|B

slululu

B|G|B|G|G]|G
s|slul|ls{fs]|s
B|G|B|G||G|G|G|G
suuuusuuu
BIiR|IB|R|G G|R|R|R
s|s|luls]|s|s|u|s]|s]|s
BIR|B|/R|IG|IR|G|R|R|R|RI|R
stulufjuls|]ufju|lu|s|ul|luiu

Figure 5. - The 21 cases of the problem, within the frame, the 4 difficult ones

If both left instructions of the machine call necessarily a right instruction,
it seems intuitively clear that the machine cannot go to the left of the cell
where the right instruction was applied. We shall now prove this carefully
since it plays a great role in our further argumentation.

SINK LEMMA: Assume that the non-erasing machine has precisely two left
instructions, one of them blue, the other one green. Assume that scanning
cell ¢ at time t, a left instruction is performed and that this instruction calls
necessarily a right one. Then, if the machine has not already halted, either
it performs an infinite back-and-forth motion on cells c—1 and c, or, at most
5 steps after time t, the machine head reaches cell c+1 without being on the
left of cell c—1 starting from time t. Either of these situations is recursively
enumerable. ' '

The proof of the lemma is split into the cases which may occur under these
assumptions. We may condense them into the patterns of figure 6, below.

The property claimed by the lemma comes from the following fact. After
the first application of the considered left instruction on cell c the first right
half-turn performed afterwards on that cell, if any, is necessarily performed
by an instruction with the same colour. But there is a single left instruction
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with this colour, and so the right instruction which is next performed is
completely determined by the symbol scanned on cell ¢ — 1.

Let us call sink either of the six cases, when segment [c — 1, ¢] is a trap
zone starting from time ¢, represented by the first three patterns of figure 6.
We shall often use the lemma in the following way: as, scanning cell ¢,
instruction X calls necessarily a right one on cell ¢ — 1 and as the machine
cannot fall into a sink — this is the case for an infinite motion to the right —
its head scans cell ¢+ 1 without having scanned any cell on the left of ¢ — 1.

In particular, if the instruction called after that a left one has been executed,
say on cell ¢; is necessary a right one, the machine head cannot go to the left
of ¢—1: if a left instruction is performed on cell ¢ and if the machine does
not fall into a sink, then the machine scans cell ¢+1 without having scanned
any cell on the left of ¢c—1. Then, by induction on d > c+1, we see that
on cell d, either a right instruction is performed, and the machine goes one
more step to the right, or a left instruction is performed and, if there is no
possible sink, then the machine goes to the left of d, without having scanned
any cell to the left of d—1, and so it goes too one more step to the right.

/3 L L
[3 73/ 5/
v\ o\ \ | G\

75/

Figure 6. — The cases of sink lemma.

In these figures, letters X and Y represent B or G with X # Y. Letter Z represents any non érasing
right instruction. The dots represent left instructions or right ones, as well.
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Here and later, we shall state several lemmas characterizing motions to
the left of the machine according to the relations between the states of the
left instructions. We shall name them according to the status of the left
instructions, using the following shortening, that the reader will immediately
understand: Bs, By, Gs and Gy,.

Notice that if there is an extremal right exit on cell ¢ at time ¢, then,
necessarily, the instruction performed at that time is the left blue one.

We have the following property:

B,-LEFT MOTION LEMMA: Assume that the machine cannot fall into a sink,
that the left blue instruction of the machine is stable and that it calls a right
one if a 1 is scanned. Then, if the left blue instruction is performed on cell b
at time t, if the machine head reaches cell a at timet + T, b—a > 2 and if
v(t +7) € [a,b] for all 7 € [0,T), then [a + 1,bly41 € 0*.

Proof: By the assumption, b contains O at time ¢ and at time ¢ + 1. Let ¢;
the next passage of the machine head on b during [¢,t + T, if any. Then,
as there is a 0 in b at time ¢; and as b is a right half-turn for the machine
(it never goes on the right of b during [¢,¢ + T1), the left blue instruction
is performed at time ¢;. So there is still a O in b at time ¢; + 1. The same
argument repeated for each half-turn of the head in b shows that there is
a0in b at time ¢t + T.

Consider now c the rightmost 1 in [a+1,b-1] at time ¢+ T, if any. We have
then O in ¢+ 1 at time ¢+ 7', but also at any time between ¢ and ¢t + 71" in view
of the non-erasing assumption. Let t9 the last time at which the machine
scans cell ¢ + 1 during [¢,¢ + T']. The machine goes then from ¢+ 1 to c by
the left blue instruction. If there were a 1 in c at time ¢3 + 1, by sink lemma
the machine head would reach ¢ + 1 at time at least {3 + 2. And so, there
is a 0 in c at time {9 + 1. As ¢2 is the last time at which the machine scans
¢+ 1, by intermediate cell lemma, the machine goes to the left of ¢ at time
ta + 1, and so there is still a 0 in ¢ at time ¢ + 1. But then, by intermediate
cell lemma, ¢ is a right half turn for the machine during [t + 1,t + T, if
the machine ever scans this cell again during that time interval. And so, we
may repeat for ¢ the argument used above for b. Consequently, there is a 0
in ¢ at time ¢ 4+ 7', which is contrary to the definition of c. |l

EXTREMAL RIGHT EXIT LEMMA: Assume that the left blue instruction of the
machine is stable and that this instruction calls a right one if a 1 is scanned.

Then, if the machine head scans a 0 at a time t of right extremal exit and is on
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the right of a 1 written on the tape, the machine remains for ever to the right of
this 1, falling into a sink or performing a periodic motion to the right starting
from the time when it reaches first the rightmost 1 on the tape after time t.

Proof: Let a be the address of the rightmost 1 on the tape. By the previous
lemma, the left blue instructions is performed until cell a is reached by the
machine head, say at time ¢;. A right instruction is then performed. The
sweeping to the right leads to a new right half-turn, say on cell b. Let ¢
be the position of the rightmost 1 written on the tape when the machine
reaches the new right half-turn. We have a < ¢ < b. On the half turn, the
left blue instruction is necessarily performed. And so, the machine goes back
to ¢, reached at time ¢3, where the same right instruction is performed as
previously. As on the right of ¢ at time ¢2 the tape is empty as it is on the
right of @ at time ¢1, the motion of the machine during [t1,t3] is parallel
to its motion during [t2,2.t2 — ¢1]. W

NoO TRAVERSAL LEMMA: Assume that the left blue instruction of the machine is
stable and that it calls a right one if a 1 is scanned. Then, if the machine does
not halt and occupies an infinite zone of the tape, it cannot be the whole tape.

Proof: Indeed, the traversal from right to left starting from an extremal
right exit to the consecutive extremal left exit (such an order between
extremal exits does occur if there are infinitely many traversals) would be
performed under the left blue instruction. By stable blue instruction lemma,
as the left blue instruction is stable, either the machine head goes forever to
the left, always scanning 0’s and thus, occupying a left semi-infinite zone
of the tape, or the motion of the machine to the left halts on a 1 on which
a right instruction is called. The machine remains for ever to the right of
this 1 by the previous lemma. Hence the conclusion of the lemma. i

We may deduce, from the proof of extremal right exit lemma, that under
the assumptions of no traversal lemma, the motion of the machine is
an ultimately periodic one to the right if a 1 stands to the left of the
machine head. Its description is very simple: the period is the time interval
between two consecutive Imp’s, since the motion of the machine consists
in alternate sweepings involving only the left blue instruction and the same
finite sequence of right instructions. This motion is. illustrated on table 1,
figure a. We shall later on say simple right motion.

