
INFORMATIQUE THÉORIQUE ET APPLICATIONS

JEAN NÉRAUD
Detecting the morphic images of a word :
improving the general algorithm
Informatique théorique et applications, tome 31, no 1 (1997), p. 1-14
<http://www.numdam.org/item?id=ITA_1997__31_1_1_0>

© AFCET, 1997, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1997__31_1_1_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 31, n° 1, 1997, pp. 1-14)

DETECTING THE MORPHIC IMAGES OF A WORD:
IMPROVING THE GENERAL ALGORITHM (*)

by Jean NÉRAUD (l)

Abstract. - This paper takes place in a series of studies concerning the gênerai problem which
consists in detecting all the morphic images of a given word R £ (A U £)* in an arbitrary text
w G £*. Applying the naive algorithm to this problem requires time O (|u i | ' A ' + 2) .

We conjugate the concept of rank of a pattern, namely the integer r(R) (a measure of
the complexity of its construction in term of periodicity) [N95.1], with one of our previous
results concerning one-variable pattern [N 95] to prove thaï the problem may be solved by a
0 (| H 4 + \Rf + \w\lA{r {R)\n\w\ln\R\)-time algorithm.

Asymptotically and in the case where A has at least four letters, this leads to a O (|u>|lAlln2 \w\)-
time algorithm, a direct generalization of the results in [N 95].

Résumé. — Cet article s'intègre dans une série d'études du problème général qui consiste à
détecter toutes les images homomorphes d'un mot donné R 6 (A U £)* dans un texte arbitraire
w € £*. Pour résoudre ce problème, l'algorithme naïf opère avec une complexité en O (|w | ' A ' + 2) .

Nous associons le concept de rang d'un motif (c'est-à-dire l'entier r(R) qui mesure la complexité
de sa reconstruction en terme de périodicité) [N 95.1], avec un de nos précédents résultats
concernant les motifs sur une variable [N 95], pour prouver que le problème peut être résolu
en appliquant un algorithme de complexité O (|w|4 + \R\Z + |w | ' ^ ' r (R) \n\w\ln\R\).

Asymptotiquement, et dans le cas où A possède au moins quatre lettres, on obtient une complexité
en O(\w lA ' ln2 |w|), une généralisation directe du résultat de [N 95].

1. INTRODUCTION

Given a finite alphabet. E, a recursive subset L of £* (the free monoid
generated by S) and a string w £ S*, the pattern matching problem consists
in deciding whether or not there exists a substring of w which belongs to L.
Many classical problems are concerned with this définition.

(*) Received October 1993, accepted September 1996.
C1) LIR, LITP, Université de Rouen, Faculté des Sciences, place E. Blondel, 76821 Mont Saint-

Aignari Cedex, France.
e-mail: Jean.Néraud@dir.univ-rouen.fr

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754/97/01/$ 7.00/© AFCET-Gauthier-Villars

2 J.. NÉRAUD

This paper is part of a series where we evaluate the complexity of
the pattern matching problem, relative to a special class of languages L
described by the morphic images of words.

Formally, given two finite disjoint sets, namely E, the alphabet of the
"constants", and A, the alphabet of the "variables", we consider a word,
say R, over A U E. The language described by R, namely L(R), is the
set of all the words <j)(R) G E*, where (j> stands for any morphism from
(A U E)* into E* satisfying 4>(a) = a for every "constant" a G S. For
instance, take X = {a, 6, c, d}9 A = {X, Y, Z} and consider the "pattern"
R = X2aXYbZ G (AU E)*. By définition, the word (ab)2a2bcbd belongs
to L(R). Indeed, such a string may be constructed by substituting ab for X,
c for Y, and d for Z in the preceding word R.

Many scientific domains are concerned by the applications of that
topic: indeed, beside the classically mentioned examples of text editing,
or Molecular Biology, matching patterns with variables is also a helpful
investigation tool in several domains of Computer Science, such as Rewriting
Theory, or in the framework of infinité words [B 92].

