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EFFICIENT STRING MATCHING ON PACKED TEXTS (*)

by D. BrESLAUER T () and Leszek Gasenec ¥ (%)

Communicated by F. FicH

Abstract. — The so called “four Russians technique” is often used to speed up algorithms by
packing several data items in a single memory cell. Given a sequence of n symbols over a constant
size alphabet, one can pack the sequence into O (n/)\) memory cells in O (log A) time using
n/log X processors, where A is the number of symbols packed into one memory word.

Given a pattern of length m and a text of length n, this paper presents an efficient CRCW-PRAM
string-matching algorithm for packed strings that takes O (log log (m/A)) time and performs
O (n/X) operations for A = O (log n), an improvement by a factor of A on the number of
operations used in previous algorithms. Using this string-matching algorithm one can test if a
string is square-free and find all palindromes in a string in O (log log n) time using n/log log n
processors.

Résumé. — La « technique des quatre russes » est souvent utilisé pour accélérer des algorithmes
en codant plusieurs données dans une seule cellule mémoire. On peut coder un mot de n caractéres
provenant d’un alphabet de taille constante par une séquence de O (/) cellules mémoires en
O (log A\) unités de temps avec n/log A processeurs o A représente le nombre de symboles
contenus dans une cellule mémoire.

Cet article présente un nouvel algorithme pour retrouver un mot de longueur m dans un texte
codé de longueur n. L’algorithme nécessite seulement O (log log (m /X)) unités de temps avec
O (n/X) opérations en tout. Ce résultat représente une réduction du nombre d’opérations par un
Jacteur A = O (log m) par rapport aux algorithmes connus. Notre algorithme peut étre utilisé pour
tester si un mot est sans carré et pour trouver les palindromes dans un mot de longueur 1 en temps
O (log log 1) avec n/log log n processeurs.
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522 D. BRESLAUER, L. GASIENIEC
1. INTRODUCTION

In the string-matching problem one is searching for occurrences of a pattern
string P [1..m] in a text string 7 [1..n]. There exist several O (n + m) time
sequential string-matching algorithms that are used in a large variety of
applications. All these algorithms are asymptotically optimal from the trivial
Q (n + m) lower bound for the string matching problem. Galil {24] published
the first efficient parallel string-matching algorithm. His algorithm takes
O (log m) time and uses n processors in the concurrent-read concurrent-write
parailel random-access-machine model. If the symbols of the input strings are
taken from a constant size alphabet, then the number of processors is reduced
to n/log m, achieving an optimal speedup, or in other words achieving a
time-processor product that is equal to the sequential time complexity of the
problem. (Notice that there is a trivial constant time parallel string-matching
algorithm that uses nm processors. Our goal is to design fast parallel
algorithms that use few processors.). The saving is obtained by using the so
called “four Russians technique”, named after the work of Arlazarov et al.
[8], where each block of O (log m) symbols is packed into a single memory
cell to facilitate comparisons of many symbols in a single operation.

Vishkin [39] generalized Galil’s algorithm and obtained an O (log m) time
algorithm that uses only n/log m processors, regardless of the alphabet
size. Breslauer and Galil [11] gave an O (log log m) time string-matching
algorithm that uses n/ log log m processors. Breslauer and Galil [12] proved
that if n = O (m), then this is the best time bound achievable by an optimal-
speedup string-matching algorithm that has access to the input strings only
by pairwise symbol comparisons. The lower bound was later generalized by
Breslauer and Galil [13] to other string problems like finding all periods and
initial palindromes of a given string. Recently Breslauer ez al. [10] showed
that lower bound €2 (log log m) holds also for bounded but extremely large
size alphabets.

Vishkin [40] presented an optimal-speedup string-matching algorithm that
takes O (log” m) time for the pattern preprocessing and then only O (log* m)
time to find all occurrences of the pattern in the text. Galil [25] improved the
text processing step to constant time. Goldberg and Zwick [27] presented an
algorithm with a tradeoff between the time spent in the pattern preprocessing
and the text processing steps. Recently, Crochemore et al. [17] discovered an
algorithm that takes O (log log m) time to preprocess the pattern and then
constant time to find all occurrences of the pattern in the text. Crochemore
et al. also gave a randomized version of their pattern preprocessing algorithm
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EFFICIENT STRING MATCHING ON PACKED TEXTS 523

that takes only constant expected time. These algorithms access the input
strings by pairwise symbol comparisons and do not require any special
assumption on the alphabet size.

This paper gives a variant of Breslauer and Galil’s [11] string-matching
algorithm that takes O (log log (m/))) time and performs only O (n/X)
operations, after the input strings are packed in O (n/)) memory cells. The
parameter A = O (log n). The input symbols, which are assumed to be taken
from a constant size alphabet, are packed in O (log \) time using 7/ log A
processors. Notice that the packing step dominates the number of operations
performed. Thus the new algorithm is inferior to be previously known
parallel string-matching algorithms since it has the additional restriction on
the alphabet size. However, the advantages of the algorithm become clear if
the input strings are given in their packed form.

Apostolico, Breslauer and Galil gave efficient parallel algorithms for
testing if a string is square-free and for finding all palindromes in a string
[4, 5, 6]. Their algorithms share a similar structure, take O (log log n) time
utilizing n log n/log log n processors, and rely on a procedure that is
used to solve several string-matching problems. Observing that it suffices
to pack the input string only once and use the packed string as input
to many string-matching problem instances, we improve the processor
bounds of these algorithms and obtain optimal-speedup O (log log n) time
n/ log log n-processor algorithms for the two problems. We assume that
the reader is familiar with these algorithms and with the Breslauer-Galil
string-matching algorithm.

The paper is organized as follows. Section 2 introduces the computation
model. Section 3 describes how to pack the input strings and how the packed
strings are manipulated. The string-matching algorithm is given is Section 4
and its applications for testing if a string is square-free and for finding all
palindromes in a string are given in Section 5. Concluding remarks and open
problems are given in Section 6.

