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DIGITAL SEARCH TREES WITH KEYS
OF VARIABLE LENGTH (*)

by Markus E. NEBEL (*)

Communicated by J. BERSTEL

Abstract. - In this paper we consider Digital Search Trees (DST's) with keys of variable length,
where a key might be a prefix of any other. Since the traditional insertion algorithm for DST's
does not work in this case, a modification which can deal with préfixes is presented. Afterwards an
average case analysis of the new algorithm is performed.

Résumé. - Dans cet article, nous considérons des arbres de recherche digitaux où les clés sont
de longueur variable, une clé pouvant être un préfixe d'une autre. Comme l'algorithme d'insertion
traditionnel ne s'applique plus dans ce cas, nous présentons une modification qui prend en compte
les préfixes. Nous effectuons l'analyse en moyenne de ce nouvel algorithme.

1. INTRODUCTION

A fundamental problem of computer science is to store data in such a way
that it can be retrie ven easily. We often use key values to identify a whole
record of data. Digital Search Trees (DST's for short) represent one possible
data structure which allows us to store, search and delete data using the key
values. DST's are similar to the well known Binary Search Trees but instead
of comparing key values they make use of the digital représentation of the
keys. If the keys can be represented as binary numbers it makes sensé to
refer the 6th bit of a key, where the bits are numbered from left to right.
Then, to insert a record (k, data) with key k into a DST, we set x to point to
the root and b to 1, and perforai the following opérations until termination:

(i) If x is nil then store (fc, data) in a new node x ] and terminate.
(ii) If key (x) = k then terminate (k is already stored in the tree).
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(iii) Otherwise, if the bth bit of k is 0 then set x to left (x);

if the bth bit of k is 1 then set x to right (x).

(iv) Set b to b + 1.

(v) Goto (i).

There is no problem in searching or deleting a key. For a detailed
description of DST's and Binary Search Trees see [6],

The insertion algorithm presented can be used only if the binary
représentations of ail possible keys have the same length or if no key
is a prefix of any other.

In former papers, e.g. [3], [5], the keys were assumed to be of infinité
length to guarantee prefix-freeness. However, if the set of possible keys is
known a priori, prefix-freeness can always be achieved by attaching a binary
string which is not a binary représentation of a key. But there are situations,
in which we do not know ail keys a priori, e.g. if we measure some quantity
of a chemical or physical experiment electronically and get bitstrings as
results. In this case we are not able to guarantee prefix-freeness. If we have
préfixes it might happen that ail positions that can be visited during the
insertion of a key are already in use. Figure 1 illustrâtes this situation.

Inserting 010 Ieads to a
conflict at position >

Figure 1. - The problem of using DST's with non-prefixfree keys.

We now present a modification of the insertion algorithm which can deal
with keys of finite length that might be non-prefixfree. We use 0 to dénote
the case that the 6th bit of k does not exist. As before, we set x to the
root of our DST and b to 1..

(i) If x is nil then store (k, data) in a new node x | and terminate.

(ii) If key {x). — k then terminate (k already stored in the tree).
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(iii) Otherwise, if the èth bit of k is 0 then set x to left (#);
if the 6th bit of k is 1 then set x to right (a>);
if the bth bit of k is 0 then

set temp to x | . (£ey, data);
store (fe, data) in the node x | ;
continue insertion with temp.

(iv) Set fc to 6 + 1.
(v) Goto (i).

This modification is based on the idea that a key does not need to stay
at the same position for the lifetime of the tree. If the conflict of Figure 1
occurs the position of the new key, say z/, must be occupied by a key, say K,
whose binary représentation &% owns U2 as a prefix. Thus, there are some
additional bits to be used by the new insertion algorithm. After the new key
was stored in its last possible position the insertion process is continued with
K using these bits. Figure 2 shows an example.

ïnsertingOlO

Figure 2. - The new insertion-strategy.

Compared with the traditional insertion algorithm the additional amount of
work arises from conflict situations. The question is how often does such a
conflict occur on the average. In the following section we introducé a formai
model which is used to analyze this quantity in section 3.

2. A FORMAL MODEL

In this section we introducé the so-called II-Tree which is a formai model
that is used to analyze the average number of conflicts during the insertion
process in the next section.
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DÉFINITION 1: Let S be a set of keys. A key x G S is called maximal if it
is not a proper prefix of any other key y E S.