From the point of view of the computational complexity, as shown in
[An 80], given 2? G (A U E)*, and given an arbitrary word w G E*, the
problem of deciding whether w G E*L(i?)E* or not is NP-complete. In
f act, applying the naive algorithm requires time O (|ui|lAl+2). This algorithm
examines each of the O (\w\2) factors of w, and makes use of a diophantine
équation in the lengths of the candidates <j> (X), with X G A.

In some special cases of patterns, different results have been published:

• In the case of periodicities, Le. one-variable patterns of type Xk, or two-
variable patterns of the (XY)kX (k being a positive integer), different
O (\w\\n\w\)-time algorithms have been implemented (cf. e.g. [C 81],
[AP 83], [ML 85] or [R 85]). Howether, the corresponding algorithms do
not allow all the corresponding morphisms 0, and all the corresponding
occurrences of <j>. (R) to be located in the input word vu.

• For a one-variable pattern with constants, we constructed a
O (|w|2ln|tu|)-time algorithm for detecting all the morphisms, and ail
the corresponding occurrences [N 95].

•In the same paper we presented a O (|w|2ln2|^)-time algorithm
for matching arbitrary two-variable pattems without constants, like
XYX2XY, or X2Y3XbY, ...

However, the question of improving the complexity of the gênerai
algorithm remained open.

Informatique théorique et Applications/Theoretical Informaties and Applications

DETECTING THE MORPHIC IMAGES OF A WORD 3

In our new study, we conjugate the preceding result for one-variable
patterns [N 95], with recent results concerning our so-called notion of
rank of an arbitrary word R € (A U E)* [N 95.1] (and which allowed a
O (\R\3 + \w\4 + |tu|lAl+1r (iï))-time improvement). Now, we show that the
genera! problem may be decided in time O (fiu['Alr (R) ln|iü|ltt (R))9 (where
r(R) stands for the rank of R), after a O (|w|4)-time preprocessing phase on
the word w itself, and a O (|i?|3)-time preprocessing phase on the pattern.

It is of interest to note that, from the point of view of asymptotic
complexity, the integer r(R) is negligible beside the length of the word
w. That is, for |A[> 4, we obtain a O ([tü|WAl |tt/|)-time algorithm, a direct
generalization of the result in [N 95]. Once more our method is applied in
an exhaustive way, so we may compute all the morphism <f>r and all the
occurrences of the word <f>{R). We now present the contents of our paper.

Section 2 is concerned with the basic définitions used in our paper. The
terminology of free monoids is settled, and the gênerai problem of detecting
morphic images is stated.

We recall the notion of rank of a pattern, which was introduced in
[N 95.1], and a result concerning a one-variable prefix-pattern [N 95]: these
two theoretical concepts which are the main feature of our new improvement.

In Section 3, we present conventions of implementations. In particular
in a preprocessing phase, we compute the so-called "factor map" and
"periodicity'map" of an arbitrary word, which avoid useless steps of
computation and comparisons in the processing phase: this is the second
feature of our method.

As a conséquence, we obtain our main algorithm, which is presented in
Section 4.

2. PRELIMINARIES

2.1. Définitions and notations

We adopt the standard notations of the free monoid theory: given a word
w in E* (the free monoid generated by E), we dénote by \w\ its length, the
empty word being the word of length 0.

Given two words u, w e E*, we say that u is a factor (resp. prefix,
suffix) of w iff we have w e £*IA£* (UE*, E*U). Given a factor ƒ of w, an
occurrence of ƒ is every tuple (u. ƒ, v) such that w — ufv. Given such an
occurrence, the integer \u\ + 1 is called the position of ƒ. For each integer

vol. 31, n° 1, 1997

4 J. NÉRAUD

i G [1, \w\], w [i] stands for the letter of position i in w. Given a subset Y of
E, we dénote by \w\r the number of occurrences of the letters of F in E.

A non-empty word w is primitive iSw = xn implies n = 1.