2. THE COMPUTATION MODEL

The computation model we use in this paper is the common concurrent-read
concurrent-write parallel random-access-machine. In this model, processors
are allowed to read and write simultaneously at the same memory location.
If many processors write to the same memory cell at the same time they
are guaranteed to write the same value. The arithmetic operations +, —, X,
and integer division / can be performed by each processor in constant time
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524 D. BRESLAUER, L. GASIENIEC

on any memory words. Notice that the memory words must be able to hold
numbers which are as large as the lengths of the input strings.

The following lemma is often used in parallel algorithms. The claimed
bounds hold also in the weaker exclusive-read exclusive-write parallel
random-access-machine model.

Lemma 2.1 (Ladner and Fischer [30]): Given a sequence x1, ..., xp,
and an associative binary operation @, one can compute the prefix sums
1@ T2®--- Dy, forall g=1, ..., h, in O (log h) time using h/log h
Processors.

In the CRCW-PRAM model, certain computations can be carried out
much faster.

Lemma 2.2 (Fich, Ragde and Wigderson [21]): Given a collection of h
integers from the range 1,..., h, it is possible to find their minimum in
constant time using an h-processor CRCW-PRAM.

The last lemma will be used mainly to find the leftmost non-zero entry
in an array. We shall also use the following general theorem without going
into the details of the assignment of processors to their tasks.

THEOREM 2.3 (Brent [9]): Any parallel algorithm that runs in time t
and consists of a total of x elementary operations can be implemented on
p processors in O ([z/p] + 1) time.

3. PACKING STRINGS

Throughout the paper we assume that the input alphabet is
X={0,1,...,c—1},

for some fixed positive constant ¢. Since the memory words in our model
are able to store mumbers as large as n, where n is the length of the string
S [1..n] being packed, we could represent at least |log,. n] symbols in each
memory words as a number in base ¢ that has the symbols as its digits.
The new string-matching algorithm takes advantage of the packed
representation of strings in two ways: fast comparison of blocks of several
symbols and table lookup of precomputed information. While the first use
would benefit from packing as many symbols as possible in each memory
word, the second might require a substantial use of computational resources
(time, processors, space) to compute and store the tables. The balance is
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EFFICIENT STRING MATCHING ON PACKED TEXTS 525

achieved by packing only A = max (1, L% log,. n|) symbols in each word.
The parameters ¢ and A will be used throughout the paper.

Given a string S [1..n], we break the string into consecutive blocks of A
symbols and pack each block into a memory word. Thus, a string of length n
is packed into a sequence of [n/A] memory words. We shall continue to
refer to the symbols, the indices and the length of the original string, using
the packed representation only when we wish to compare substrings fast
or when we wish to look up some information that we have precomputed
for the packed strings.

To manipulate the packed strings efficiently we extend the repertoire
of operations supported by our model to include the powers ¢, for
h =0, ..., A, and to support the modulo operation. The modulo operation
can be implemented as amodb = a — b * |a/b], and the powers ¢" are
implemented by a table lookup.

Lemma 3.1: Given a string S [1..n] over a constant size alphabet, one can
pack the string into O (n/\) memory words in O (log A) = O (log log n)
time using n/log A = O (n/log log n) processors.

Proof: The packing consists of the string representation as a sequence of
base ¢ numbers together with some lookup tables. Most of these tables are
described only later at the place where they are used, but their creation takes
place when the string S [1..n] is being packed and they are considered part
of the packed representation.

The table of powers of ¢ mentioned above is precomputer by Lemma 2.1 in
O (log A) time performing O () operations. It occupies O () space. Notice
that the power table and other tables that are described later depend only
on the parameters ¢ and A. The size of each table will not exceed O (n/\)
and the time to create each table will not exceed O (log \) performing at
most O (n) operations.

The string representation is created by packing each consecutive block of
symbols S[g], ..., S[g+ A — 1], as a base ¢ number

Slgl+Slg+1xc+--+Sg+A—1]x M1

By Lemma 2.1, this computation is done in O (log A) time performing O (\)
operations. Since all the [n/\] A-blocks are packed simultancously, the
packing takes O (log A) time performing O (n) operations. By Theorem 2.3,
the whole packing step takes O (log A) time using n/log A processors. [
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Using the packed representation, we can save a factor of A in the number
of operations needed to compare two strings.

LemMa 3.2: It is possible to compare two packed strings of original length
[ and to find the position of the first mismatch between them if they are not
equal, in constant time and O ([l/)\]) operations.

Proof: The algorithm uses a precomputed table CMP g, 13] that gives
the position of the first mismatch between the strings & and b. We use
the notation & and b to refer to both the integers that represent A symbols
and to the string formed by these symbols. The size of the CMP table
is O (c**) < O(n/)) and it can be computed in constant time performing
O (c** x X\) < O (n) operations. We describe how the computation of this
table is carried out. The computation of the other tables that are mentioned
later is similar and will not be described in such detail.

Each entry of the table CMTP [a, i)] is computed independently and
simultaneously by A processors. Notice that if symbols are indexed from 1
to A, then the k™ symbol of 4 is given by the formula: Ld/ ck“lj mod c.
The symbols of 4 and b are extracted from the integer representation of
these strings and the corresponding symbols are compared simultaneously.
The position of the first mismatch is found by Lemma 2.2 in constant time
performing O ()\) operations, and is assigned to CMP [a, b].

Observe that the strings being compared might be specified by indices
in some longer packed strings. Thus, their packed representations do not
necessarily start on the boundaries of the memory words. Therefore, the
algorithm first extracts proper [I[/A] words that constitute the packed
representation of each of the two strings. Notice that the packed representation
of the substring of length X starting at position k& > 2 of the string packed
as @ followed by b is given as: la/c=1 + M F x (bmod F—1).