Let us notice the following easy corollary of sink lemma:

G LEFT EXIT LEMMA: Assume that the machine cannot fall into a sink, that
the left green instruction of the machine is unstable and that it always calls a
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right instruction. Then, if the left green instruction is performed on cell a at a
time t of left exit, the machine never goes to the left of cell a — 1 after time t.

We shall now see in detail the behaviour of the machine according to the
four possible relations between stability and unstability with respect-to the
blue and green left instructions.

Case blue stable and green stable

In that case, the left instructions may be written, respectively and
. Notice that if i = j, we have either a constant motion of the machine
to the right or, if any of the left instructions is called, a constant motion
of the machine to the left. In both cases, the motion is trivially ultimately
periodic and, of course, this is a recursively enumerable non-halting. Later
on, we shall not consider such motions since they are trivially cases of a
recursively enumerable non-halting. We shall focus our attention only on the
three cases of infinite motion in space involving infinitely many extremal
exits. As it will soon be seen, the only possible motions of the machine are
those which are illustrated in table 1, in figures a and c.

And so, we may assume that i # j. Consequently, no traversal lemma
applies to this case, which rules out the possibility of infinitely many
traversals.

If there are only infinitely many extremal right exits, then, as Bs-left
motion lemma applies, by the discussion following no traversal lemma, we
know that the motion of the machine is a simple right motion, as illustrated
in table 1, in figure a, and that it is recursively enumerable.

And so we have only to study the case of infinitely many extremal left
exits without right exit.

Consider the rmp which follows the first extremal left exit. As we assume
a non trivial case, only the left green instruction is called during any left
exit, which is, by the way, necessarily extremal. If a right blue instruction
is performed just after the left green one, then, as the right neighbour of
this O, say at address a, is a 1, by intermediate cell lemma, the machine
must first reach that 1 before this 0 if we want it goes to the left of a. But
in order to make the head go from a + 1 to a, the left green instruction
is called and so the same right instruction as previously is called when the
head scans cell a. As this rules out further exits, the green left instruction
calls a right red one if a 0 is scanned.

As we suppose that there is no right exit, there is at least one absolute
rmp, say on cell b. If there is a 0 on b at rmp time, then as necessarily the
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blue instruction is called, then, either there is a sink, either the machine head
goes to the right of b after rmp time, which is contrary to the absoluteness
of the considered rmp. And so there is a 1 on b. Consider now the motion
of the machine from b, starting from rmp time until the next extremal left
exit. The following property allows to characterize this motion:

G-LEFT MOTION LEMMA: Assume that the machine cannot fall into a sink,
that the left green instruction of the machine is stable and that this instruction
calls a right one if a 0 is scanned. Then, if the left green instruction is
performed on cell b at time t, if the machine head reaches cell a at time t+ T,
b—a>2andifv(t+ 7)€ [a,b] forall T € [0,T), then [a + 1,bls4T € 1*.

Proof: By the assumption, b contains 1 at time ¢ and so, this is also
the case at time ¢ + 1" by the non-erasing assumption. Consider now c¢ the
rightmost O in [a+1,b-1] at time ¢ + T, if any. So, there was a O too in c at
time t + 7 for all 7 € [0,7T]. By assumption on ¢+ 1, a 1 is there at time
t + 7. If t; is the last time at which the head scans ¢ + 1 during [¢,¢ + T,
there is also a 1 on cell ¢+ 1 at time ¢; + 1 and at time ¢7 too. Indeed, the
left blue instruction could not be performed for going from ¢+ 1 to ¢, since
a 0 would be left in ¢ + 1, and so the left green instruction made possible
this move from ¢ + 1 to ¢ and so there was also a 1 in ¢+ 1 at time -¢;.
But then, a right instruction is called as the machine scans cell c¢. By sink
lemma, as there is no sink by assumption, the machine goes to the right of
c+ 1 after time ¢1 + 1, which is contrary to the definition of ¢;. So there is a
1 in ¢ at time ¢; + 1 and, consequently, at time ¢+ 7" too, by the non-erasing
assumption. So there is no 0 in [a+1,b] at time ¢t +T. W

Consequently, when the machine head reaches cell a where occurs the left
half-turn of the extremal left exit at time ¢1, [a + 1,b]¢, € 1*. The right red
instruction which is then performed leaves a 1 on cell a, which allows the
machine to go one more step to the left for the next extremal left exit.

As cell b is an absolute rmp, the sweeping to the right, starting from
cell b ends on a right half-turn on cell ¢ with ¢ < b at time t}. It is plain
that starting from that time, as the left green instruction is performed, the
corresponding sweeping to the left goes downto cell a —1, reached at time #3.
Now, it is easy to see that the assumption of rightmost position lemma is
satisfied, which, by parallel motion, entails a periodic motion starting from
time t1, the period of which is time interval [t1,ty — 1]

We call this motion to the left, simple left motion as illustrated in table 1,
figure c.
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Case blue stable and green unstable

This second case is much similar to the previous one in many respects, and
it will be seen that in this case, simple right motions are the only possible
motions requiring infinite space.

As the left blue instruction is stable, what has been said in the previous
case about left exits and traversals from an extremal right exit to an extremal
left one holds here too. And so, in order to avoid trivialities, the only infinite
motion to which we have to turn now is the case of infinitely many extremal
right exits without left exit. '

So, the left instructions are |i0L0i | and | j1L1k | with k # j. The case splits
into three subcases according to the relations between i, j and k.

Casei # j, i # k:

In that case, stable blue instruction lemma applies and so we have a simple
right motion as illustrated in table 1, fig. a.

Case i = j, i # k: [i0L0i| and |ilL1k]

In this case, we cannot apply stable blue instruction lemma directly since

the left blue instruction calls the green one if a 1 is scanned. But we have
an extended Bs-left motion lemma.

Consider again the proof of B,-left motion lemma.

As previously, it is proved that, at time ¢ + T, there is a O on cell b. Let
again c be the rightmost 1 in [a,b— 1] at time ¢ + 7. In ¢+ 1 there is a 0
which, consequently was already there during time interval [¢,¢ + T'). Let 3
the last time at which the head scans cell ¢ + 1. The head goes then from
¢+ 1 to ¢ by the left blue instruction. If there were a 0 on c¢ at time ¢1 + 1,
as the machine never goes to the right of ¢ during time interval [t1,t + T7,
¢ would be a right half-turn, and so only the left blue instruction could be
performed on that cell, and so the 0 would remain there until time ¢ + 7',
which is contrary to the definition of c.

So, there is a 1 in ¢ at time ¢; + 1. The left green instruction is then
performed, but as it calls necessarily a right instruction, as there is no
sink, by sink lemma, the machine goes on cell ¢ + 1 after time 1. This is
impossible, unless cell ¢ — 1 is cell ¢ and cell a is reached at time ¢ + 7.