2.2. Matching morphic images of a word

Consider the foliowing gênerai problem (P):

Instance: - A = { X i , . . . , Xm} the finite alphabet of "variables"
- E, a finite alphabet of "constants", with A n S = 0
- R, a word over the alphabet A U E (the "pattern")
- w e £*, the "text"

Question: Décide whether or not a non-erasing morphism exists

<f>: (AU E)* -> E*

(Le. with e not in <j> (E U A)), such that the two following conditions hold:

- for every letter a G E, we have <j){a) ~ a
~ 4> (R) is a factor of w.

As shown in [An 80], if no bound for |A| is given, this problem is NP-
cómplete. The preceding mapping <j> will be called a solution. As already
discussed:

CLAIM 1: Given a constant alphabet, A, and given an arbitrary instance
of the preceding problem, deciding whether or not a solution exists may be
done in time O (\R\3 + |^|IAI+V (R)).

Our new method of computation of the solutions, which is presented in
Section 3 and Section 4, rests upon two previous results [N 95], [N 95.1]. It
is now convenient to recall the main feature of these results.

2.3. The rank of a word

Let w G E*, and let p G [1, \w\]. Consider the following équivalence
in [1, \w\] x [1, \w\]:
we have (i, j) G E^ iff the following property holds:

CONDITION 1: (i) i + p — 1 < \w\, j + p — 1 < \w\;

(ii) w [i]... w [i + p — 1] = w [j]... w [j + p — 1].

Informatique théorique et Applications/Theoretical Informaties and Applications

DETECTING THE MORPHIC IMAGES OF A WORD 5

In other words, the factor of w with length p and position i is equal to
the factor with length p and position j . In [C 81], the author présents an
O (|u?|ln|tt;|)-time algorithm for constructing all the équivalences E^PK This
algorithm, in fact, detects any "maximal periodicity" in the word w.

Generating équivalence

Clearly, R is completely determined by the preceding équivalence E^. In
[N 95.1], we present a method for constructing this équivalence, by making
use of a (minimal) generating system of binary relations, which finally leads
to the concept of rank of R.

Given a tuple of integers (i, j , k) G [1, |# |]3 , with i < j , and
k > 1, we dénote by 0\ !• the symétrie binary relation with éléments

* 5 = {{h 3h {* + 1, j + 1} , . . . , {i + fc - 1, j + fc - 1}}, and by 9 (R)
the set of the preceding relations 0\ !.

Given an arbitrary subset 0o of 6 (R), we dénote by 0Q the équivalence
they generate, Le. the smallest équivalence containing all the éléments of 0o,
and we define the rank of R as the integer: r (R) = min{ 10o | : ©o = ^^ } •

PROPOSITION 1 [N 95.1]: Given a word R E A, computing its rank (and
Computing a corresponding generating system of E^* {R)) requires time

Example 1: Let A = {X, y, Z), and R = XY ZXY ZXY XZY XZ.
The classes corresponding to the non-trivial équivalences E^ are the
following:

: {1, 4, 7, 9, 12}, {2, 5, 8, 11}, {3, 6, 10, 13}

: {1, 4, 7}, {9, 12}, {2, 5}, {8, 11}, {3, 6}, {10}, {13}

: {1, 4}, {7}, {9}, {12}, {2, 5}, {8, 11}, {3, 6}, {10}, {13}

: {1, 4}, {7}, {9}, {12}, {2, 5}, {8}, {11}, {3}, {6}, {10}, {13}

: {1,4}, {7}, {9}, {12}, {2}, {5}, {8}, {11}, {3}, {6}, {10}, {13}

We obtain the following minimal generating system:

60 = {0^ , efjn, fl^g, ögeh thus we have r(R) = 4.
As an application we obtained a first improvement of the gênerai algorithm

for detecting all the morphic images of a word Re (A U E)* (cf. Claim 1).