We consider the case in which for every maximal key x ail préfixes of x
(including the empty word s) are also in the set of keys. Since the number
of conflicts is proportional to the number of préfixes in the set of keys this
corresponds to a worst case model.

DÉFINITION 2: A II-Tree is a tuple (S, ƒ ) with:

•S is a finite set of keys,
• ƒ is an injective function from S into {0,1}* with the property that if <f>

is an image of f then ail préfixés of <f> are also images of ƒ.
The meaning of S- is straightforward. The function ƒ represents the binary

représentation of the keys of 5. This way it frees us from any real existing
coding and guarantees (because of the prefix condition) that the worst case
mentioned before is considered. The existence of a binary représentation e
is only for technical reasons and does not include any restriction.

We now analyze the average number of conflicts that arise during the
insertion process of DST's considering II-Trees.

3. THE AVERAGE CASE ANALYSIS

In this section we analyze the average behavior of the new insertion
algorithm considering II-Trees. We regard those II-Trees in which every
single key is exactly once inserted. That means, we use the insertion algorithm
for DST's assuming the set of keys 5 together with the binary représentation
given by ƒ. Ail permutations are assumed to be equally likely. We count the
average number of conflicts that arise during the insertion of a single key.

Recall, that we still have a variable parameter, which is the number
of maximal keys in the set S. This parameter is also determined by the
function ƒ.

It is well known that DST's tend to grow balanced which is a good
reason to regard II-Trees with [Ç] maximal keys. This case corresponds to
a well-balanced tree structure. But we were not able to dérive a récurrence
relation (or anything else) for the number of conflicts for this case directly.
So we proceed as follows: First of ail, we consider the case of exactly one
maximal key which corresponds to a linear list. Again, this is the worst case
since during the insertion of the key p there is a conflict if the position
of p given by ƒ is in use by any other key q. This is only possible if the
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image of p is a (proper) prefix of the image of q. The number of possible
situations of this kind is maximal in the case of a linear list-type tree. After
computing the average number of conflicts we use a tree-transformation
which transforms the linear list into a well-balanced tree. By counting the
number of conflicts that vanish during this transformation we get a resuit
for the well-balanced case.

If there are only left (or only right) sons in the structure given by ƒ then
there is exactly one séquence of keys which does not come into any conflict
during insertion. We call this séquence start permutation. It is possible to
generate any other séquence from the start permutation by applying one or
more transpositions. We only allow those transpositions that are mandatory
to generate the séquence, which are only unambiguous in number. As we
begin with the séquence for which every key is inserted in its own position
every transposition means an extra conflict during insertion. The following
example clarifies this fact.

EXAMPLE 1: Let the set of keys S be {1,2,3,4}, and let the binary
représentations be given by f(l) = s, ƒ (2) = 0, ƒ (3) = 00 and ƒ (4) = 000.
This leads to the start permutation 1,2,3,4. Consider the séquence 3,1,4,2.
This séquence is generated from the start permutation by the transpositions
(1,3), (2,3) and (3,4). With (a, b) we dénote the exchange of the positions a
and b in the séquence.

Inserting 3 into the empty tree causes no conflict; 3 becomes the root (the
position ofl). Inserting 1 causes a conflict and the insertion is continued with
3. But since the position of 3 cannot be reached it is inserted in the position
of key 2. Now the insertion of 4 is f ree of conflicts but the key is inserted in
the place of 3. Inserting 2 causes two conflicts. First, it arrives at its own
position which is already in use by 3. Continuing the insertion with key 3
leads to a second conflict since the position of 3 is in use by 4.

It is easy to see that the number of conflicts during the insertion of a
séquence is equal to the number of transpositions needed to generate the
séquence from the start permutation in gênerai.