Consequently, when an extremal right exit happens; the left blue instruction
is performed until the rightmost 1 on the tape is reached. On this 1, the left
green instruction is performed but, after at most five steps of computation,
the machine head is again on the right of this one. Extremal right exit lemma
thus applies too in this case, and so we have a simple right motion.
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Casei =k, i # j: |i0L0i| and |j1L1i
In that case, as the left blue instruction calls a right one if a 1 is scanned,
B,-left motion lemma applies too, and so we obtain a simple right motion.

Case blue unstable and green stable

The left instructions of the machine are now, respectively, and
' with k # i. The case again splits into three subcases according to
the relations between i, j and k. But, as we have here a left green stable
instruction, the behaviour of the machine may be different from what have
previously be seen. We shall see that this is the case in several subcases. All
motions illustrated on table 1 are here possible, but the motion represented
in figure g. In particular, in one of the cases, infinitely many traversals
are possible. ‘

Case j # 1, k #

Let us notice that, in this case, if there is an extremal right exit, say on
cell a, the left blue instruction is performed and as it always calls right
instructions, by sink lemma, as there are no sink, the machine goes to the
right of a, where begins a desert of 0’s. This shows that imp’s are always
absolute and that if /; is the distance between Imp p; and the position of
the extremal right exit which defines it, then we have [; = 1 and so the
assumptions of periodicity lemma are satisfied. The motion of the machine
is thus an ultimately periodic one to the right. We shall say that this motion
to the right is degenerated right motion, as illustrated in table 1, figure b,
and it is, of course, recursively enumerable.

Notice that we could have also applied periodicity lemma for verifying the case of infinitely
many extremal right exits without left exit when the left blue instruction is stable. Indeed, as
the motion to the right starting from an Imp to the next extremal right exit consists in a single
sweeping, the half-turn of the extremal exit must occur not later than s steps after the Imp,
where s is the number of states of the machine. If this were not the case, the sweeping to
the right would go on periodically. And so, we have always {; < s. Consequently, periodicity
lemma applies.

But, in that case, parallel motion lemma gives directly the characterization of the motion
which simply consists in alternate sweepings between extremal exits and lmp’s.

Consequently if there is at least one extremal right exit, there are no more
left exits. And so the case of infinitely many traversals is ruled out.

Consider, now, the case of infinitely many extremal left exits without
right exit.

Notice, that in fact, any left exit is extremal: the left blue instruction

always calls right ones and the left green one calls a right instruction if
a 0 is scanned.
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We first prove that there is a time after which any left exit is performed
by the left green instruction.

Indeed, suppose that a certain extremal left exit is performed by the left
blue instruction, say on cell a. As there is no sink, the machine head goes
at most five steps later on cell a + 1, say at time ¢.

Assume that, at time ¢, there is a 0, either on cell a-1 or on cell a. If cell
a contains 0, the machine goes to a-1 by the help of the left blue instruction
and again, as there is no sink, the machine goes to a+1 at time ¢;. If cell
a still contains 0, then whatever be the content of cell a-1, it is plain that
the machine will never go to the left of a-1.

As this is impossible, cell a contains 1 at time ¢. If cell a-1 contains 0,
the next time when the machine scans cell a for going to cell a-1, the left
green instruction is called and, as cell a-1 contains O and as we assume
that there is no sink, the machine goes to a+1 at time #;. If cell a-1 still
contains O at time %1, the just produced argument shows that the machine
can no more go to the left of a-1.

As this is impossible, we may assume that cells ¢ and -1 contain 1
at time ¢. And so, after this time, any left exit is performed by the left
green instruction. '

It is now easy to see that we may apply stable green instruction lemma
starting from rmp time at the first absolute »mp which must be occupied
by a 1 after this time: if a 0 were on that place, the left blue instruction,
unstable, would be performed, and as it always calls a right instruction and
as there is no sink, the machine head would go to the right of the rmp,
which would be contrary to the assumption of absolute rmp. Later on, the
same argument as in the case of stable blue and green left instructions goes
on. And so, the motion is a simple left one as illustrated in table 1, figure c.

Case k = j, j # i: [i0L0j| and | j1L1j|

In this case, the left blue instruction calls the left green one if a 1 is
scanned. As the left green instruction always calls right ones, any motion to
the left of the machine is of the type described by G;-left motion lemma
or the motion begins by performing the left blue instruction on a 0, then,
meeting a 1, the left green instruction is called and starting from this point,
G;-left motion lemma applies to the situation:

As we shall see below, in that case, the basic three kinds of non-trivial
infinite motions are possible, namely those illustrated in table 1 in figures e,
f and h.
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Cases of at least infinitely many extremal right exits

In this case, the same arguments can be used to deal with both situations
when there are infinitely many extremal right exits: the case of infinitely
many traversals and the case when after a certain time there are no more left
exits. We shall later say no-traversal case for that latter case. The intuitive
justification of that treatment is the following.

When the left green instruction is under action on a zone of 1’s, the motion
to the left is stopped if and only if the head scans a 0, as that instruction is
stable. Call ¢ the address of the cell where that rightmost O is scanned by
the machine head. Notice that in such a situation, the same right instruction
is called by the left green instruction. There are two possibilities. Either the
right instruction is a blue one, or it is a red one. If it is a blue one, symbol O
remains for ever in cell ¢ which, by the non-erasing assumption and by
intermediate cell lemma, is only reached by its right side while the left green
instruction applies. This is the reason why the machine cannot later go to
the left of c. As we shall later see, this point is then a fixed absolute Imp
If the right red instruction is called, the machine possibly goes back to the
right, but the zone of 1’s has then increased by one cell.

As we shall soon see, in both cases, we have a rebound of the machine
head against that position which is always an Imp in the case we are
studying. Indeed, in the case of traversals, the extremal left exit from which
a traversal from left to right starts, is an Imp between the right extremal
exit from which the previous traversal started and the right extremal exit at
which the considered traversal ends.

Let us now make things more accurate.

Say that the motion of the machine starting from extremal right exit,
say at time s; with a; = v(s;), until position a; is reached again before
the next right exit (not necessarily an extremal one) is a rebound if that
motion consists of two sweepings: one from a; to Imp p; defined by s;, the
second, from the I'mp up to a; again, or further on the right of a,. Say that
l; = a; — p; is the length of the rebound.

We claim that in both cases, starting from a certain time, the motion is a
sequence of rebounds with a regular pattern in the increasing of their lengths
with also possible "local’ motions to the right between consecutive rebounds.
These situations are illustrated in Table 1, in figures e and f.

Before turning to the proof, let us see that, for instance, the case of
infinitely many traversals is possible. Such an example is given by the
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following Turing program:

0 1
1R2 L
2 1L1 R

In this table, following Minsky’s notation, see [8], any omitted symbol in output triple yMj of
instruction izMyj is identical to the corresponding input symbol, z or i.

an execution of which is given in figure 7, below:

/<[]

Figure 7. — Infinitely many traversals: execution of the above program

starting from the following initial configuration: ...00011000... A

Indeed, figure 8, above, is a particular case of figure e given in table 1.
However, it rather faithfully shows the general behaviour of a machine for
which a non-halting situation with infinitely many traversals does happen.

