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ON THE AVERAGE MINIMAL PREFIX-LENGTH
OF THE GENERALIZED SEMI-DYCKLANGUAGE (%)

by Rainer Kemp (1)

Communicated by J. BERSTEL

Abstract. — Given two disjoint alphabets T and T4 and a relation R C T x T4, the “generalized
semi-Dycklanguage” D® over T UT+ consists of all words w € (T UTR)* which are equivalent
to the empty word under the congruence § defined by zy = emod§ for all (z, y) € R. For
arbitrary R, we compute the average length of the shortest prefix which has to be read in order to
decide whether or not a given word of length n over (Te U T5)* belongs to D™

Résumé. — Etant donnés deux alphabets disjoints T- et T+ et une relation R 'C T- x T4,
le « langage de semi-Dyck généralisé » D™ sur T UT5 est composé des mots w € (T- UT5)* qui
sont équivalents au mot vide pour la congruence § définie par xy = e mod § pour tout (z, y) € R.
Pour tout R, nous calculons la longueur moyenne du plus court préfixe d’un mot de longueur n sur
(T= U T5)* qu’il faut lire pour décider si ce mot appartient ou non au langage D™.

1. INTRODUCTION AND BASIC DEFINITIONS

The membership problem, i.e. the question whether or not a given ‘word w
belongs to a given language £, is a fundamental problem in formal language
theory. A simple strategy to solve this problem is as follows: Let £(w) be
the length of the word w. Scan w from left to right letter by letter until
the last symbol of the shortest prefix v which has no extension rightwards
to any word of length £(w) of the language L. If w € L, then we have to
read £(w) symbols; but, if w ¢ L, then we only have to read 4(v) < £(w)
symbols. Naturally, such a recognition procedure presupposes information
about the words which have an extension rightwards to a word of length £(w)
belonging to £ and those ones not having such a continuation.
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546 R. KEMP

Given a formal language L over an alphabet T" furnished with a probability
distribution, a general approach to the computation of the average length
of the shortest prefix v has been presented in [8]. This approach covers a
complete average-case analysis of that parameter, including higher moments
about the origin and the cumulative distribution function. In this note,
we shall deal with the class of generalized semi-Dycklanguages which is
defined as follows:

DeriNTION 1t Let k1, ky € N, T := {C; |1 <i < Kk},
T5:={Ci|1 <1<k}

and T := T- UT5. Given a relation R C T x T4, the generalized
semi-Dycklanguage D™ associated with R is defined by

D? = {we T |w = e mod 6},

where € denotes the empty word and ¢ is the congruence over 7' given by
(V (z, y) € R) (zy = emod§). The elements of T (resp. T5) are called
opening (resp. closing) brackets. The sets Ry and Ry are defined by

Ry :={z €T |3y € T9) ((z, y) € R)}
and

Ry :={y € T5|(3z € Tc) ((z, ) € R)},
respectively. <
Choosing k1 := k2 := k € N and R := {(C;, 2:)|1 < ¢ < k} in the
preceding definition, D™ coincides with the usual semi-Dycklanguage D,
with k types of brackets (e.g. [6], pp. 312). Applying the general approach
presented in [8], we are able to determine the exact asymptotical behaviour
of the average length of the shortest prefix which has to be read in order
to decide whether or not a word w € T" belongs to D®*(n) := DR n1T™
provided that all words w are equally likely. The presented analysis includes
the computation of the higher moments about the origin, too (¢f. Theorem 1,
Corollary 1). Informally, we shall show that the growth of the average
length of the shortest prefix is of order
-~ ©(1) if and only if the alphabet T contains brackets not appearing
in R,
or

all brackets in T' appear in R, but Ris a proper subset of T x T,
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THE GENERALIZED SEMI-DYCKLANGUAGE 547

or

R is equal to T- x T4, but there are less opening brackets in
T than closing brackets in T';

- O©(n2) if and only if R is equal to T X 75 and there are as much
opening brackets in T' as closing brackets in T’;

- O(n) if and only if R is equal to 7= x T 1 and there are more
opening brackets in 7" than closing brackets in 7'

Let us conclude this introductory section by some further definitions and
notations used in the rest of the paper.