The algorithm then compares the extracted packed representations and
finds the leftmost packed words where the strings disagree in constant time
and O ([I/\]) operations by Lemma 2.2. Then, using the table CMP it finds
the actual symbol within this memory words where the strings disagree. [

4. STRING MATCHING WITH PACKED STRINGS
In this section we describe an algorithm that finds all occurrences of a
pattern P [1..m] in a text 7 [1..n]. The input strings are assumed to be

given in their packed form with the packing parameter A. The algorithm

Informatique théorique et Applications/Theoretical Informatics and Applications



EFFICIENT STRING MATCHING ON PACKED TEXTS 527

takes O (log log (m/A)) time and performs O ([n/A]) operations. If the
strings are not already packed, one can pack them as the single string
Sl.n+m] = P{l.m|T [1L.n].

Observe that for any text position ¢, 1 < ¢ < n —m + 1, where there is
no occurrence of the pattern, there must be at least one text position W ,
such that 7 [W/7| # P [WF — t + 1]. The position W/ is called a witness
for the non-occurrence of the pattern at text position ¢.

The output of the string-matching problem consists of a length n boolean
vector whose entries indicate if there is an occurrence of the pattern starting
at each of the corresponding text positions. This boolean vector will be
packed the same way as the input strings, with the same parameter A, and
the alphabet symbols 1 and 0. In addition to the boolean vector the algorithm
provides witnesses for the non-occurrences of the pattern. Notice that since
our algorithm performs only O ([n/A]) operations it is not possible to list
all witnesses as in other string-matching algorithms.

The main idea in the new string-matching algorithm is that the witnesses
are given implicitly where any specific witnesses can be computed from the
output of the algorithm by a single processor in constant time whenever
needed. The algorithm is otherwise similar to the parallel string-matching
algorithm of Breslauer and Galil [11] with certain modifications that allow
it to take advantage of packed strings in order to match short patterns by
table lookup.

THEOREM 4.1: The string-matching problem with packed strings is solved
in O (log log (m/\)) time performing O ([n/X]) operations and using
O([n/X]) space.

We outline the structure of the algorithm next. Initially, there are n—m+1
text positions at which an occurrence of the pattern might start. These
positions are called potential occurrences. Using Lemma 3.2, one can verify
in constant time, performing O ([m/\]) operations if any given potential
occurrence is a real occurrence. However, verifying all O (n) potential
occurrences this way is too costly if the pattern is long. The strategy followed
by most efficient parallel string-matching algorithms first eliminates many
potential occurrences and then verifies which of the remaining potential
occurrences are real occurrences.

DErFINITION 4.2: A string S [1..k] has a period of length p if
S[i] =S+ p, for i=1,---,k—p.
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The shortest non-zero period length of a string S [1..k] is called the period
length of S[1..k]. Denote by 7 the period length of the pattern P [1..m]. If
p is not a period length of the pattern P [1..m], then there must exist some
pattern position WY, such that P [W]'] # P [W],’ — p]. The positions W],D
are called witnesses for non-periods of the pattern. Notice that the witnesses

WIZJ are defined for all p =1, ..., 7 — 1.

Vishkin [39] suggested the duel method to eliminate potential occurrences
efficiently. His method, which is described next, has been used in all efficient
parallel string-matching algorithms afterwards as well as in sequential and
parallel two-dimensional matching algorithms {1, 14, 18, 26]. The idea
in duels is that if there are two potential occurrence of the pattern at
positions p and ¢ of the text, such that 0 < ¢ — p < m, then since
P [WZ’_I,] #P [Wf_p — (g — p)], the text symbol 7 [p + Wf_p — 1] can not
be equal to P[W,” ] and to P W], — (q — p)]. Therefore, text position
P+ Wf_p — 1 must be a witness for the non-occurrence of the pattern at text
position p or at text position ¢ (possibly at both positions) and the algorithm
can eliminate one of the potential occurrences at p or ¢ by making a single
pairwise symbol comparison.

Observe that if the pattern occurs at positions p and ¢ of the text, such that
0 < ¢ —p < m, then it has a period of length ¢ — p and therefore 7 < ¢ — p.
Thus, there can be no more than n/m occurrences of the pattern in the text.
Using duels, it is possible to eliminate efficiently potential occurrences that
are close to each other, leaving at most n/7 potential occurrences. Still,
there might be too many occurrences to verify separately if the period length
7 is much smaller than the pattern length. In this case the algorithm must
follow a different strategy. The algorithm proceeds in few steps:

1. If the pattern length m < 2 A, then the string-matching problem is solved
by table lookup as described in Lemma 4.3.

2. If the pattern length m > 2 A, then the pattern preprocessing step described
in Section 4.2 is invoked. It finds the period length of the pattern, 7, and
the witnesses W],) .

(a) If the pattern is found to be non-periodic, namely, if m < 2, then the
algorithms finds the occurrences of the pattern directly, as described
in Lemma 4.7.

(b) If the pattern is periodic, namely, if m > 2=, then the algorithm only
searches for occurrences of the non-periodic pattern prefix P [1..2 7.
This is done as described in Lemma 4.3 if this pattern prefix is short
or as described in Lemma 4.7 if it is long.
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The algorithm then reconstructs from the occurrences of this pattern
prefix and by matching some short pattern suffix, the occurrences of
the complete pattern as described in Lemma 4.5.

In the description below we show how the algorithm computes the
witnesses Wf for non-periods of the pattern. We do not specify exactly
how the witnesses W,T for non-occurrences of the pattern can be computed
since their computation is similar to the pattern witnesses and they can be
easily reconstructed by tracing the steps of the algorithm.

4.1. Text processing

The saving in the number of processors used by the algorithm is achieved
mainly by matching short patterns by table lookup.

LemMa 4.3: One can find all occurrences of the pattern P [1..m), such that
m < dX, for some fixed constant d > 1, in the text T [1..n), in constant time
performing O ([n/X]) operations and using O ([n/A]) space.

Proof: We show how the pattern occurrences can be found performing
a constant number of operations when the text length n = m + A — 1. If
the text is longer, then the same procedure is applied simultaneously in
overlapping text blocks of length m + A — 1, which start A positions apart,
performing O ([n/A]) operations.