Notice, now, that in the case of no traversal, there is a fixed absolute Imp.
Indeed, in that case, as the right instruction called by the left green one
when a 0 is scanned, is a blue instruction, Imp’s occur always on a 0. If this
happens on infinitely many different points which are then absolute imp’s
as it was already noticed, then necessarily, p;+1 > p;+{;. Strong periodicity
lemma then applies and so, such a non-halting is recursively enumerable.
And so, putting aside that solved situation, we may assume that there are
at most finitely different points as absolute Imp’s and so, starting from a
certain time, there is a fixed absolute Imp.

Consider a traversal in the case of infinitely many traversals or a sweeping
to the fixed absolute l/mp in the case of no traversal. The motion of the
machine starts from an extremal right exit, say at address a;, and its sweeping
to the left ends on {mp p;, which is also the next extremal exit in the case
of traversals. The first instruction performed during that sweeping is the left
blue one which calls the left green instruction. When the Imp occurs, say at
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time t;, there is a segment of 1’s on the tape outside which both deserts of
0’s are lying. The right-instruction called on the Imp is always the same. As
we already know, it is a blue one in the case of no traversal. It is therefore
a red one in the case of infinitely many traversals.

Consider, now, the sweeping to the right starting from time ¢;. If this
sweeping would end on a half-turn with an address b satisfying b < a;, it
is easy to see that a periodic motion to the left, a’ simple left motion as
illustrated in table 1, figure ¢ would occur in the case of infinitely many
traversals. In the case of no traversal, the head would for ever remain within
the segment [p;, ] which would thus constitute a trap zone for the machine
head. As those situations cannot be the case, the sweeping ends on a half-turn
with address b such that b > a,. As a consequence, the considered motion
of the machine is a rebound.

Notice now that if the machine scans cell a; under state j, a new sweeping
to the left is going on until the next Imp time is reached.

Let /; be the length of that rebound. Since we assume that there are
infinitely many right exits, the above remark shows that the length of the
rebounds must increase and tend towards +oo. It is plain in the case of
infinitely many traversals, because of the non-erasing assumption. It is also
clear in the case of no traversal as we consider the case of a fixed absolute
Imp. In both cases, {; characterizes the rebound from which it is the length.

Let now ¢; be the lengths of the successive rebounds in the motion of the
machine. When #¢; is big enough, the sweeping to the right of the rebound
becomes ultimately periodic and it is always the same motion, since the
same right instruction is called when Imp p; is reached. Let p be the length
of the shortest period of that motion. With each /;, associate £; mod p. As
the number of the corresponding possible values is finite, there are two
rebounds, say £, and Zv' such that £, = £, mod p. Let ¢, and ¢, be the times
when the sweeping to the right of the rebound reaches again a,,, respectively
ay. The condition ¢; = £, mod p entails that n(t,) = n(t,). It is then plain
that the motion of the machine starting from ¢, is parallel to its motion
starting from ¢, as long as the head of the machine remains on the right
of ay-1. In particular, when the head reaches. a.-1 for the first time after
ta, say at time t,, @ = u or v, we have a 1 in aq-1 and, by parallelism,
n(t,) = n(t,). The state of the machine is then the state of the left green
instruction as both left instructions have the same exit state. New rebounds
are in fact in action, which are ¢,4+1 and /,41, the next rebound after,
respectively, ¢, and ¢,. But, by parallelism, and as consecutive Imp’s are
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on the same position ‘in the case of no traversal, or shifted by on cell to the
left in the case of infinitely many traversals, we get £y4+1 — £y, = £yy1 — £y
Consequently, £y,41 = £,+1 mod p. By induction, it is now easy to conclude
that if we observe two traversals ¢, and ¢, such that £, = £, modp, we
shall have £, x = fy4rmodp and €y pv1 — Loyi = Lusks1 — Luti- As we
may assume that u < v, we get then that

v—1 u+r—1
() Ltk =Lu+[k/ (0 =w)]. D (lepr =)+ Y (kg1 — &),
k=u k=u

where k£ = [k/(v — w)]. (v — u) + 7, with 0 < r < v—u, and [z] satisfies
[z] € z < [z]+] for any rational z.

Notice that in the case of no traversal, when the machine head is on the
right desert of O’s after it has just performed a rebound, it only writes 1’s
on the tape until it goes back to the left. If this would not be the case, any
0 written outside the rebound segment would be an absolute {mp, which
is impossible, according to our assumption. In the case of infinitely many
traversal, the head may write a few 0’s on the right side of the rebound
segment. This gives rise to local Imp’s which are one by one erased by
each sweeping to the left.

Notice that p is easily determined in the following way. Let q be the exit
state of the right instruction called by the left green one if a 0 is scanned.
Then, start the machine on the left end of a segment of 1’s with length 2s,
where s is the number of states of the machine, under state q. The machine
is then in the same conditions as at the beginning of the sweeping to the
right which characterizes the rebound of length £. It is plain that the period
is at most s and that the aperiodic part of the motion needs at most s steps.

It is now not difficult to describe completely the motion of the machine.
If 7, is the Imp-time corresponding to py, and so t, = 7,+{,, formula (x)
allows to compute the further times of right extremal exits, provided that all
the distances £, 4x+1—%y+k are known for k € {0,...,v—u—1}. From that
observation, it is easy to compute v(t) for t > 7,: we leave that to the reader.
Those considerations also entail that the observation of ¢, = £, modp is a
sufficient condition for ensuring that the motion of the machine will endlessly
go on. That condition on ¢;’s is clearly recursively enumerable.

This proves that with such left instructions, the case of infinitely many
traversals is recursively enumerable as well as the case of infinitely many
extremal right exits without left exit.
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Let us call traversal the just described motion in the case of infinitely
many traversals. It is illustrated in table 1, figure e. Let us call fixed-point
motion with right rebounds the described motion in the case of no traversal,
an illustration of which is given in table 1, figure f.

Case of infinitely many extremal left exits without right exit

In that case, the possible motions of the machine are somewhat symmetrical
to those of the previous case.

Notice first that the right instruction called by the left green instruction
is necessarily right red. If this were not the case, there would be at most a
single extremal left exit, which is contrary to the assumption.

Consider the »mp occurring after the first extremal left exit. We have two
cases, according to the content of the rmp cell at rmp time. If it is a 1, then
it is plain that a simple left motion does occur.

Suppose, now, that it is a 0. If the next rmp is occupied by a 1 at rmp
time, it is clear that, starting from this time, a simple left motion appears.
And so, we may assume that all 7mp cells are occupied by a 0 at rmp
time. Consequently, the left blue instruction is called at that time, and so
the O remains at this place. Consequently, if we focus our attention on
absolute 7mp’s, which exist since there is no right exit, the corresponding
cells always contain O.

Let again p; be the positions of the absolute rmp’s and [; the distance
between p; and the position of the latest extremal left exit before its rmp
time. Let ¢ = pi1, the position of the first absolute rmp.

Starting from 7mp time, the machine head goes to the left since, on a,
the left blue instruction is called. If cell a-1 contained a 0 at rmp time, by
sink lemma, the machine would go to the right of a, which is contrary to
the assumption of absolute rmp. And so, there is a 1 in a-1 at rmp time.
Consequently, after it has been performed on a, the left blue instruction
calls the left green one which is performed on a-1 and, starting from that
place, downto the next extremal left exit which is by a single cell to the
left of the former extremal left exit since the left green instruction calls a
right one if a 0 is scanned.