Given a formal language £ C T™, the set
INIT (L) := {u € T*|(3v € T*) (wv € L)}

denotes the set of all prefixes appearing in words belonging to L. The set
INIT, (L) is defined by INIT, (L) := INIT(L) N T". We say that T is the
smallest alphabet for £ if (VT C T) (L ¢ T*). A prefix u € INIT ({w}),
w € T", is called a minimal prefix of w with respect to L(n) := LNT"
iff w € INIT,_1(L(n)) - T\INITx(L(n)), where k € [1:n] is minimal.
Obviously, the minimal prefix of a word w € T™ with respect to L£(n)
cannot be extended rightwards to any word of length n in £; after reading
such a prefix, the given input word w has to be rejected by the recognition
procedure described above.

Next, let us consider the generalized semi-Dycklanguage D™ Since all
words in D™ have an even length, a minimal prefix of w € T™ with respect
to D®(n), n = 1 mod 2, does not exist. If » = 0mod 2, a minimal prefix
with respect to D% (n) satisfies the following properties:

@) #c(u) < #o(u)
or

(i) #c(u) > 3n
or

(i) uw € T* - ({z} NnTg) - DR - ({y} N T5) with (z, v) ¢ R.

Here, #(u) (resp. #-(u)) denotes the number of opening (resp. closing)
brackets appearing in u. The condition #(u) < #5(u) means that a word u
consisting of more closing brackets than opening brackets cannot be a prefix
of D™. The second property #-(u) > %n takes the fact into account that
a Dyckword w € D®(2n) cannot have more than n opening brackets. The

last condition reflects the property that the opening bracket x € T~ and the
closing bracket y € T5 do not clash because (z, y) € fR.

vol. 30, n® 6, 1996



548 R. KEMP

Given a prefix u € T* - ({z} N T¢) - D™ - ({y} 0 T5) N INIT (D%(n)),
n = 0mod 2, with (z, y) € R, the tuple (z, y) of brackets is said to be
a correct pair of brackets of u € INIT (D%(n)). All opening brackets not
appearing in a correct pair of brackets of u are called free opening brackets
of u. The structure of a prefix u € INIT (D%) is the word ¢(u), where
@ :T* — {C1, 31} is the monoidhomomorphism defined by () :=C1
if z € T, and by ¢(z) :=31 if z € T+. Note that o(D®) = Dy for
all R C T x T. ‘ '

2. THE AVERAGE MINIMAL PREFIX-LENGTH OF D%

Let Ypret (D™(n)) be the random variable describing the length of the
minimal prefix which has to be read in order to decide whether or not an
input word w € T™ belongs to the language D®(n). Assuming that all words
w € T are equally likely, the general considerations presented in [8] imply
that the s-th moment about the origin of Yp.et (D%(n)) is equal to

E Vet (D7) = Y [(k+1)° = B INIT, (DR(m) [|TI7*. (D)
0<k<n

Thus, we first have to compute an expression for | INITy, (D%(n))|. Since
INIT (D®(n)) = 0 for n = 1mod 2, we have E Yo (D%(n))] = 0 for
odd n. In the sequel, we shall only deal with E [ pret (D%(n))] for even n.

Consider the well-known one-to-one correspondence (e.g. [7], p. 173)
between the Dyckwords w € D1(2n) and the labelled paths from (0, 0) to
(2n, 0) in the diagram drawn in figure 1.

Obviously, the number of prefixes of length &k in D1(2n) is equal to the
number of all paths from (0, 0) to all points (k, 7), 0 < i < min {k, 2n — k}
with (k+4) = Omod2. It is well-known that the number w(k, i) of
paths from (0, 0) to (k, i) is equal to the ballot number O1 (g, 2 (ki)
(31, p. 259), ie.

w0~ (307 0) Gy 0) ®

Such a path corresponds to a word u € INIT(D;(2n)) with %(k—ki)
opening brackets and 3(k —¢) closing brackets. Hence, the number of
correct pairs of w is equal to %(k — 1), and the number of free opening
brackets in v is equal to %(k +14) — 5(k — ). Now, we obtain all prefixes

Informatique théorique et Applications/Theoretical Informatics and Applications



THE GENERALIZED SEMI-DYCKLANGUAGE 549

5-v

4 -

3_

2_.