The main feature of the algorithm consists in detecting the tracing into the
word w itself of the binary relations of a minimal generating system of R.

vol. 31, n° 1, 1997

6 J. NÉRAUD

2.4. One-variable prefix pattern

Let <fi '• ({X} U E)* —» E* be a morphism. Consider the following
condition:

CONDITION 2: (i) <f>(a) = a, for every a G E;-

(i i) ^ (X) e H * ï i

We say that <p satisfies Condition 2 with respect to the pair of words (n, v).
The following result leads to implement an algorithm for detecting in time
O(]u/jln|?*;j2) all the occurrences of a one-variable pattern:

LEMMA 2 ([N 95], Section 3.2): Given two words w G £*, R G {{X} U
£)*, and given a pair of factors ofw, (tt, v) G S* x £ + , wï/i ^^ a primitive
word, a unique one-unknown linear diophantine constraint (C) exists, such
that the following property holds:

For every morphism <f> : {{X} U E)* —> E* satisfying Condition 2 with
respect to (u, v), if <f> (R) is a prefix ofw, then the length of the word 4>{X)
satisfies (C),.

The proof of Lemma 2 contains a précise computation of the constants
that take place directly in the construction of constraint (C). We now recall
the lists of these constants:

Let (ifc) i< k< n ^ e the unique séquence of words in E * such that
R = toXtiXfy..~Xtn- Set wf = t^w:

- We dénote by zmax the greatest positive integer (if it exists) such that
U G (vu)*v, for each integer i G [1, imax — 1], and such that UmAx is a prefix
of a word in (vu)*u (otherwise, we set im a x = 0).

- If imax = w>, we dénote by p the greatest integer such that (uv)p utn is a
prefix of wf. Otherwise, p stands for the greatest integer such that (uv)p utn

is a prefix of w'. With the second condition:

- if t«max G (vu)* v, then q stands for the greatest non-negative integer
such that (vu)q is a prefix of £ïmax+i, otherwise, we dénote by q the greatest
non-negative integer such that (vu)q is a prefix of ijmax (ut;)2.

3. THE PREPROCESSING PHASE: CONVENTION OF IMPLEMENTATION

As already discussed, the results of Proposition 1 and Lemma 2 are the
main features of our new algorithm. Howether, putting to use these results
efficiently will require a special technique of implementation. We now

Informatique théorique et Applications/Theoretical Informaties and Applications

DETECTING THE MORPHIC IMAGES OF A WORD 7

proceed to describe this technique. We shall assume that, given an arbitrary
table, say t, the access to an arbitrary element t[i] requires constant time.

From an algorithmic point of view, we represent words by linked lists
of characters, sets of integers being also represented by lists. With this
convention, concatening two words will be done in constant time.

3.1. The factor map

We shall also represent the occurrence of a factor u of w (with u ^ e)
by the unique pair of integers (i,j) such that w — w [1]'... w [i - ï\uw
[j + 1] . . . w [\w\]. In this way, the lexicographie ordering over the éléments
of [1, \w\] x [1, \w\] leads to a définition of a total ordering over the O (\w\2)
different occurrences of the factors of the word w. Let f\ < f2 • • - < fp be
the corresponding séquence of factors of w l.

These factor occurrences, with respect to the monoidal structure of S*,
are controlled by introducing the five, following tables, namely index, occ,
fact, concat, and power:

. 1. Given a factor occurrence (i, j) , index [i, j] stands for the smallest of the
integers k E fl, p] such that ƒ& is equal to the factor of occurrence (i,j).

2. Given an integer fee [1, p], we dénote by occ[k] the smallest occurrence
of the factor ƒ& and we set fact[k] — f^,

3. For each factor occurrence (iy j), and for each integer i* E [i, j], we set:

concat [index [i, z'], index [1 y j]] = index [i, jfj

Clearly, this leads to representing all the concaténations of pairs of
(non-ernpty) factors (^1,^2) such that u\U2 remains a factor of w.

4. Given a factor occurrence (i, j) G [1, \w\] and given an integer a > 2,
we set power [[iy j], a] = index [if, ƒ] ifF (fact [index [i, j]\)a remains a
factor of w with occurrence (i\ ƒ) .