Consequently, we have, typically a rebound. Starting from this new
extremal left exit we have again a rebound up to o since a simple left
motion is excluded by assumption, and, for this new rebound, we have
ly = 11 + 1. This argument can be repeated and so, by induction, we obtain
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that the motion from one extremal left exit to the following one is a rebound
up to a, that all rmp’s are absolute, that p; = a for all ¢ and that [; 41 = l; +1.

Consequently, starting at most from 2.s + 1, where s is the number of
states of the machine, the sweeping to the right, in each rebound, begins with
an aperiodic part on at most s steps and goes on further periodically with a
period of length p. Let I1,...,I, the sequence of instructions involved by
the period. We obtain, as [; increases by 1 at each rebound, that the machine
control happens to be successively in each exit state of the instructions I
when it scans cell ¢ at the end of each sweeping to the right. As the motion
goes on endlessly, each of this state calls the left blue instruction when a
0 is scanned. Of course, this condition is also sufficient for the rebounds
to go on endlessly.

Consequently, this situation of non halting is recursively enumerable. Let
us call it, later on, fixed-point motion with left rebounds, an illustrative
sample of which is given in table 1, figure h.

Case i = j, i # k: [i0L0k| and [i1L1i]

Notice that, here, the left blue instruction calls always a right one.
Consequently, if there is an extremal right exit, which is necessarily
performed by the left blue instruction, a right instruction is called and

s0, I; = 1 for any Imp which, by the way, is also absolute since sink lemma
applies to the situation of an extremal right exit.

Cbnsequently, if an extremal right exit occurs, there are no more left exits.
This rules out the case of infinitely many traversals.

For the case of infinitely many extremal right exits without left exit, what
we have said about [;’s shows immediately that periodicity lemma applies,
and so, we have here a degenerated right motion, see table 1, figure b.

Consider, now, the case of infinitely many extremal left exits without right
exit. By what has just be seen, there cannot be a 0 on any absolute rmp at
rmyp time. And so there is always 1 in each absolute »mp at that time.

But here, we cannot apply directly G,-left motion lemma, since the left
green instruction calls a right one if a O is scanned. In fact, we have an
extended G;-left motion lemma in the following meaning:

If the machine goes from b at time t to a at time t + T, with b — a > 2,
without going out of [a,b] during time interval [t,t + T| and with a 1 in b
at time t, then [a + 2,bli4 7 € 1%

Proof: As in the proof of G;-left motion lemma, consider the rightmost 0
at time ¢ + T in [a, b, say at position c. By considering the last time ¢; in
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[t,t+ T at which the machine head scans cell c+ 1, we see that necessarily,
¢ < a+1. If this were not the case, the left blue instruction would be called
on ¢ at time #;+1 and, by sink lemma, the machine would scan again cell
c+1 at a time later than #1+1, which is impossible by the definition of ¢1.

Consequently, when the machine goes to the left from the first absolute
rmp, say pi, it reaches the leftmost 1, say on c, at time ¢, then performs
the left blue instruction on ¢—1 and performs a right one on c—2.

Consider, now, the first time t’l when the machine reaches cell ¢-3. There
is there a 0. The machine head was in ¢-2 at time t}-1. If there is a 0 on cell
¢-2 at time ¢;-1, the instruction performed at that time is necessarily the left
blue one. But this instruction is necessary called by the left green instruction
because the head could not be on ¢-3 before ¢1. And so, there is necessarily
alon c-1 at time ¢;-2 and [c — 1,p1]y, 2 € 17,

If there is a 1 on cell ¢-2 at time ¢;-1, the instruction performed at that
time is the left green one. As the machine head could not be on cell ¢-3
at time t’l -2, it was in cell ¢-1 where, necessarily the left green instruction
was performed at- time ¢)-2 since the left blue one calls always a right
instruction. And so, there is necessarily a 1 in cell c-1 at time ¢;-2 and
e —2,p1]p -1 € 17

Let t5 = t}-1 in the latter case and t; = t7-2 in the former. We have that,
at time t9 the machine is in the same state as it was at time ¢, it has never
gone to the right of p; between ¢1 and ¢y, there is a desert of 0’s on the
left of the scanned cell and there are 1’s from it up to p;. Consequently,
the rightmost position lemma applies and we have a motion very similar to
a simple left motion. However, call this motion, two-folded left motion, an
illustrative sample of which is given below and in table 1, figure d.

Indeed, a somewhat more complicated motion as in simple left motion may here occur. It
suffices that the machine should not immediately put a 1 in cell c—1 in the above situation.
For instance, the following machine:

0 1
1 L2 L
2 1R1 R3
3 1R4 R1
4 RS
5 R1
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performs the motion of figure 8, below:

T/
R\
/B

G \R \G \G

B/G/c/G/c/a

Figure 8. — Two-folded left motion: a sample

Case blue unstable and green unstable

The left instructions of the machine are now, respectively, | i0LOh | and
jlL1k| with h # i and k # j. This case splits again into four subcases
according to the relations between i, j, h and k.

If the calling relations between the left instructions are not too tight as it
will be the case in the below three first cases, it will be seen that, roughly
speaking, the motions are essentially motions to the right. In the last case,
all motions illustrated on table 1 are possible, and it will be seen that any
other motion is ruled out.

Case h # j, k # i

In this case, each left instruction calls always a right one and so, sink
lemma always applies to them. Consequently, more than one left exit is
impossible, which rules out the case with infinitely many extremal left exits
without right exit and, a fortiori, the case with infinitely many traversals.

The case with infinitely many extremal right exits without left exit remains
as the single possible one. As, after a right extremal exit the left blue
instruction is called, by sink lemma, as there is no sink, any lmp is at a
distance equal to 1 from its defining exit. And so, periodicity lemma applies,
which shows that the motion of the machine is the degenerated right one,
see table 1, figure b.

Case h = j, k # i ]iOLOj] and \j1L1k|

Here, the left blue instruction calls the left green one and sink lemma
applies always to the left green instruction since it always calls a right one.

Consider an extremal right exit, if any, say on cell a. The left blue
instruction is performed on a, then if there is a 1 on a-1, the left green
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instruction is performed but, as we assume no sink, sink lemma shows that
the machine heads goes to cell a, without having been on the left of a-2. If
there is a 0 on a-1, a right instruction is called there and so, the machine
head goes to cell a+1 without having been on the left of a-1. Thus we have
here that [; < 2 and so, periodicity lemma applies again and the motion of
the machine is a simple right one, very near to a degenerated right motion.

This analysis shows that more than two left exits is ruled out and so, both
cases involving infinitely many extremal left exits are ruled out.

Case h # j, k=1i: IiOLOh l and | j1L1i
This time, the left green instruction calls the left blue instruction which,
on its turn, always calls right instructions.

This property of the left blue instruction entails, as in a previous case,
that starting from cell a, as we assume no sink, the machine head goes
eventually on cell a+1. Consequently, an extremal right exit rules out further
left exits and in the case of infinitely many right exits, the motion is a
degenerated right one. '

By the way, infinitely many left exits are clearly ruled out too, in particular,
infinitely many traversals.