1._.
T 7T — “—k
1 2 3 4 5 2n—2 2n

Figure 1. — The one-to-one correspondence between Dyckwords in D, of length 2 and the
paths from (0, 0) to (2n, 0). Each segment " and *\ is labelled by “c;” and “3J,”,
respectively. A successive concatenation of the labels of the segments appearing on a path
‘from (0, 0) to (2n, 0) yields a Dyckword of length 2n. For example, the marked path
corresponds to C; T J7 O3 T3 23 23 1 € Dy (8).

u' € INITy (D®(2n)) with the same structure as u by the following
consideration:

— Replace each correct pair of brackets appearing in u by a (z, y) € R
(giving |R|3*~) possibilities);

— Replace each free opening bracket in v by a =z € R; (giving
| Ry |2+0=3(=0 posibilities).
Hence,

| INIT;, (D% (2n)) |

= Y IR R D, ),
0<i<min {k, 2n—k}
k+:=0mod 2

Inserting this expression into (1), we obtain by a straightforward compu-
tation '

E Vet (D7 (20))]

= Y (k4 1) - k]pl gls]

0<k<2n

X Z piq_iw<k, 2i+k—2[§J>,

0<i<min { L%Jx n— L%J}

vel. 30, n° 6, 1996



550 R. KEMP

where p := |R1| |T|™! and ¢ := |R|(|R1| |T|)~}. Since
Ryl < |Te|  and  |W| < |Ril|T5),

we have 0 < p+q < ITEI |T|7*+ |T5| |T|~} = 1. In order to simplify
the last expression for E [Y};, (D%(2n))], we split the sum over £ into two
sums, the first one over k € [0 : n] and the second one over k €]n : 2n|.
Then, both sums are divided again into two parts, one for even k£ and
for odd k. Finally, gathering the terms for ¢* and using (2), the described
procedure ends in the following explicit result.

LemMa 1: Let D® C T* be the generalized semi-Dycklanguage associated
with R, p:= |R1| |T|"  and q .= |R|(|R1| |T|)"L Assummg that all
words in w € T?" are equally likely, the s-th moment E [Y?_.(D®(2n))]
about the origin is given by

EVget(D72n)] = DY & D [+ A+1)° = (k+ )"

0<A<n A<k<n

k+ A kE+ A
NCORGHIE

Remark: Assume that all brackets in T are equally likely and
that the brackets appearing in a word w € T* are independently
chosen from T Obviously, a word w € D™(m) has the probability
Priuw] = [RE™[T|"™ = pi™ g™ Thus, p = |Bi||T|™ (resp.
g=|R|(|R||T|)Y) is the probab111ty that an opening bracket z € R
(resp. closing bracket y € Ry with (z, y) € 2R) has been selected. Note that
| R || Ry|~! is the average quota of closing brackets per opening bracket
in fR.

Now, the prefixes in INIT; (D%(2n)) can be partitioned according to
their structure. There are w(k, ) different structures consisting of 3 (k + 1)
opening and 1 (k — i) closing brackets. As each prefix in INIT}, (D%(2n))
with 3 (k +4) opening and %(k — 1) closing brackets has the probability
pz (B0 gz (=0 — | Ry 1|2 %) | T|=*, we rediscover the above
expression for | INIT, (D®(2n))|. Furthermore, these considerations show
that | INITy (D®(2n))|| T |~* is equal to the sum of the “weights” of all
paths from (0,.0) to the points (k, i), 0 < ¢ < min {k, 2n — k} with
(k+1) = Omod?2, in the grid presented in Figure 1 provided that each
segment " (resp. \,) is additionally labelled by p (resp. q¢). Here, the
weight of a path is the product of the additional labels p and ¢ taken over
all segments appearing on that path.

pref
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THE GENERALIZED SEMI-DYCKLANGUAGE 551

Next, we shall compute an asymptotic equivalent to E [V . (D%(2n))]

for large n.

pref

TheoREM 1: Let D™ C T* be the generalized semi-Dycklanguage
associated with R, p = |R1||T|™! and q = |R|(|R1||T|)"%
Assuming that all words in w € T?" are equally likely, the s-th moment

E[Y et (DR(2n))] has for n — oo the asymptotic equivalent
(1 p(1—p) )}

— [(=1)° 4+ (1 - 2p) P, (———~
1
if p=l-a9<g
" 25 — 2
S ope1_g- ]
if p=1-g=3

E et (D™ (20))] ~ ¢ 2221 s
p.5+1

. 1

if p—l—q>§

1—p s 1 Pq

S P 4 (1 —dpg): Py [ —PL
20 - Ps(l_ )]