According to these définitions, constructing the tables index, occ and
fact requires time O(\w\2), and Computing table concat will require time

0(M3)-

1 This représentation is different of the lexicographie ordering introduced over the factors
themselves in [CR 94}, p. 162).

vol 31, n° 1, 1997

8 J. NÉRAUD

Moreover, it is well-known that, by making use of the binary représentation
of the positive integer a, computing ua requires O(lna) concaténations. As
a conséquence, computing table power requires time O (\w\Hn\w\).

We say that the tuple of tables {index, occ, fact, concat, power) is the
factor map of w 2.

CLAIM 2: Given a word w G E*, computing its factor map requires time
O{\w\hn\w\).

Moreover, the following result allows the amount of the reconstruction of
the word <fi (R) to be evaluated, for every morphism <j>.

LEMMA 3: With the convention of implementation, given a word R G
(A U E)*, and given a generating system ©o of R, with |©o| = r (R), for
every morphism <j> : (A U E)* —» E*, constructing the word (f) (R) requires
time O(r(R)ln\R\).

Indeed, according to [N 95.1]; the construction of <f>(R) comes down to
the construction of the word R itself.

This computation is done by making use of a recursion tree, whose vertices
different from the root may be identified to the éléments of 0Q. By définition,
with every relation 0 G ©o, we associate the occurrence of a factor F (9), of
type (uv)mu, that is (uv)a, with a = m + T^T where m stands for a positive
integer. More precisely, given a relation 0 G ©o, and given a factor ƒ of
the word F (ö), two séquences of words exist, namely (/ï)o<Kfc> {9i)i<i<k
such that both the following conditions hold:

(1) We have ƒ = (fogift ...gkfk)a, with a G Q+.

(2) For each integer i G [1, k], there exists a relation #z, which is a son of
0 in the preceding tree, and such that gi is a factor of the word F (ög).

The factors ^ are computed recursively, when the factors ƒ*, and the
rational number a may be associated to each vertex of the recursion tree.
Since each vertex is examined at most once time, the computation of R may
be done by applying 0(|©o|ln l^ |) concaténations.

2 Note that we need only the comonents of these table corresponding to factors of w to be
affected.

Informatique théorique et Applications/Theoretical Informaties and Applications

DETECTING THE MORPHIC IMAGES OF A WORD 9

3.2, The periodicity map

The computation of the JS^-classes in [C 81], given a pair of integers
(z, p) e [1, \w\] x [1, |IÜ|], allows to determined the three following tables
to be determined, namely exp, c and SQR:

1. Let e be the greatest integer such that (i, i + (e - ï)p) E E^. We set
exp[i, p] = e.

2. We dénote by c\p,i] the unique £^1-équivalence class of i. We shall
represent the class c[p, i] by the smallest of its éléments.

3. Given a factor occurrence with index k e [1, p], and given an integer
i E [1, |IÜ|], we dénote by SQR[k,ï\, the set of the factor occurrences
(i)j) that satisfy the two following conditions:

- x = w [i]... w [j] is a primitive word.

- a ; 2 i s a p r e f i x o f t h e w o r d f a c t [k] - (w [i] . . . w [\w\]).

According to [CR 91]:

CLAIM 3: We have \SQR(w [i]... w [\w\]\ - O (l n | i y |)) .

Constructing each set SQR[k, i] may be done in time O {\w\) by applying
the KMP-algorithm [KMP 77]. This leads to the table SQR in time O (H 4) .

We say that the tuple of corresponding tables (exp, SQR, c) is the
periodicity map of the word w:

CLAIM 4: Given a word w, constructing its periodicity map may be done
in time O (|w|4).

Moreover, by construction:

LEMMA 4: Let w G S*, and let (i^j), (ii, ji), (^2,32) be three occurrences
of factors of w. Let u — w [i\] ...w [j\] and v = w [12} . . . w [72]. After the
computation of the periodicity map ofw, each of the twofollowing conditions
may be decided in constant time:

1) Deciding whether the word w [i]... w [j] belongs to (uv)* u.