Case h = j, k = i: [i0L0j| and | jLL1i]|

This case is the most difficult to deal with. Intuitively, it comes from the
fact that this case is very near to the case in which a universal non-erasing
Turing machine can be constructed: it is enough to add a left green instruction
which calls the other left green one if a 1 is scanned, or to add a stable left
green instruction with the same entry state as the left blue one. The latter
solution allows the machine to cross over large zones of 1’s separated by a
single 0 and to stop this motion to the left by putting two consecutive 0’s
on the tape, as is shown, for instance, in [5].

In that case, all the motions previously encountered are possible plus a new
one. In order to get some insight into the reason why, we shall characterize
motions to the left.

Intuitively, the matching conditions on the allowed colours make a motion
to the left possible only if the underlying configuration allows to call both
left instructions, the one afteér another. We have, precisely:

By-Gy-LEFT MOTION LEMMA: Assume that the machine cannot fall into a
sink, that both left instructions of the machine are unstable and that each
instruction calls the other if a symbol, different from its entry one, is scanned.
Then, if the machine head is on cell b at time t, scanning a 0, if it reaches
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cell o at time t +T, b—a > 2 and if v(t + 7) € [a,b] for all T € [0,T],
then [a + 1,blip7 € (10)* + 0(10)*.

Proof: Notice first that the 0 which occurs in b at time ¢ remains at this
place until, at least, time ¢+7': the reason why is the fact that the first applied
instruction is the left blue one. This instruction leaves the O for time ¢+1
and so, later on, at any time within [¢,¢ + 7] at which the machine head
scans b, a right half-turn occurs and so, the left blue instruction is always
called. As the machine does not go on the right of b and as there is no sink,
if there is no 1 on cell b-1 at time ¢+1, the head must write it at this time,
as shown by the patterns of figure 6.

Let ¢ the rightmost cell in [a, b], if any, such that we have [c + 1,b]s47 €
(10)* + 0(10)* but that this property fails for [c, b]s47.

Suppose that we have 0 on ¢+1 at time ¢+7 and that we also have O in cell
c at that time. Let ¢; the last time in [¢,¢ + T at which the head scans cell
c+1. It goes then from c+1 to c by the left blue instruction since the O which
is there was always there before, by the non-erasing assumption. But on c, as
a 0 is scanned, a right instruction is called and the head is again on c+1 later
than ¢;. This is impossible, unless ¢ = a. So, if ¢ > a, there is a 1 on ¢ and
s0 [¢, b]s17 € (10)*, which is contrary to the definition of ¢ and so, ¢ = a.

Suppose, now, that we have 1 on c+1 at time ¢+7 and that we also have 1
in cell ¢ at this time. Let ¢; the last time in [¢,¢ + T'] at which the head scans
cell c+1. As the machine goes from c+1 to c, it must be performed by a left
instruction, and as it leaves a 1 on cell c+1, it must be performed by the left

“green one. If there is a 1 on cell ¢ at that time, then a right instruction is
called and the machine is again on cell ¢ + 1 at a time later than 1, unless
¢ = a. If ¢ > a, then there is a 0 on cell ¢ at time ¢;+1. As the machine
never goes on the right of ¢ during the time interval [t; + 1,¢ + T}, ¢ is
a position of right half-turn for the machine. Consequently, as the left blue
instruction is called for the first step to the left at time ¢;+1, the argument
showing that O remains on cell b until ¢+7" also applies here for showing that
we have 0 in c at time {+7". But this is a contradiction with the definition
of cand so, ¢c = a.

Consider, now, the main three cases of a non-halting situation. We shall
follow as close as it will be possible the already discussed case when the
left instructions are, respectively, blue instable and green stable, the blue one
calling the green one if a 1 is scanned, i.e. when left instructions are

and| j1L1j| with j # i. Later on, this case will be called the reference case.
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Call regular any segment of the tape of the form (10)* at current time.

Case of infinitely many traversals

In that case, we can repeat mutatis mutandis the argument which we used
in the reference case.

Indeed, we consider again the first traversal from right to left. When the
machine performs the extremal right exit with which the traversal begins,
say at address b, the left blue instruction is performed. The motion to the
left goes at least until the next left exit, when the first O of the left desert
of 0’s is scanned by a right instruction. By B,-G,-left motion lemma, this
means that the motion to the left is stopped at this point by meeting two
adjacent 0’s, the rightmost one being scanned by the left blue instruction,
say at address a+1. Notice that, as the motion goes on later on the left of a,
this entails that the left blue instruction calls a right red one if a 0 is scanned.

Notice that left exits always occur in that way, by meeting 00 on the
tape, and so, the sweeping to the right which follows the left exit starts
always in the same state. By the way, it is then easy to see that if that
sweeping ends on cell ¢, with ¢ < b, the assumption of rightmost position
lemma will be statisfied at the time of the next left exit and so, we obtain
that the motion is a simple right one, which is contrary to the assumption
of infinitely many traversals.

Consequently, the sweeping to the right ends on ¢ with ¢ > b. The
discussion now follows as in the reference case since what is there important
is that the state of the machine at left exits should be the same and that the
regular zone of lenght I; should not be altered: this is the case since a 1 written
in a zero-place of the regular zone would prevent further motions on the left
of this 1. And later, the periodic motion insures that the right instructions
involved during the sweeping to the right do preserve regularness.

And so, we obtain that the motion is of type traversal and that this situation
of non-halting is recursively enumerable.

Case of infinitely many extremal right exits without left exit

We cannot, here, follow as closely as previously the reference case. Indeed,
in the present case, two kinds of Imp’s may occur. If we consider a motion
to the left as described by B, G,-left motion lemma, and assume that it is
performed by a single sweeping, it is stopped either by meeting 00 on the
tape, or by meeting 11. According to the pattern, actually met by the head,
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we shall speak, later on, of {mp’s of type 00 and of Imp’s of type 11. And
so, on the contrary of what happens in the reference case, the machine has
here, in principle, the possiblity to alter regular zones.

Notice first that Imp’s of type 11 are always absolute in view of the
non-erasing assumption. For the same reason, notice that [mp’s of type 00
cannot be written in a regular zone of the tape but outside it, especially, in
our case, on the right of it.

This latter property allows us to deal first with type 00 Imp’s:

Case of infinitely many absolute lmp’s of type 00

For each absolute Imp of type 00, there is a first time when the machine
head scans the first O of the Imp pattern while the head is moving on the
right desert of 0’s, after going on the right of a previous extremal right exit.
It ensues that if p; denotes again the sequence of abolute Imp’s, the relation
pi +1; < piy1 holds. And so, I; + p; — pi+1 < 0 for all 7. Consequently,
by strong periodicity lemma, this motion is ultimately periodic and so, this
non-halting situation also is recursively enumerable.

The corresponding motion may be a bit more complex than, strictly
speaking, the simple right motion considered in former cases: there may be
here several kinds of sweepings to the right. It looks like the parallel parts
in the motions illustrated in figures e, f and g of table 1. Later call this
motion right periodic motion.

Case of finitely many absolute lmp’s of type 00

In that case, which is the alternative case to the previous one, we may
assume that starting from a certain time ¢, there are only absolute {mp’s of
type 11. Consequently, we assume that p; is now the sequence of all Imp’s
of type 11 after time ¢ and [; is defined as in periodicity lemma.