4pq
1

+__—_
p(l—-p—q)
L if ptg<l1

Here, Ps(z) denotes the polynomial

P@= > (-U*Fek-2y 2i1_1 (j) (2:> (;) -

0<k<i<i<s

The function F, 4 s(z) is given by

}Fp\q,s(z) = Z (j) 2j—k q'-k, SJ(I) (;) ( 1)L ZI,—l

0<l.<i<j<s

di=
d i—k (h E)”q(z) 91] qk,]S(Z)):

where
Rl () == 27*[1 - (1 - 4pgz)7]*

vol. 30, n°® 6, 1996



552 R. KEMP

and

- k
Uik oy @ As—j{z) l
9pq,s(2) = = par el e P
e da” ((1 - ZIJ) i+l ’ ,r:i [l—(l—'—’lpq’)%]

Here, 87(;) is a Stirling number of the second kind and A () denotes the s-th
Eulerian polynomial ([4], p. 245).
Proof: Starting with the expression in the preceding Lemma, we
immediately find
s R
E [ pref (D (272, + 2))]

= E Vet (D”(2n))]

eata vy - et () - ()]
+ g (204 2)° — (20 + 1)) K ot 1) - (2" " 1)}

n n—1
+ 5 (n) — S1(n) (3)

where

Si(n):=p"* 3" P+ r+j)
0<ALn

()] e

Introducing the numbers
] \ Zl{n+ A / AY ]
Xaps(n)=a" 3" (n A+ 1) 0 [(” * > - (” * 1)]
0<A<n a no n+l, 4
(a, b, s) eERx R x N,
the sums S;(n), j € {1, 2}, can easily be transformed into

Si(n) = p ! Z > (n+A+1)° Kn:;)\> - <Zi/1\)]

0<A<n

. , T A A0
% el ()-G2)
0 n+1, n+ 2
= Xp‘ q.,-s(n) = p—l qXp‘q.,S(n + 1)

n+1l n 9 1)* _
rpaen [(n+1> <n+2)}
+p7z+1 q':7,+l (271—.}—2)3 [(2%4‘1) (271-{—1):‘

n+1) T A\n+2
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THE GENERALIZED SEMI-DYCKLANGUAGE 553

and
_ . _ | {2n + 1) {2n+ 1Y
$2(n) = p7 Xpog o0+ D=p™1 ¢ (20 4 2)° K ) - ( >]
: \ n n—1,
Inserting these alternative expressions for S;(n), j € {1, 2}, into (3) and
using the relation (3) = ( ”;_1) + ( Z:}) we obtain the recurrence
R
E Vet (D7(20 + 2))] ,
=BV et DT+ (1 —q)p " Xpgs(n+1) = Xp,q,5(n)

+-(1 -p)p"q" (2n+1)° [(?) - (nﬁll)]
raen () ()]

: : 17 2n + 23 2n4+ 2\ .
L oondl n4d 2 2)5 )
e (n+)f[<n+1> (n+2)]

with the initial condition E [V} (D%(0))] = 0.
Next, we introduce the generating function

Epgs(2) = 3 E Ve (D™ (20))] "
n>0

Translating the derived recurrence for E{Y (D%(2n))] into terms of
Ep,q,s(2), we find

1 2ny , _
Eps(2) =Y (p@)" (2n)° +1< ) "4 (1 = p) Gpg.s(2)
n>0

d-gp'-
S——l)‘_j— F'p’vqyis.(z)?

where Fy b, 5(2) 1= 3,50 Xa,b,s(n) 2" is the generating function of the
numbers X, 4 s(n) defined in (4) ) and

Ga,sl2) = 12— 3 (20 + 1) (a2)" ‘+ - <2n>

+

<

n>0
(a, s) € R xN.

(%) Note that the function F, 5 s(z) has already been studied in [8], Lemma 1; it can be
represented by the intricate expression given in the theorem.
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554 R. KEMP

Hence,

E [V (DREn))] = 2°p" ¢ (2”) (1= ) (" Gy a(2))

n+1l\n
n 1-— —1'_2
+ <z 3 (_‘i)_P—z Fp,q,s(z)>. 5)

Here, the abbreviation (z";f(z)) denotes the coefficient of z” in the
expansion of f(z) at z = 0.

Now, we have to find asymptotic equivalents to the three quantities
appearing on the right-hand side of equation (5). Computing these
equivalents, we can assume that 0 < p+ ¢ < 1.