The algorithm precomputes the lookup table SM ,[tﬁl, t2, P, [] that gives
the answer to the string matching problem with the pattern p of length [,
1 <1 < ) in the text of length { + A — 1 that is packed in {1 and 3. The
SM table provides the packed boolean vector representing all occurrences
together with witnesses for all non-occurrences that are represented in an
array of size \. This table requires O (c** \?) space.

If the pattern is a longer string that is packed as P 1. m] PPy '75d,
(d—1)A —m < dX, and the text is packed as 7 = 73 T3 --- Ty41, then
the algorithm solves the string-matching problem by d table lookups. This
is done by observing that there is an occurrence of the pattern at position
g of the text 7, 1 < g < )\, if and only if there are occurrences of P; at
position ¢ of TT+1, for all i = 1, ..., d (P;’s have length A except for
75(1 that might be shorter).

The packed boolean vector representing all occurrences is computed by
masking the packed representation of the solutions to the d smaller string-
matching problems. This can be done efficiently by precomputing the lookup
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table MASK [&, b] that gives the packed boolean vector that represents
the occurrences that are represented in both boolean vectors @ and b. The
witnesses for the non-occurrences will not be combined and when there is a
need for a specific witness it can be found in constant time by looking it up
in the output of the d smaller string-matching problems sequentially. [J

4.1.1. Periodic patterns

In this section we describe how the string-matching algorithm deals with
long periodic patterns. Namely m > max (2 A, 27). As mentioned above,
in this case the general strategy of eliminating potential occurrences and
verifying the remaining ones is too costly since there might be too many real
occurrences. The algorithm searches only for occurrences of the pattern prefix
P [1..2 x], which is non-periodic by the following lemma, and then finds the
occurrences of the whole pattern by “counting” consecutive occurrences of
this prefix. Recall that the occurrences of P [1..2 7] are found by Lemma 4.3,
if 7 < ), and by Lemma 4.7 otherwise.

LemMMA 4.4 (Lyndon and Schutzenberger [31]): If a string of length k has
two periods of lengths p and q and p + q < k, then it also has a period
of length ged (p, q).

Breslaver and Galil [11] suggested the following method to find
occurrences of the full pattern given the occurrences of the pattern prefix
P [1..2w]. Assume without loss of generality that the text length n < 3m/2.
Call an occurrence of the pattern prefix P [1..2 7] at text position ¢ an initial
occurrence if there is no occurrence of this prefix at position ¢ — 7 and a
final occurrence if there is no occurrence of this prefix at position z + 7. Let
T be the largest initial occurrence in the first m/2 positions of the pattern
and let F be the smallest final occurrence that is larger than Z. It is not
difficult to verify that the only occurrences of the pattern prefix P [1..2 ]
that are occurrences also of the entire pattern are those between positions
Z and F — 7 x (|m/m] — 3) and possibly also the occurrence at position
F —m* (|m/m| — 2) if there is an occurrence of the pattern prefix P [1..],
l =m— 7« |m/mr], at position F + 2r .

Lemma 4.5: Given the occurrences of the pattern prefix P [1..2 «| in the text
T [1..n], it is possible to find the occurrences of the entire pattern in constant
time performing O (n/\) operations and using O (n/\) space.

Proof: Recall that n < 3m/2. If the pattern period 7 < A, then the
initial and final occurrences are found by the lookup tables ZAN'Z7 [#1, 2, 7]
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and FIN ALI[ty, ta, 7] that give for the boolean vectors t1 and iy that
represent the occurrences of the pattern prefix P [1..2 7], the boolean vectors
representing only the initial or final occurrences, respectively. If the pattern
period 7w > A, then the occurrences of the pattern prefix P [1..2 7] must be
spread at least 7 positions apart from each other and the initial and final
occurrences are found by examining for each occurrence of the pattern prefix
P [1..27] if there is an occurrence 7 position before and after it. In both
cases the initial and final occurrences can be clearly found in constant time
and O (n/)\) operations.

The important initial and final occurences Z and F are then found similarly
to Lemma 3.2. Using 7 and F and after verifying if there is an occurrence
of the pattern prefix P[1..l], | = m — 7 x |m/x], at position F + 2,
by Lemma 3.2, the algorithm knows which occurrences of the pattern prefix
P [1..2 ] are actually occurrences of the whole pattern. Notice that the output
boolean vector representing the occurrences of the pattern can be created
efficiently since these occurrences are a contiguous subset of the occurrences
of the pattern prefix P [1..2 7). Thus, the whole computation takes constant
time, performs O (n/)\) operations and uses O (n/\) space. O

4.1.2. Non-periodic patterns

In this section we describe how the string-matching algorithm deals with
long non-periodic patterns. Namely 2 A < m < 27 and therefore m > A.

Lemma 4.6: If the pattern P [1..m] has period length m > ), then it
contains a substring P [z..z + 2 X — 1], called a synchronizing block, with
period length that is at least A.

Proof: Recall that m > 2 A. Let 7 be the period length of the pattern prefix
P[1..2A]. If # > A, then this prefix is the required substring. Otherwise, let
P [1..1] be the longest prefix of the pattern whose period. length is 7. By
Lemma 4.4, the period length of P {l —2 X+ 2..[] is also 7 and the period
length of Pl —2A+ 2.1+ 1] is at least A. O

The pattern preprocessing described in the next section computes the
period length of the pattern, the witnesses Wf and a synchronizing block
which are used in the next lemma.