We have now two cases, according to whether lim inf/; < 400 or not. In

1—=00
the first case, we know from periodicity lemma that the motion of the machine
is a right periodic one and so the non-halting is recursively enumerable.
In the second case, lim infl; = 400 or, which is the same thing,
100
lim l; = +o0o. We shall see that, here, we have a motion, recalling the

1—00
fixed-point motion with right rebounds seen in the reference case. But here,

the proof is a bit more elaborated since, contrary to the reference case, the
machine may alter the content of the tape during the motion to the right
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which brings the head on the right of the preceding right extremal exit. And
as will be seen later, this may be the case.

Remind that we may now assume that I; > Ir+ 1, where I is the number
of right instructions of the machine. It is easy to see that Ip = 2.(s — 1),
where s is the number of states of the machine.

Consider the first sweeping starting from [mp time on cell p;. Its first
instruction is always the same for all Imp’s of type 11. If this sweeping ends
on at most I steps, and if it has not altered the tape, segment [p;, p; + IR]
is then a trap zone for the machine, which is contrary to our assumption.
So, cither the sweeping has performed at least /p + 1 steps and then a
periodic motion has appeared (at most /g possible right instructions), or the
machine has altered the tape. In the latter case, at least a 1 has been written
in a zero-place of the regular segment over which the head is running. The
following sweeping to the left will stop on that rightmost 1 and the same
sweeping to the right will then start. And so, in all cases we obtain a periodic
motion, the period of which occupies a zone of length at most Ip.

Let us see that this second possibility is ruled out by our assumption
on [;’s. Indeed, this periodic motion leads the machine on the right of the
previous extremal right exit with position a; = p; + [;. Starting from a;, the
head performs at most s steps to the right and then the head goes back to
the left. Consequently, the next extremal right exit is at most at s steps of
a;. As in the period of the motion to the right the machine head writes at
least one 1 on the tape, p;41 is at most at Ip on the left of a;. And so,
liy1 < Ir + s. But this holds for any Imp of type 11 starting from the
time after which [/; are supposed to be big enough. This is contrary to the
assumption ihrglo li = +o0.

Consequently, the motion to the right starting from Imp time in the case
of an Imp of type 11 is a single sweeping to the right which brings the
machine head on the right of the previous extremal right exit. We shall say
again that we have then a rebound although in that case, the sweeping to
the right may alter the regular zone that it crosses over.

In each rebound, the sweeping to the right starts in its aperiodic part, at
most on Iy steps, and then enters the periodic part of lenght p with p < Ig,
and from the previous analysis, the length of the aperiodic part added to p is
at most Ig, so that there is at least one full period of this motion performed
in all rebound that we shall consider now.

As any type 11 Imp is absolute, strong periodicity lemma allows to assume
that p;11 < p; +1;. Either no 1 is written in a zero-place of the regular part of
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the zone crossed over during a sweeping to the right, or at leat one is written.

In the former case, we have the fixed-point motion with right rebounds
described in the refercence case.

In the second case, notice that the rightmost 1 is written either during
the starting aperiodic part of the rebound or during each period occuring
during the considered sweeping. If a 1 is written during the periodic part,
say of lenght p, we get then p;4+1 > p; + l; — p. Consequently, strong
periodicity lemma applies to this situation and so, the machine motion is
a right periodic one.

And so, the considered 1 is written only during the starting aperiodic part
of the sweeping.

As there are infinitely many extremal right exits, we shall find two
absolute [mp’s, say p,, and p,, of course of type 11, with [, = [, mod p.
Let ay = py+ly, respectively a, = py+ly, and let ¢, t, the respective times
when the machine head scans cell ay, a,, after [mp time. As, by the condition
on [, l, mod p, the state of the machine is the same at time ¢,, and ¢, and as
there is there a O and a desert of 0’s on its right, the motion of the machine
starting from time ?,, is parallel to its motion starting from ¢,, as long as the
head remains on the right of a, starting from ¢,.

By parallelism of the motion after time ¢,, to the corresponding one after ¢,
as long as the head remains on the right of a,,, we have [, 11—l = ly41—1y
and so, ly+1 = ly+1 mod p since lyy1 = Iy + ayy1 — Gy — d, where py+d
is the position of the rightmost 11 pattern on the right of p, at time ¢,.
Consequently, as py+1 < ay, the same argument applies to the further
rebounds, until a, is reached.

Consequently, we have

v—1
ly — 1y, = —d. (’U - u) + E(ak_H - ak)
k=u

and, by the same way,

w—1

lp —ly = —d.(w—v)+ Z(ak+1 - ag);

k=v

where a,, 1s the extremal right exit reached at a time t,,, with a,, — a, =
@y — Gy, Pw 18 the corresponding Imp of type 11 and l,, defined with respect
to Py as usually.
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As v — u = w — v, since the number of rebounds between ¢, and ¢, is
the same as between t, and ty,, and ay4k+1 — Qutk = Qutk+1 — Gutk fOr
allk =0,...v —u — 1 by parallelism, as shown previously, we obtain that
lw— ly = I, — . It is clear now that, reasoning in the same way as in the
reference case, those observations are enough for insuring that the motion
described in this way will later go on by repeating peridocically the same
number of rebounds followed, between two of them, by fixed sequences of
motions from a certain position a back to this position, but without any step
on the left of a in the meanwhile.

We shall here say that the motion is a motion with right rebounds without
fixed-point as illustrated in table 1, figure g. Of course, what is here proved
shows that the non-halting is also recursively enumerable in this case.

Notice that in the case we just studied, the case of infinitely many [/mp’s of type 00 is
possible, but they are, of course, never absolute. Indeed, such Imp’s may be created by the
motion which happens between two consecutive rebounds, but the same motion ’erases’ them
during ’local’ motions to the left, which implies, for instance, that the right instruction called
by the left blue one if a O is scanned, should be a right red one.

Case of infinitely many extremal left exits without right exit

This case is very similar to the corresponding situation in the reference
case. Indeed, as we consider here left exits, as already noticed in the case
of infinitely many traversals, any left exit is an extremal one and the right
instruction is called by the left blue one as a 0 is scanned. It is easy to
notice that, in this case, sweepings to the right starting from the left exit
do not alter the regular zone which lies between the left exit and the rmp
points, ends excepted.

Consequently, it is easy to see that we have two cases: either a simple
left motion if we ever find an absolute rmp which is a point of a regular
zone, or fixed-point motion with left rebounds in the opposite case. Both
kinds of motions are possible. In the case of a fixed-point motion with left
rebounds, the motion is a sequence of consecutive rebounds without other
motion in between. Moreover, there are two cases for such motions: one
with all »mp’s on the same position of type 00, the other with all rmp’s
on the same position of type 11.

As in all subcases of case blue unstable and green unstable the non-
halting is recursively enumerable,the situation of non-halting is recursively
enumerable too in the global case.

This completes the proof or theorem 1.
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6. THE CASE OF POSSIBLE STATIONNARY INSTRUCTIONS

Notice, first, that the colour results used in the proof of theorem 1 have
to be re-examined since works [9], [2] and [1] on which the proof is based
assume that the considered machines have no stationnary instructions.