(a) By Stirling’s approximation (e.g. [9], p. 111) we immediately obtain

27" ¢ ( r?> ~7722°(d4pg)" n*7:,  nm—oo. ()

(b) The coefficient (2"; G, s(z)) is the number

s 1 (2
Zas(n):= Y (2k+1) a‘k—H(k)

0<k<n

with an already computed asymptotic equivalent in [8], Lemma 2. We have

((20)71 [(~1)* + (1 — 4a)? P (a(1 — 4a)™")]

1
£ 1
i a< 4
7r_§(2s - 1)"1 25+l ps—3
Za,s(n) ~ , 1 7
if a= 7 n — 00,
773 (da — 1)1 2° (4a)" 03
. 1
\ if a> Z

where P;(z) denotes the polynomial introduced in our theorem.
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Since 4pg < (1o+q)2 < 1, only the first two alternatives in (7)
must be considered to obtain an asymptotic equivalent to (1 —p) < 2",
Gpq.s(2) >= (1 — p) Zpy,s(n). We find for n — oo

' 12%;’ (~1)° + (1 — 4pg)} Py (pg(1 — dpg)™)]

1

(1 = p)(2"; Gpg,s(2)) ~ 1 :
213_]01 RN

. 1
if p:qzi
(8)

(c) To compute an asymptotic equivalent to the coefficient
(2" M; p.q,s(2)), we have to consider the function F), , s(2).
As mentloned above, this function has already been investigated in [8],
Lemma 1. Its singularity zp nearest to the origin and therefore its expansion
around zg depends on the choice of p and ¢. The corresponding results are
summarized in the following table:

q 2 expansion F,  s(z) = Ago% ool ( B %>—‘w,\
wa Y, q,s(A)
< % (1-g)p~* s—=A+1 p(l—Zq)(l—q)_('“'+2) s
- % (207" % (25— A+1) p27 G (2) 161t
g % (4p9)™" % @s—A-1)| 2p(4g— 1) (20— )72 276D (25 = 2)! (s = 1)1

If p+¢g =1, we have (1—"")1’1—‘}7}) a.s(z) = F, 4s(z) and we can
apply the theorem of Darboux (e.g. [2, 5, 10]) to the expansions presented
in the above table. For n — oo, we obtain by means of the relation
L(s+3) = i (25)!47% 517! satisfied by the complete gamma function
(e.g- [1])
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556 R. KEMP

(p(1—2¢) (1 —¢) " "n®

1
if g=1l-p< <

2
TTE 250
n (1— R o 1
<zl; (————(ilf)z—l*},,q,s(z)> ~y i g=l-p=g )

w2 p(dg —1)(2q — 1)
x 2° (4pq)" n°" %

1
if =1 -
it q p>2

If p+ g < 1, we have to consider the cases whether the singularity at
z := 1 induced by the factor @f%i is less or greater than zg, or equal
to zg9. For ¢ < %, the assumption zg < Z implies p + ¢ > 1 which is a
contradiction to p 4+ g < 1. For ¢ = %, the same assumption leads to p > %
and therefore to the same contradiction. Finally, for ¢ > %, the assumption
zp < Z implies 4pg > 1 which again is a contradiction because generally the
relation 4pg < (p + q)2 holds. Thus, in all cases, the singularity nearest to

-1
the origin of the function

(1—_(‘1—)_13—:—_2 Fp,q,s(%) is at £ := 1. Therefore,
oM (1 - Q)p_l -z
’ 1-z

Fas@)) ~ (=2 =057 Bt D)
p+g<I, n — 00.

Now, inserting the asymptotic equivalents presented in (6), (8), (9) and
(10) into (5), we obtain the result stated in the theorem. This completes
the proof. O

Choosing s € {1, 2}, the representation of the function Fy ¢ (%)
established in the preceding theorem implies the following explicit
expressions:

Fy o) = Lo VT 200) (VI—Apgz +49 — 1)
P, g1 2qz /1 —4pgz (/T — 4pqz + 2q — 1)?

and

1 —3q+ 4¢%> — zpay — 2°p*az — 2393
2qz(pz + ¢ — 1)°
1—3qg+ 4¢% — zpasz + zzp2a4 + z3p3a5 + 8z%p*q

2gz(pz +q — 1)3 (1 —4pqz) /1 - 4dpqz ’

Fp‘,q,Z(z) =

Informatique théorique et Applications/Theoretical Informatics and Applications



THE GENERALIZED SEMI-DYCKLANGUAGE 557

where a1 = .3q2' —5q+ 3, ay = 49 — 3, a3 = 24q3 — 15q2 +q+ 3,
as = 16¢* + 24¢° — 48¢% + 22¢ + 3 and a5 = 16¢° + 16¢%> — 24¢ — 1.
Using these expressions together with the relations Pij(z) = 1 + 4z and
Py(z) = —1 + 1622, the following result is implied by Theorem 1.