LemMA 4.7: The string matching problem with the packed pattern P [1..m]
and text T [1..n], such that 2\ < m < 2, is solved in O (log log (m/)\))
time performing O (n/X) operations and using O (n/)\) space.
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Proof: The algorithm starts eliminating potential occurrences by finding all
occurences of the synchronizing block P [z..z + 2 X — 1] in the text using the
table lookup in Lemma 4.3. Observe that there might be an occurrence of the
pattern at text position ¢ only if there is an occurrence of the synchronizing
block P [z..z + 2 X — 1] at text position g + z — 1. Since the period length
of the synchronizing block is at least A, the remaining potential occurrences
must be spaced at least A positions apart and there can be at most [n/A]
potential occurrences left. Namely, at most one potential occurrence is left
within each packed word representing the text. The positions of the remaining
potential occurrences are written into an array of size O (n/)\). Notice that
the witnesses for the non-occurrences of the potential occurrences eliminated
in this step are given implicitly by matching the synchronizing block. The
other witnesses that are computed later will be stored explicitly in an array.

The elimination of the remaining potential occurrences continues as
in the algorithm of Breslauer and Galil [11]. Notice that, for technical
reasons, the pattern preprocessing step computes the witnesses WZD , only
for p = 1,..., [m/2].

The algorithm first partitions the text into consecutive blocks of length
A log log (m/)). There are at most log log (m/)) potential occurences left
in each such block. By performing duels, the algorithm eliminate all but at
most one potential occurrence in each block. This takes O (log log (m/A))
time using a single processor per block. The entire computation performs
O (n/\) operations.

The algorithm then partitions the text into blocks of length [m/2] and
proceeds in each block simultancously using m /A log log (m/A) processors
per block. In each block there are at most m/\ log log (m/)\) potential
occurrences left. The algorithm recursively partitions blocks with A potential
occurrences into v/h blocks with v/ potential occurrences, giving vh
processors to handle each block. The recursive step leaves at most one
potential occurrence in each of the v/A blocks. Then, using h processors
for performing duels between all pairs of the remaining /A potential
occurrences in the block, the algorithm eliminates all but one potential
occurrence in the block. The depth of the recursion, which is the time spent,
is O (log log (m/A)).

After the elimination of potential occurrences described above there are
at most O (n/m) potential occurrences left. The algorithm verifies these
potential occurrences to be real occurrences using Lemma 3.2. The entire
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computation takes O (log log (m/A)) time performing O (n/A) operations
and using O (n/\) space. O

4.2, Pattern preprocessing

The pattern preprocessing is invoked only if m > 2 A. It has to find
the period length 7 of the pattern and the witnesses WZ: . For technical
reasons, the pattern preprocessing step computes only the witnesses W/,
forp=1, ..., min ([m/2], = — 1). In addition, if 7 > A, then the pattern
preprocessing step finds also a synchronizing block.

Notice, that if the period length of the pattern = > [m/2], then it is not
computed precisely. In this case the pattern is non-periodic and the period
fength 7 is not used by the algorithm.

Lemma 4.8: The patiern preprocessing step with the packed pattern
Pl1..m), such that m > 2, takes O{loglog (m /X)) time performing O(m/\)
operations and using O(m/X) space.

Proof: The pattern preprocessing step first finds a synchronizing
block and then wuses this block and witnesses that it has already
computed to compute more witnesses in iterations that resemble the next
processing step. The indices p for which the witnesses WZD are not
yet computed are called potential period lengths. The witnesses W?,
p=1,..., min ([m/2], 7 — 1), will be given implicitly, where any specific
witness can be produced from the information computed in constant time
by a single processor.

The pattern preprocessing uses a precomputed lookup table, similarly to
the SM table from Lemma 4.3, that gives the boolean vector representing
the period lengths and the witnesses for the non-periods of a short string. If
the pattern length . < 4 A, then the pattern preprocessing step will be solved
directly by this table lookup (An alternative implementation would match
these short patterns by the table lookup in Lemma 4.3). This would reduce
the size of the lookup table we use here to find the period lengths of short
strings, but would not climinate completely the need for this lookup table,
since this table is still used later to find the period length of the pattern prefix
P {1..2 \]. Thus, from here on we assume that the pattern length m > 4 A.

Our first goal is to find a synchronizing block and to reduce the number
of potential period lengths to O (m/\). Recall the constructive nature of the
proof of Lemma 4.6. Using the precomputed table of period lengths of short
strings, the algorithm finds the period length 7 of the pattern prefix P [1..2 A].
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If # > A, then the algorithm has found the synchronizing block P [1..2 A].
Otherwise, if T < A, the algorithm checks if the whole pattern has period
length #, by Lemma 3.2. If 7 turns out to be the period length of the whole
pattern, then the only information required from the pattern preprocessing
step is this period length m = 7, and the pattern preprocessing is completed.
Otherwise, the synchronizing block P [z..z + 2\ — 1] has been found.

If z+ A —1 > [m/2], then by the construction of the synchronizing block
in Lemma 4.6, the pattern prefix P [1..z + 2 A — 2] has period length 7 and
P[l..24+2X — 1] does not have this period length. Thus, by Lemma 4.4,
full occurrences of the pattern prefix P ([1..2 A]) that start in the first [ /2]
positions of the pattern, start at positions k7 + 1. Matching the pattern
prefix P[1..2A] by Lemma 4.3, one obtains the witnesses W;’ , except
for the multiples p = k#. The position z + 2 A — 1 where the period of
length 7 terminates provides the witness W;’r’ , and since the pattern prefix
P[l..z4+2X —2] has period length #, W} = z+ 2\ — 1, for all the
multiples p = k@, such that 0 < p < [m/2]. Thus, the witnesses WZJ’
can be reconstructed either by matching the pattern prefix P [1..2 )], by
Lemma 4.3, if p is not a multiple of 7, or W;’ = z+ 2 X — 1 otherwise.