2) Computing the greatest integer e such that (uv)eu is a prefix of

vol. 31, n° 1, 1997

10 L NÉRAUD

3.3 A special factorization of R

We complete the présentation of our preprocessing phase by indicating
a particular décomposition of the word R, which allows to détermine a
candidate for the morphism (f> in the processing phase to be determined.

Given the word R G A*, for each integer a G [1, m], dénote by pa the
smallest position of the letter Xa in the word R. Let j be the unique integer
in II, m] such that pj = max{pa '• 1 < a < m}, We set X = Xj9 and
Ai = A\{X} (in other words, X is the last letter to appear the first time
when reading R from left to right). Without loss of generality, we may
assume that we have j = rn, thus Ai = {Xi , . . . , Xm-\},

Clearly, there exists a unique pair of words (i?i, i?2)? such that the
following condition holds:

CONDITION 3: We have R = RiR2 with Ri G (Ai U E*), and R2 €
X(A UE)*.

More precisely, the word R2 may be factorized as XT\X... XTn, with
n > 1, and Tet € (Ai U E)*.

4. THE PROCESSING PHASE

In all the sequel of our paper, we assume that we have computed the
factor map and the periodicity map of the words w, and R in a processing
phase. Set A = {Xi,..., Xm}. Let R G (A U S)*, w G E M t is convenient
to introducé the following condition:

Let i G [1, M] , (xa)i<a<m-i € [1, \w]]m-\ and let ^ : (A U E)* - E*
be a morphism. We say that 4> satisfies Condition 4 with respect to the tuple
(i, (xa)) iff the following condition holds:

CONDITION 4: (i) for each integer a G [1, m — 1], w^ have <ft (Xa) — xa;
(ii) <f> (R) is a prefix of w [i]... w \\w*

Let Î G { 1 , jtü]] such that there exists a morphism >̂, with 4>{R) a prefix of
«; [i]... ^Otyj]. Let (xa)i<a<m-i be a (m - l)-uple in [i, Iru}]"1"1, and let
^ be a morphism satisfying Condition 4, with respect to the type {i,{xa))-
Trivially, the integer j — i + \(f>(Ri)\, is the position of the factor ^(ife)
in the corresponding occurrence of <f>(R).

We shall explain how to décide whether or not <f>(R2) is a prefix of
w[j\... K;{)K;J]. With respect to the preceding notations, consider a pair of

Informatique théorique et Applications/Theoretical Informaties and Applications

DETECTING THE MORPHIC IMAGES OF A WORD 1 1

words (u,v) such that 4>(X) E (uv)* u (recall that, according to [CR 91],
we get ö(ln:|ï//|) candidates for such a pair).

4.1. Constructing constraint (C)

This construction rests upon the computation of the constants £max, p, q,
in the proof of Lemma 2. Recall that we set R2 = XT\X...JTTn, with
Ta e (AiUE)*.

LEMMA 5 : Given the preceding integer tuple (z, {xa)i<a<m-i)9 given the
family of words (Ta) (1 < a < n), and given the preceding pair of words
(u,v):

(1) Computing im a x requires time O{\R\\n\R\).
(2) Computing the integers p,q requires time O(r(R)).

Proof of Lemma 5: As a corollary of Lemma 4, after the computation of the
factor map and the periodicity map of the word w-, given an integer tuple
{xa)i<a<m-u a^d given an integer a e [1, n]:

- computing the word <j>{Ta) may be done in time Ö{r(R)) (indeed, Ta

is a factor of J?, and we have Ta E A|),

- after that, deciding whether or not we have <f>(Ta) G (uv)*u (cf) (Ta) G
pieî(uv)*u)) requires constant time.

It is well-known that computing the greatest integer a that satisfyies the
preceding condition may be done in time O(ln.|iÎ2|) by applying a method
of binary search in the séquence <fi(Ta) (see e.g. [K 73] or [CLR 90]).
Note that computing all the words <j>(Ta) is not necessary, This establishes
assertion (1).