CoroLLARY 1: Let D™ C T* be the generalized semi-Dycklanguage
associated with R, p = |Ri||T|! and ¢ = |R|(|R1||T|)7
Assuming that all words in w € T?" are equally likely, the average minimal
prefix-length is asymptotically given by

1
((1-2p)7" if p=1-q<;
1 1 1
' 4n72n2 if p=1—q=§
[E{Ypref (Dm(zn))] ~e 5 . 1:7M— 0
2p—1V)p~*n if p=1—q>§
| Vitapg+2p-1 .
Pq+ °p if p+g<1

\ 2p(1-p—q)
The asymptotical behaviour of the variance
0* (Yoret (D™(20))) := E [Viret (D*(20))] = (E [Yowet (D™ (20))))°
is described by
(4p(1—p) (1 —2p)7°
1
. -1 1
| it p g < 5
16(97) 2 n2
Uz(Ypref (Dm(2n))) ~ 3 if p=1-¢g=
(2p—-1)(1—p)p*n’
. 1
if p=1—¢> 5
(v(p,q)  if ptg<l1

, N — 00,

where

20— 1) (1 =p+p* + pg)
2p% (1—p — q)’
L1 3p +3p® — pg + 4p*q — 4p°q — 4’
2p2(1—p—q)° VI —4pq '

v(p, q): =
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558 R. KEMP

The first few numerical values for
E [Vpret (D™(20))]  and o (Ypret (D”'(20)))

are summarized in Table 1. For example, consider the generalized semi-
Dycklanguage D? with

R:={C1,C2, C3, T4, Ce} x {J1, D2} U{C3, Cs, Ce}
x {3J3, T4} U {(C1, Td3), (C2, Ja)}-

We find |T'| =10, |R1| =6 and |R| = 18, and therefore p = 0.6 and
g = 0.3. An inspection of table 1 shows that we have to read ~ 6.07625
[= 2 (1 + /7)] brackets in order to decide whether or not a word w € 72"
belongs to D®(2n), n — co, on the average. The variance is ~ 63.6976
[= & (329 + 179/7)).

We conclude this note by discussing some interesting consequences implied
by the preceding corollary.

(@) If T is not the smallest alphabet for D™, we have the inequality
|Ri| + |R2| < |T| and therefore the relation

_ IR+ R | By + | %]

ptaqg= < <1
| Ry | | T | Bi|([R1] + | Rz |)

because |R| < |Ri||Rz|. In that case, the fourth alternative in the
relations presented in Corollary 1 implies that we only have to read a
minimal prefix of length ~ —-—m = 0(1), n — oo, to decide
whether or not an input word w € T?" belongs to D%(2n), on the average;
the variance is also bounded by a constant, namely v(p, q).

(b) If T is the smallest alphabet for D%, we have Ry = T and Ry = T4
and therefore |7T| = |R1| + | R2|. In that case, the relation p+ ¢ < 1 is
equivalent to |R| < |R1| | R2| = |T| | T5].

(b1) If R is not maximal, ie., 8 C T x T4, the fourth alternative
appearing in the above corollary implies again that a prefix of minimal
length ~ 7% = ©(1), n — oo, has to be read, on the average; the
variance is bounded by the constant v(p, q).

®2) If R is maximal, ie, R = T x T, the situation changes
completely. A

G2.DIf p < % ie, |Tc| < |T4]|, the first alternative in the
relations of the preceding corollary implies that we only have to read