If 2+ A —1 < [m/2], then the algorithm finds all occurrences of
the synchronizing block P [z..z +2 A — 1] in the pattern, by Lemma 4.3.
Observe that the witness to the non-occurrence of the synchronizing block at
_pattern position p+ z correspond to the witness WZ’ . The occurrences, which
must be spaced at least A\ positions apart, leave at most O (m/\) potential
period lengths in the first half of the pattern. (This is not completely true. If
[m/2] < z4+2X—1< [m/2] + A, then there can be no occurrences of the
synhcronizing block at positions that are larger than or equal to m — z — 2 A,
However, it is possible to achieve the goal by searching for occurrences
of the pattern prefix P [1..2 A] at position m — z — 2\, ..., [m/2].) The
positions of the remaining potential period lengths are written into an array
and their witnesses will be computed and stored explicitly as we show
next. Observe that when a specific witness is called for, it can be either
reconstructed by matching the synchronizing block again or it will be stored
explicitly in a table.

The computation of the remaining witnesses proceeds in the same
fashion as the string-matching algorithm of Breslaver and Galil [11].
We sketch here only a non-optimal version of the algorithm performing
O (m log log (m/X)/\) operations. The algorithm can be made optimal
similarly to the algorithm of Breslauer and Galil.
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The algorithm proceeds in iterations and maintains the invariant that at the
beginning of iteration number %, there is at most one potential period length
(yet-to-be-computed witness) in each block of length k;, where,

ki =m!™w Azl for i=0,...,loglog (m/)\).

Clearly, the invariant holds at the beginning of iteration number 0, since
the potential period lengths remaining after the first part of the computation
are spaced at least k9 = X positions apart.

At the beginning of iteration number 7, there are at most k;41/k; potential
period length in each block of length k;4;1. The algorithm checks using
Lemma 3.2, which of the potential period lengths in the first k;41 block is a
period length of the pattern prefix P [1..2 k;+1]. Those potential period length
which are eliminated have their witness determined, while the remaining
potential period lengths, if any, are multiples of the shortest remaining period
length, by Lemma 4.4. This computation takes constant time and O (ki4+1/\)
operations for each potential period, or O (k2 11/ki A) = O (m/)) operations
in’ total. ‘

If there are any potential period lengths remaining in the first k; 41 block,
then the algorithm verifies whether the shortest one is the period length of
the whole pattern by Lemma 3.2. If it is found to be the period length then
the computation is complete.

Otherwise, the smallest position at which this periodicity is terminated is
a witness for all multiples of the shortest period in the first k;4; block. Now,
it remains only to eliminate all but at most one potential period length in
each k;11 block, before proceeding to the next iteration.

It is possible to eliminate all but at most one potential period length in each
ki+1 block using duels, since at this point we have the witnesses Wf, for all
p=1, ..., ki+1. The duels, however, are slightly different from those used
in the next processing step, since occurrences might be overhanging: a duel
that has to produce one of the witnesses W/ or W]P, fori < j < [m/2], will
normally produce the witness 7+ W7D ;+1, if it is within the pattern; otherwise
the duel produces the witnesses Wp W73 —j+ior W7’ Wp

The duels are carried out in the same fashlon as in the text processing step.
However, we allow the algorithm to use m/\ log log (m/\) processors. The
duels will take at most O (log log (m/A)) time in the first two iterations
of the pattern preprocessing, after which they take constant time since the
number of remaining potential period lengths will be small enough relatively
to the number of available processors.
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The whole pattern preprocessing step described above takes
O (log log (m/A)) time. The overall number of operations used is O (m/\)
except at the step that verifies if the shortest remaining potential period
length in each iteration is the period length of the whole pattern. This step
uses O (m/X) operations in each iteration and thus O (m log log (m/A)/A)
operations over all iteration. However, this step can be implemented more
economically, performing only O (m/X) operations [I1]. O

S. APPLICATIONS

In this section we present two applications of the string-matching algorithm
described above in reducing the number of processors used in known parallel
algorithms for testing if a string is square-free and for finding all palindromes
in a string. The reduction in the number of processors is achieved since the
input string S[1..n] has to be packed only once while its packed substrings-
are presented several times as input to the string-matching algorithm. Recall
that the input string S [1..n] is packed with the parameter A = O (log n).

5.1. Testing if a string is square-free

A non-empty string of the form zx is called a repetition. A square is
defined as a repetition zx, where z is primitive, or in other words z # v"
for all strings v and integers h > 1. Strings that do not contain any substring
that is a repetition are called repetition-free or square-free. For example
‘aa’, ‘abab’ and ‘baba’ are the repetitions which are contained in the string
‘baababa’. It is not difficult to verify that any string with at least four
symbols over alphabets with two symbols contains a square. However, there
exists infinite length strings on three letter alphabets that are square-free as
shown by Thue [37, 38].

In the sequential setting, algorithms for testing if a string is square-free
and for finding all repetitions in a string were designed by Apostolico and
Preparata [7], Crochemore [15, 16], Kosaraju [29], Main and Lorentz [32, 33]
and Rabin [35]. Main and Lorentz [32] proved that it is possible to find
all repetitions in a string in O (n log n) time using pairwise comparison of
input symbols that test for equality. They have also shown that € (n log n)
equality tests are necessary even to decide if a string is square-free. Main
and Lorentz [33] have shown using the “four Russians technique” that if
the input alphabet has constant size, then it is possible to test if a string is
square-free in O (n) time. The same bound was obtained by Crochemore
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[16} using a different method. Notice that it is not possible to list all squares
in O (n) time since there might be too many squares [2, 15].

In the parallel setting, Crochemore and Rytter [19, 20] test if a string
is square-free in O (log n) time using n processors and O (n!*) space.
Apostolico [3] designed an algorithm that tests if a string is square-free and
also detects all squares within the same time and processor bounds using
only linear auxiliary space. If the input alphabet has constant size, then
Apostolico’s algorithm can use the “four Russians technique” to tests if a
string is square-free in O (log n) time utilizing only n/ log n processors.

Apostolico and Breslauer [4] gave a parallel implementation of the
sequential algorithm of Main and Lorentz [33] to test if a string is square-
free and find all square in a string using equality tests in O (log log n) time
using n log n/log log n processors. If the input alphabet has constant size,
then the number of processors used by their algorithm to test if a string is
square-free can be reduced to n/ log log n by using the new string-matching
algorithm. These bounds compare favorably also with the O (log n) time
algorithm given by Apostolico [3] for testing if a string over a constant
size alphabet is square-free. Notice that all the parallel algorithms mentioned
above achieve an optimal speedup since their time-processor product is the
same as the time complexity of the fastest known sequential algorithm under
the same assumptions on the input alphabet.