Moreover, once more according to Lemma 4, after the computation of
the word T2max+i the computation of the integers p and q may be done in
constant time by making use of table exp in the periodicity map, hence the
second assertion follows. •

4.2. The new algorithm

Since solving the preceding constraint (G) allows (in constant time) a
candidate for the morphism <j> to be completely determined, we get a new
improvement of the genera! naive algorithm for deciding whether or not
Problem (P) has solutions. This algorithm is informally described as follows:

Having, in the preprocessing phase, computed the factor maps and the
periodicity maps of the words R and w, for each prefix WQ of the input word

vol. 31, n° I, 1997

12 J. NÉRAUD

iü, and for all the (m — l)-uple of integers (rri , . . . , xm~i) £ [\wo\i M], w e

shall apply each of the following steps:

•In Step 1, we compute a candidate for the word <p(Ri), and the
corresponding word <f>(Ti).

• After that, Step 2 consists in investigating the corresponding set of
primitive words t such that t2 is a prefix of <f> (ï \) • WQ1W, as follows:
- F o r each of the preceding words x, in Step 2.1, we compute the

corresponding constraint (C), and in Step 2.2, we shall décide whether
or not (C) has at least one solution.

- If the answer is positive, then we must décide whether or not the
corresponding word <p{R2) is a prefix of w^1 w (Step 2.3). This
will be done by applying in time O(r(R)) the "comparison phase"
which was presented in [N 95.1], Section 4.2. Note that if (C) is
an inéquation, the vérification step may be done by considering the
longest of its solutions 3.

The different steps are effectively implemented by making use of the
factor maps, and periodicity maps of the words R and w. In this way,
the computation of a factor ƒ is done by the computation of its smallest
occurrence in the lexico-graphic ordering.

The main scheme of this algorithm is described as follows:
Algorithm
input: R € (A U S)*

w e £*;
output: answer to Problem (P)

{m = |A|}

(Preprocessing phase}
compute the factor maps and the periodicity maps of w and R
and a generating System of the preceding words R, R\, R2, T\
compute the preceding words Ri, R2

Si < - | i î i | s

{Processing phase}
answer <— FALSE;

for each integer i £ [1, \w\\ do

for each (m - l)-uple O i , . . . , xm-i G [i, M] " 1 " 1) d o

{Stepl}

3 Moreover, an interval of solutions may be given. With such a convention, we get the same
resuit of complexity.

Informatique théorique et Applications/Theoretical Informaties and Applications

DETECTING THE MORPHIC IMAGES OF A WORD 13

compute the corresponding word <j> (T\)

3' <~ * + E i < z < m - i x* + si (position of <£(Ti)l
k <— the unique integer such that <f>(T\) — fact[k]

{Step 2}

for each word y in SQR[k,j] do
compute the corresponding tuple of integers (|u|, |u|, zmax, P, q) {Step 2.1}

if at least one solution x for Constraint (C) then {Step 2.2}

xfc <- x

{Step 2.3}

for each relation #̂ •" in the generating System of R2 do

compute the integers i', j ' , fcy as indicated in [N 95.1] (Section 4)

if (i ' , j ') € £;[fc] (w) then a^wer • - r/?t/£ endif
endfor

endif
endfor

endfor
endfor
endalgorithm

Complexity of algorithm 3

• As we indicated above, the preprocessing phase requires time O {\w\4 +

\R\3)-
• Let i G [1, \w\], and let (x i , . . . , Xm-i € [i> l^l]"1"1)- According to

Lemma 3, since the words Ta are factors of R, the computation of the
words 4>{Ta) (1 < a < n) requires time r(R) \n\R\. Computing the
integer j is done in constant time, the access to the set SQR[k, j] itself
being obtained in constant time.

• According to Lemma 5, computing the integers ^max, \u\, \v\ in Step 2.1
requires time O (r (R) In|i2|). Clearly, solving the corresponding
constraint (C) requires constant time.