Informatique théorique et Applications/Theoretical Informatics and Applications



THE GENERALIZED SEMI-DYCKLANGUAGE

559

vol. 30, n° 6, 1996

q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 n
011 10 T.1237 | L1369 | 1.1507 | 11652 | 1.1803 | L.1963 | 1.2132 | L2311 1.2500
: 11237 4 org369 | aso7 | 11652 | 1803 | 11963 | 1.2132 | 1.2311 | 1.2500
0.1651 | 02107 | 0.2608 | 0.3161 | 037713 | 044564 | 0.5214 | 0.6067 | 0.7031
0.1651 | 0.2107 | 0.2608 | 0.3161 | 0.3773 | 0.4454 | 0.5214 | 0.6068 | 0.7031
100 || T-T237 | LI360 | L1507 [ T.1652 | 11803 | L.1UG3 | 12132 | L2311 1.2500
£0237 | 14360 | 14507 | 1.4652 | 11803 | 1.1963 | 1.2132 | (.2311 | 1.2500
0.1651 | 02107 | 0.2608 | 03161 | 0373 | 0.4454 | 0.5214 | 0.6063 | 0.7031
0.1651 | 0.2107 | 0.2608 | 0.3161 | 0.3773 | 0.4454 | 0.5214 | 0.6068 | 0.7031
021 10 12327 | 1.3188 | 1.3590 | 1.4039 | L4530 | 1.5138 | 1.3827 | 1.6652
-z 1.2827 | 1.3188 | 1.3589 | 1.4039 | 1.4550 | 1.5139 | 1.5831 | 1.6667
04327 | 05789 | 0.7593 | 00860 | 12:r1 | 16604 | 2.1783 | 2.8993
0.4327 | 0.5789 | 0.7593 | 0.9862 | 1.2780 | 1.6643 | 2.1952 | 2.9630
100 || 12827 | L3188 [ 13500 | 1.4039 | 1.4550 | 1.5139 | 1.5831 | 1.6667
1.2827 | 1.3188 | 1.3590 | 1.4039 | 1.4550 | 1.5139 | 1.5831 | 1.6667
04327 | 05780 | 0.7593 | 09862 | 12780 | 1.6643 | 2.1952 | 2.9630
0.4327 | 0.5789 | 0.7593 | 0.9862 | 1.2780 | 1.6643 | 2.1952 | 2.9630
031 10 14047 | 15726 | 1.6665 | L7834 | 10343 | 2.1385 | 2.4292
- 14947 | 1.5726 | 1.6667 | 1.7840 | 1.9371 | 2.1525 | 2.5000
0.8866 | L2634 | 1.8017 | 2.6093 | 3.8880 | 6.0174 | 9.6917
0.8868 | 1.2642 | 1.8056 | 2.6293 | 3.9961 | 6.6036 | 13.125
100 || L4947 715726 | 16667 | 1.7840 | 1.9371 | 21525 | 25000
1.4947 | 1.5726 | 1.6667 | 1.7840 | 1.9371 | 2.1525 | 2.5000
0.8368 | [.2642 | 1.8056 | 2.6293 | 3.9961 | 6.6036 | 13.125
0.8868 | 1.2642 | 1.8056 | 2.6293 | 3.9961 | 6.6036 | 13.125
041 10 17911 | 19510 | 2.1672 | 2.4792 | 2.9656 | 3.7834
: 1.7913 | 1.9519 | 2.1713 | 2.5000 | 3.0902 | 5.0000
17041 | 2.6439 | 4.2419 | 7.1784 | 12.913 | 24.332
(7097 | 2.6685 | 4.8666 | 7.9167 | 18.262 | 120.00
100 || L7913 | L9519 | 21713 | 25000 | 3.0902 | 4.9952
1.7913 | 1.9519 | 2.1713 | 2.5000 | 5.0902 | 5.0000
17007 | 2.6685 | 4.3666 | 7.9167 | 18.262 [ I117.79
1.7097 | 2.6685 | 4.3666 | 7.9167 | 18.262 | 120.00
051 10 2.2326 | 2.5678 | 3.0015 | 3.9969 | 5.7206
: 2.2361 | 2.5820 | 3.1623 | 4.4721 | 7.1365
32722 | 56383 | 10.378 | 20.503 | 41.825
3.3541 | 6.0246 | 12.649 | 40.249 | 95.153
100 || 22361 | 23820 731623 | 44721 | 20764
2.2361 | 2.5820 | 3.1623 | 4.4721 | 22.568
33541 | 60246 | 12.649 | 40.249 | 2251.0
3.3541 | 6.0246 | 12.649 | 40.249 | 3009.0
06 1 10 2.9429 | 3.6796 | 5.0257 | 7.1867
: 2.9772 | 3.8380 | 6.0763 | 5.5556
6.3708 | 12.130 | 24.610 | 49.738
7.1900 | 16.589 | 63.698 | 61.728
100 || 29772 {38380 | 60763 | 58331
- 2.9772 | 3.8380 | 6.0763 | 55.556
71700 | 16.580 | 63.697 | 5799.2
7.1900 | 16.589 | 63.698 | 6172.8
07 | 10 T1790 | 5.8687 | 9.4235
: 4.4590 | 7.5952 | 8.1633
12104 | 23.773 | 43.115
18.973 1| 79.371 | 49.979
100 | 44590 [ 75952 | 82.008
4.4590 | 7.5952 | 81.633
13973 | 79.368 | 4%88.3
18.973 | 79.371 | 4997.9
- 6.4707 | 10416
081 10 || §'9p39 | 9 5750
19614 | 28.234
100 ‘;75533 %Z?gg Table 1. Exact [in roman] and asymptotical values [in
$.9039 | 93.750 italics] for IE[Ypef(D¥(2n))] and az(Ypref(D*(Zn))),
$7.223 1 2014.6 R j® 2
87.236 | 2929.7 (n,p,q) == (n, T _LJ_|R.!|T|) € {10,100} x {0.1,...,0.9}*.
0.9 10 910;,3;;2 For each (p,n), the first two lines refer to the expected
12.708 value and the second two lines to the variance.
12.193
99,760
100 4 yg 755
1224.2
t 1219.3
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a minimal prefix of length ~ {72 FHEL = ©(1), n — oo, to decide