THEOREM 5.1: There exists an algorithm to test if a string S [1..n] over a
constant size alphabet is square-free in O (log log n) time using n/ log log n
processors and O (n) space.

The details of the algorithm can be found in Apostolico and Breslauer’s
paper [4]. The necessary modifications to take advantage of the packed
strings are similar to and simpler than those of the palindrome detection
algorithm that is discussed in more detail next.

5.2. Finding all palindromes in a string

Palindromes are symmetric strings that are read the same forward and
backward. Formally, a non-empty string w is a palindrome if w = wt,
where w? denotes the string w reversed. It is convenient to distinguish
between even length palindromes that are strings of the form w = vof and
odd length palindromes that are strings of the form w = vav®, where R is
an arbitrary string and ‘a’ is a single alphabet symbol.
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Given a string S[1..n], we say that there is an even palindrome of
radius R centered at position k of S[1..n], if S[k —i] = S[k+ i — 1], for
1 =1, , R. We say that there is an odd palindrome of radius R centered
on posmon k of S[l.n], if S[k—i] = S[k+1i], fori =1, ..., R. The
radius R (or R) is maximal if there is no palindrome of radlus R+1
centered at (on) the same position. In this section we will be interested
in computing the maximal radii R [k] and R [k] of the even and the odd
palindromes which are centered at all positions k of S[1..n]. Notice that if
we double each input symbol, then odd palindromes become even and thus,
without loss of generality, we can concentrate on finding only the maximal
radii of the even palindromes [6].

In the sequential settmg, Manacher [34], and Knuth, Morris and Pratt [28)
presented linear-time algorithms that find the initial palindromes (palindrome
prefixes) of a string. Galil [23] and Slisenko [36] presented real-time
algorithms on multi-tape Turing machines to find all initial palindromes. A
closer look at Manacher’s algorithm reveals that it not only finds the initial
palindromes, but it also computes the maximal radii of palindromes centered
at all positions of the input string using pairwise symbol comparisons that test
for equality. Thus it solves the problem we consider in this section in O (n)
time. Notice that although the similarity between the definitions of squares
and palindromes is obvious, the computational complexities of detecting
squares and palindromes using equality tests are inherently different. The
parallel algorithms discussed in this paper, however, are quite similar.

In the parallel setting, Crochemore and Rytter [20] presented an algorithm
that finds all palindromes in a string in O (log n) time using n processors
and O (n!*¢) space. Their algorithm assumes that the alphabet symbols are
small integers. Breslauer and Galil [13], using an observation of Fischer and
Paterson [22], described an algorithm that finds all initial palindromes in a
string in O (log log n) time and n/ log log n p_rbcessors using equality tests.

Apostolico, Breslauer and Galil [6] gave an algorithm that can find all
palindromes in a string using equality tests in O (log log n) time and
n log n/log log n processors. They also gave an optimal-speedup algorithm
that finds all palindromes in a string over constant size alphabets in O (log n)
time and n/ log n processors, using the “four Russians technique”. We show
next that if the input alphabet has constant size then the number of processors
used in their O (log log n) time algorithm can be reduced to n/log log n,
achieving an optimal speedup.

THEOREM 5.2: There exists an algorithm that finds all even palindromes in
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a string S[1..n] over a constant size alphabet in O (log log n) time using
n/ log log n processors and O (n) space.

We outline the main parts of the algorithm of Apostolico, Breslauer and
Galil [6] and point out where we take advantage of packed strings. The
missing proofs and a more complete description of the algorithm can be
found in Apostolico, Breslauer and Galil’s paper. Notice that the algorithm
sometimes refers to reversed substrings, and thus we have to pack both the
original input string and its reverse. Alternatively, we can precompute a table
that will provide for each packed block of symbols, the packed representation
of the reversed block. To simplify the presentation, assume without loss of
generality that the algorithms can access symbols whose indices are out
of the boundaries of the input string. These symbols are considered to be
different from each other and from the symbols of S[1..n].

The main observation that allows to find the radii of many palindromes
together is given in the following lemma.

LemMa 5.3: Assume that the string S [1..n] contains an even palindrome
whose radius is at least r centered at position p. Furthermore, let S [e,..€R]
be the maximal substring that contains S [p — r..p + r — 1] and is periodic
with period length 2. Namely, S [i]| = S[i + 27, fori =€, ..., er — 21,
and Slep, — 1) # Sler +2r—1] and S[er + 1] # Sler — 27 + 1].

Then the maximal radii of the palindromes centered at positions q = p+Ir,
for integral positive or negative values of |, such that e, < q < g, are given
as follows:

o Ifq—er # g —q+1, then the radius is exactly min (¢ —er,eg —q+1).

e Ifq—e€; =€er —q+ 1, then the radius is larger than or equal to ¢ — €.
The radius is exactly q — e, if and only if Sle, — 1] # S [er + 1]

The algorithm proceeds in independent stages which are computed
simultaneously. In stage number 1, 0 < n < |logy n] — 3, the algorithm
computes all entries R [¢] of the radii array such that 4/, < R [¢] < 81, for

1, = 2". Notice that each stage computes disjoint ranges of the radii values
and that all possible radii values are computed by some stage.

The remainder of this section describes a generic stage number 7;. Partition
the input string S [1..n] into consecutive blocks of length /,,. Stage number 7
consists of independent sub-stages that are assigned to each such block and
computed simultaneously. Each sub-stage finds the radii of all palindromes
which are centered in the block that it is assigned to and whose radii are in
the range computed by stage 7. Sometimes palindromes whose radii are out
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of this range can be detected, but these radii do not have to be written into
the output array since they are guaranteed to be found in another stage.