However, those results remain true in our new context. It is clear enough
for [9]. For [2], it is enough to examine the proof of theorem A since in
the new context eight colours may occur instead of five ones. Now, a close

“examination of the proof of that theorem shows that the same arguments
hold even if stationnary instructions are allowed. Indeed, those instructions
yield new colours which are taken into account by the colour criterion.
Moreover, the motions on which is based the analysis produced in the proof
of theorem A do not assume that stationnary instructions are ruled out.
Consequently, cases when one of the two instructions with left laterality is
stationnary is immediately delt with by theorem A since the remaining single
left instruction yields at most one left pure motion colour. So we have to
consider the case when the two instructions with left laterality are genuine
left instructions blue and green, as above.

In the new context, definitions of section 3 remain unchanged. Lemmas
of that section remain true since they are general lemmas on deterministic
Turing machines which do not consider the laterality nor the move of the
instructions.

The same conclusion is true for definition and lemmas of section 4,
especially periodicity lemma and strong periodicity lemma which are also
general results on deterministic Turing machines.

The first reduction of the problem goes as in section 5 since theorem A
holds in the new context.

In fact all lemmas and arguments of section 5 remain valid. Only sink
lemma has to be slightly reformulated: instead of 5 steps after time ¢, we
have K steps, where K is a machine dependent constant depending on the
number of stationnary instructions possibly called by the left ones or the
right ones involved in the proof of sink lemma in section 5. The basic six
cases are the same up to the fact that the trivial non-halting with a loop of
stationnary instructions may occur. But this latter case is typically a sink.
And so, as the lemma is used in section 5 under the assumption that there is
no sink, the new lemma can be used in the same way in our new context.

The other lemmas about motions to the left have also to be slightly
reformulated. When a lemma assumes that a right instruction is called, his
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new version assumes that an instruction with right laterality is called. Notice,
in particular, that proofs of left motion lemmas in section 5 are formulated
in a way which allows possible stationnary instructions. With this slight
modification, the whole argumentation of section 5 applies to the extended
context.

7. COMPLETING THE SOLUTION OF THE LATERALITY PROBLEM FOR NON-
ERASING MACHINES

In this section, we first introduce the extended definition of non-erasing
machines on finite alphabets with, possibly, more than two letters. Then we
state theorem 3 which is summarized in figure 2 given in the introduction.
The second part of this section is devoted to the proof of theorem 3.

Extending the non-erasing assumption to any finite number of symbols

Notice that the non-erasing condition on {0,1} induces an order relation
on O and 1. This can easily be extended to any finite alphabet with at least
two letters as done in the following definition:

DEerFINITION: Let X be a finite alphabet with at least two letters. Assume that
a symbol of % is chosen as a blank symbol and that an order < is defined
on X such that the blank symbol is the least symbol. Say then that a Turing
machine on ¥ is non-erasing if and only if for any instruction ix Myj, the
relation x < y always holds.

On alphabet {0, 1}, this definition coincide with the previous one. It is
now possible to state:

THEOREM 3: The halting problem is decidable for any non-erasing Turing
machine on a finite alphabet ¥ satisfying the assumptions of the previous
definition the program of which contains a single left instruction.

This theorem solves the case of a single left instruction and any number of
symbols for the alphabet. From figure 2 and theorems 1 and 2, a case remains
to be examined: the case of non-erasing machines with two instructions
having the left laterality on an alphabet with three letters, fitted with an order
such that the chosen blank symbol is the minimum according to that order. It
is then not difficult to see that the construction supplied in [4] of a universal
non-erasing Turing machine on {0,1} quoted in [6] can be extended to the
case of three letters. Indeed, in the machine constructed in [4], there is a
single motion to the left involving the three left instructions possessed by the
machine program, and this motion is always stopped by meeting the same
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00 pattern (two contiguous cells containing the blank symbol). If we have an
extra-letter, it can be used to stop the motion to the left which, in that case,
only needs two left instructions. If the extra-symbol is the greatest symbol
on the three-letter alphabet, the construction of [4]can be a bit simplified:
the extra-symbol can be used to prevent further motions to the left to again
cross over already ’erased’ letters, i.e. letters consisting only of 1’s.

Consequently, the laterality problem in the non-erasing context whichever
way the non-erasing condition is extended to finite alphabets with at least
three letters is completely solved.

Extended non-erasing machines with a single left instruction
Let us now turn to the proof of theorem 3.

Let I = izLyj be the single left instruction of the considered non-erasing
Turing machines, say, M. Let S be the number of instructions of M.

Assume first that x # y. Let instruction I be applied on cell ¢ at time ¢.
It may be assumed that at time ¢+1, the machine applies a right instruction,
going back to @ which now contains y. On y # z, a right instruction is
eventually called, unless a loop of stationnary instructions appears since, as
z < y, by the non-erasing assumption, letter x cannot be scanned again in
cell a. By intermediate cell lemma, the machine can no more go to the left
of cell a+1. And so, if z is not the blank symbol, starting from a certain
time, the machine endlessly goes to the right. If z is the blank symbol, then
there is at most a single left exit which is then an extremal one and in the
case of infinitely many extremal right exits, the just supplied analysis shows
that ¢; < S and so, a recursively enumerable non-halting does occur.

Assume now that z = y. If instruction I is unstable, i.e. i # j, the same
argument as in sink lemma extended to stationnary instructions applies. And
so, infinite in space motions of the machine goes endlessly to the right with
possible extremal right exits for which /; < 1 which entails, by periodicity
lemma, a recursively enumerable non-halting motion.

Assume now x = y and i = j.

Assume that there are infinitely many extremal right exits. Symbol xz
is then the blank symbol. As there are infinitely many right exits and as
left exits would trivially be endlessly repeated by stability of instruction I,
the case of infinitely many traversals is ruled out. If s; is the position of
the ¢th extremal right exit, it is plain that s;11 < s; + S. By stability of
instruction I, any [mp contains a non-blank symbol at /mp time and so,
all Imp’s are absolute. As x is the blank symbol, at Imp time, there is a
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desert of 0’s and so, two such [mp’s scanned at [mp-time under the same
state ‘will occur. Leftmost position lemma applies, and so this non-halting
situation is recursively enumerable.

Assume now that there are infinitely many extremal left exits. As
instruction I is stable, necessarily symbol z is not blank. Notice that this
fact rules out any extremal right exit. Observe that in each rmp, symbol
x must be present at rmp time, unless the machine cannot go back to the
left. As there are infinitely many extremal left exits, the motion from an
rmp to the next extremal left exit leaves a zone of z’s only. Sweepings to
the right which happen after the extremal left exits do not change z into
another symbol and so, this situation is clearly the same as the simple left
motion studied in section 5. Consequently, this case is also a recursively
enumerable non-halting motion.

As all cases have been examined, theorem 3 is proved. [l

CONCLUSION

We think that the material given here convinced the reader that the
approach to the study of Turing machines based on a qualitative analysis of
the machine head, is a promising one. It can be noticed, in particular, that
the notion of colour plays an important role in the proof that the laterality
number is a decidability criterion for the halting problem of non-erasing
Turing machines.

Other criteria should be explored in order to better know the frontier
between decidability and undecidability. This is a still wide open field, and
we think that we here introduced a tool of possible use in that research.
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