• Finally, in Step 2.3, deciding whether the corresponding candidate <p is
a solution of Problem (P) requires O(r(R)) comparisons.

• Now, according to [CR 91], we have \SQR [fc, j}\ ~ O (ln\w\)
times. Moreover, by construction, we consider O (|u;|lAl) tuples
(i, x i , . . . , a;fc_i).

As a consquence,

THEOREM 6: Given a pair ofarbitrary words w, R, deciding whether or not
there exists a morphism <fi such that </> (R) is a factor ofw, may be implemented
so that it requires time O (|w|4 + |i?j3 + Hl A l r (R) ln|iu|ln|ü!|).

vol. 31, n° 1, 1997

14 L NÉRAUD

Moreover, this rnethod allows all the morphisms <j) to be exhaustively
computed, with all the occurrences of the corresponding word <fi (R).

REFERENCES

[An 80} D. ANGLUIN, Finding Patterns Common to a Set of Strings, Journal of
Computer and Syst. Sci, 1980, 21, pp. 46-62.

[AC 75] A. AHAO and M. CORACICIC, Efficient String Matching: An Aid to
Bibliographie Search, Comm. ACM, 1975.

[AP 83J A. APOSTOLICO and F. P. PREPARATA, Optimal off-line détection of répé-
titions in a string, Theoret Comput. Sci., 1983, 22, pp. 297-315.

[B 92} K. BAKER, Open problerns on avoidable and unavoidable patterns,
manuscript (Université de Rouen, France).

[C 81] M. CROCHEMORE, An optimal algorithm for Computing the répétitions in
a word, Information Proc. Letters, 1981, 72, pp. 244-250.

[CN 89] M. CROCHEMORE and J. NÉRAUD, Unitary monoid with two generators: an
algorithmic point of view, in: Proceedings ofCAAP'90, 1990.

[CLR 90] T. TCORMEN, C. LEISERSON and R. RIVEST, "Introduction to Algorithm",
The MIT Press, 1990.

[CR 91} M. CROCHEMORE and W. RYTTER, Periodic préfixes of string, in: Acts of
Séquences '91 % 1991.

[CR 94} M. CROCHEMORE and W. RYTTER, "Text Algoriths", Oxford University
Press, 1994.

[GS 83} Z. GALIL and J. SEIFERAS, Saving space in f ast string-matching, SI AM
J. Comput., 1980, pp. 417-438.

[JSSY 95] TAO JIANG, A. SALOMAA, K. SALOMAA and SHENG YU, Décision problerns
for patters, Journ. of Comput. Syst. ScL, 1995, 50(1), pp. 53-63.

[K 73} D. KNUTH, "Sorting and Searching", vol. 3, of "The Art of Computer
Programming". Addison Wesley 1969, Second édition, 1981.

[KMP 77} D. KNUTH, J. MoRRrs and V. PRATT, Fast pattern matching in string, SIAM
7. Comput, 1977, 6, No. 2, pp. 323-350.

[Lo 83} M. LOTHAIRE, "Compbinatorics on words", Encyclopedia of Mathematics
and appl., Addison Wesley Publish. Company, 1983.

[ML 85} G. MAIN and J. LORENTZ, Linear time récognition of squarefree strings, in
"Combinatoric Algorithms on Words", A. Apostolica and Z. Galil eds.,
NATO ASI, Springer Verlag, Berlin, 1985 (1), pp. 5-37.

[N 95] J. NÉRAUD, Algorithms for detecting morphic images of a word, Info.
and Comput, 1995, 120, No. 1, pp. 126-148.

[N 95.1} J. NÉRAUD, Detecting morphic images of a word: On the rank of a
pattern, Acta Info., 1994.

[R 85} O. RABIN, Discovering répétitions in strings, in "Combinatoric Algo-
rithms on Words", A. Apostolico and Z. Galil eds., NATO ASI, Springer
Verlag, Berlin, 1985.

Informatique théorique et Applications/Theoretical Informaties and Applications