The sub-stage that is assigned to block number A starts with a call to
the string-matching algorithm to find all occurrences of the four consecutive
blocks S [(h — 4) I, 4 1..hl,], reversed, in S [(h — 2) I, + 1..(h + 4) I, — 1].
Let p1 < p2 < --- < p; denote the indices of all these occurrences. The next
lemma states that we essentially found all “interesting” palindromes.

Lemma 5.4: There exists a correspondence between the elements of the
{p:i} sequence and all palindromes that are centered in block number h and
whose radii are large enough.

» If p; + Wiy is odd, then p; corresponds to an even palindrome which is
centered at position (p; + hl, +1)/2.

o If p; + hly, is even, then p; corresponds to an odd palindrome which is
centered on position (p; + hly,)/2.

Each palindrome whose radius is at least 41, — 1 has some corresponding
p;, while palindrome that correspond to some p; are guaranteed to have radii
that are at least 31,.

LemMa 5.5: The sequence {pi}, which is defined above, forms an arithmetic
progression.

By the last lemma the sequence {p;} can be represented by three integers:
the start, the difference and the sequence length. This representation can be
computed from the output of the string matching algorithm in constant time
and O ([l,/)]) operations since it suffices to find the positions of the first,
second and last occurrences. Define the sequence {¢;}, fori =1, ..., to
list all centers of the even palindromes that correspond to elements in {p;}.
By Lemma 5.4, the sequence {g¢;} also forms an arithmetic progression and
therefore it can also be computed and manipulated efficiently.

If the {g;} sequence does not contain any element, then there are no even
palindromes whose radius is at least 4/, that are centered in the current
block. If there is only one element g;, then by Lemma 3.2, we can find in
constant time and O ([l,/A]) operations what is the radius of the palindrome
that is centered at g1 or we can conclude that it is too large to be computed
in this stage. If there are more elements, let ¢ denote the difference of the
arithmetic progression {g;}. The next lemma shows how to find the radii of
the palindromes centered at {g¢;} efficiently.

Informatique théorique et Applications/Theoretical Informatics and Applications



EFFICIENT STRING MATCHING ON PACKED TEXTS 541

LemmMa 5.6: It is possible to find the radii of all even palindromes centered
at positions in {q; }, which are in the range that is computed in this stage, in
constant time and O ([l /X)) operations.

Proof: Let (1, be the smallest index such that ¢g; — 81, < (r < ¢1 and
SKr-.q1—1) =S [{r+2q..q1+2 ¢—1}], and g be the largest index such that
g < Cr < q + 81, and S[g; — 2¢..Cr — 2q] = S|¢;..{r). The indices (7, and
(g are computed in constant time and O ([l,)/A])} operations by Lemma 3.2.
By Lemma 5.3, the radius of the palindrome centered at position g¢; is at
least p; = min (¢; — ¢z, (r — ¢ + 1). If p; > 81,, then the radius of the
palindrome centered at g; is too large to be computed in this stage and it does
not have to be determined exactly. Otherwise, the radius is exactly p; except
for at most one of the ¢;’s which satisfies ¢; — {(f = (g — ¢; + 1. For this
particular ¢;, by Lemma 3.2, we can find in constant time and O ([[;/A])
operations what is the radius of the palindrome or we can conclude that it
is too large to be computed in this stage. [

The number of radii that are computed in some given sub-stage can be
as large as O (l,;). This might cause a scheduling problem since even if the
overall algorithm can perform enough operations to update the whole radii
array, it can not perform more than O ([l,/A]) operations in the given sub-
stage. To overcome this problem we agree that the algorithm will output only
few representatives for each group of radii that are found in the same sub-
stage. These representatives will contain enough information to reconstruct
the radii of all palindromes later. '

The algorithm partitions the output array R[h} into contiguous blocks
of length A\. When some palindromes are discovered, it writes only one
representative for each palindrome group per each block. The representative
will contain a description of the part of the {g;} sequence that falls within
the block together with {7, and (r. Thus, the algorithm does not write more
than O ([l,/A]) representatives.

After all stages and sub-stages are completed, in each A-block of the
output array R [k], the number of palindromes to be reconstructed from
the representatives is counted. This can be done in O (log A) time using
A/ log A processors per block by Lemma 2.1. Then, the A processors that
are available in each block of length A can be properly assigned to create
the complete output array with the radii of all palindromes.

Proof of Theorem 5.2: Stage number 7 has |n/l,| sub-stages. Each
sub-stages solves a string-matching problem and then by Lemma 5.6, it
finds the palindromes that correspond to the occurrences discovered. Thus,
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each sub-stage takes O (log log (I;/))) time and performs O ([l;/A])
operations using O ([l;/X]) space. Therefore, stage number 7 takes
Ty = O (log log (I;/X)) time and performs O ([l,/A]) x |n/l;] operations
“using O ([l,;/A] x |n/l,]) space.

Recall that A = O (log n). The algorithm takes max Ty, = O (log log n)
time. In all the log n stages, the algorithm performs O (n) operations and
uses O (n) space. The last step that reconstructs all entries of the output radii
array from their representatives also takes O (log log n) time performing
O (n) operations and using O (n) space. O

6. CONCLUSIONS

The string-matching algorithm presented in this paper takes advantage
of the bounded alphabet size to reduce the number of processors used
while maintaining a doubly logarithmic running time. The lower bound of
Breslauer and Galil [12, 13] holds only in case when the algorithm has access
to the input strings only by pairwise symbol comparisons. The only known
doubly logarithmic lower bound for bounded alphabet is due to Breslauer
et al. [10] when the size of the alphabet is an extremely fast growing
function of the input size. Thus one can hope to design optimal-speedup
algorithms for string problems, such as string-matching, square-detection,
and the palindrome-detection, that will achieve o (log log n) running times
over constant size alphabets.

Another interesting open question remaining is whether there exists a fast
optimal-speedup palindrome detection algorithm using only pairwise symbol
comparisons. :
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