whether or not an input word w € T%" belongs to DX(2n), on the average.
Note that %%%—{ < |T|. The variance has the asymptotical behaviour
C

1T+ T
~ 4| T | | T5 | s < ,n — 0.
b2.2)If p = 3, ie, [Tc| = |To]|, the second alternative

established in Corollary 1 shows that a prefix of minimal length

~A4TTin: = @(né), n — 00, has to be read, on the average. In this
case, the variance is asymptotically given by ~ 16 (9‘7r)'_§ n:, m — oo.

b23)If p > %, i.e., |Tc| > |T+|, the third alternative appearing

in the precedmg corollary implies that a prefix of minimal length

~(1-— %Jp)n =0O(n), n — oo, has to be read, on the average; the

variance is asymptotically equal to ~ }%} ( }’T I) (1+ E?I )2 2
2

| -3 (1 + V17),
Le., }%} ~ 0.640388... Thus, this factor is less than or equal to
(107 + 51 V/17) ~ 0.619684 ...

Considering the semi-Dycklanguage D with k types of brackets over its
smallest alphabet, we have to read a minimal prefix

— of average length ~ 47~ 3 n2 if k = 1 [Case (b2.2)],
and
— of average length ~ 2 ,‘—"—1 if kK > 2 [Case (bl)]

to decide whether or not a given word w € T?" belongs to D%(2n),n — co.
In the former case, the variance is asymptotically given by ~ 16 (9m)"2 n,

n — o0, and in the latter case by ~ v (%, o) = 2(k + 1) n — 00.

( ’\ 1 )3 s
Note that the former result (k = 1) has already been proved i in [8] 4).

Considering the generalized semi-Dycklanguage D™ with
R:={(C, 201)|1<i<k}

over its smallest alphabet, we again have to read a minimal prefix of average
1 1

length ~ 47~ 2n2 if k =1, n — oo [Case (b2.2)]. For k£ > 2, the average

minimal prefix-length is asymptotically given by ~ (1 — ,\i) n, N — 00

() The result for k = 1 answers a question mooted by J. Berstel while he visits the department
of computer science at the Johann Wolfgang Goethe-Universitat Frankfurt am Main in January,
1992.
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[Case (b2.3)]. In the former case, the asympt0t1cal behaviour of the variance
1 ¢
is~ 16(9m) 2 n> and in the latter case ~ ¢ (1 - —) (1 + )2 n2, n — oo.
For the generalized semi-Dycklanguage Dm with

R:={(C1, J)|1<i<k}

over its smallest alphabet we again have to read a minimal prefix of average
length ~ 47~ ingifk = 1, n — oo [Case (b2.2)}. For k > 2, the minimal

prefix-length is asymptotically given by H%, n — 00, on the average

[Case (b2.1)]. The variance is asymptotically given by ~ 16 (9 7r)_§ ns for
k =1, and by ~ 4k (Ifjf)f* for k > 2, n — .
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