We now give a récurrence for the minimal number of transpositions Tn that
are needed to generate all n! séquences of n keys from the start permutation:

Tn = n T „ _ i + n ! - ( n - l ) ! .

vol. 30, n° 6, 1996
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It is clear that we do not need any transposition to generate the permutations
of 0 éléments. Equation (1) for n > 1 follows from the observation described
now: The first (n ~ 1)! permutations are generated by attaching the new
element to the end of all the permutations of (n — 1) éléments. Since the
new element is in its own position no extra transposition is needed and
we get an amount of Tn_i transpositions. For all missing permutations the
new element is in a position that is not its own. If x dénotes the new
element then we have the following situation: a i , . . . ,aj_i,x, a,,.. . ,a^_i
where a3,\ < j < n — 1, is the key in position j of a permutation
of {n - 1) éléments. This permutation is generated from the permutation
a i , . . . , a,;_i, an_i, a; , . . . , an-2 •> % by applying an additional transposition.
Therefore, for every missing permutation p of n éléments there exists exactly
one permutation of (n — 1) éléments to which an additional transposition is
applied to generate p. Since there are (n — 1) possible positions for x we
have to generate ail permutations of (n — 1) éléments (n — 1) times. This
contributes an amount of (n — l)Tn_i and we have to add n\ — (n — 1)! for
all the additional transpositions. Summarizing we get (1).

Using the exponential generating function F(z) :— J2n>0 ^T %n w e ëe t

(1 - zf (1 - z)

Using standard techniques, this leads to

^ „ > „ ( „ ) ,
ni

where Hn is the n-th harmonie number. We now know the number of
transpositions that are needed to generate ail n! permutations of n éléments.
This number equals the number of conflicts that appear while building up
ail II-Trees of size n in the case of only one maximal key. Dividing Tn by
n • n\ we get our average number for the worst case tree structure.

Our aim now is to compute the average number of conflicts in the case of
[ | ] maximal keys which corresponds to a well balanced tree and therefore
to a good approximation of a real DST. To do this we examine the effect of
transforming the structure of a linear list into the structure of a balanced tree
step by step. We will carry out one step of this transformation by shifting
one node of the list to the other side of the tree (with regard to the root). This
is done until the nodes are distributed over the two sides as well-balanced
as possible. Afterwards, we apply the same transformation to the remaining
linear lists of the two sides recursively until no list being longer than 2 is
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left. Figure 3 shows how this transformation builds a well-balanced tree from
a linear list. Therein the transformation is recursively applied only to the
shaded nodes. During the transformation the number of conflicts decreases
from tree structure to tree structure. Therefore we are interested in the number
of conflicts that vanish during the transformation. If we are able to détermine
this number we know the number of conflicts for the well-balanced tree by
subtracting it from our resuit for the linear list. The total number of conflicts
is directly related to the number of positions in the tree in which a conflict
may happen during insertion. If we look at the first tree in Figure 3 we see
that the node which is marked by x could have a conflict with at most 5 other
nodes. By shifting this node to the right side, 4 of the 5 possible conflicts
will be eliminatedv Önly the root is still a position in which a conflict may
happen. Thus, | of conflicts vanish on the average. It is more difficult to
détermine this number for the second step of the transformation, because
the right subtree is not empty and therefore, the possible combinations of
conflicts in the left and right subtree must be considered. In the second tree
of Figure 3 the node y may have 4 conflicts on the left side. Shifting it to
the right side éliminâtes 4 but contributes 2 conflicts. Totally, we get rid of
4 — 2 = 2 conflicts but must consider the 2-4 = 8 possible combinations.
This results into an average of | vanishing conflicts. För the third step of
our transformation we could use these arguments for the shaded linear list
recursively, which leads to an average number of | .

Figure 3. - The transformation of a linear list into a well-balaneed tree.

If an dénotes the average number of conflicts that vanish during the
transformation of the linear list with n nodes into a well-balanced tree,
we have:

an - am

a0 := 0

Ui 1 (2)Ui
-n

vol. 30, n:° 6, 1996
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The two sums in (2) resuit from the sum f(n) := J ] [ l i ̂ 1% which
equals the summation of the just derived average numbers. Instead of the
two sums we can write H\ni — Hn-\ + i7p- |_ i , where Hn is the n-th
harmonie number. Let Zn dénote the number of conflicts that arise during
the insertion of ail n! permutations for a well-balanced tree structure. We have

Zn = Tn - ann\ = (n - Hn - an)n\.

From this, together with (2), it follows that

an=n- Hn -
n!

This équation can be simplified and the substitution un :— ̂ f pro vides

n - 1
(3)

with the initial condition no := 0. We solve this récurrence by regarding the
différence Aun :— un+\ — un. Using the récurrence (3) we get

Aun = Au^n^ij + [h(n + 1) - h(n)]y (4)

where A^o := 0 and h(n) :— ^^- In the sequel, we dénote the différence
h(n + 1) — h(n) by g(n) and consequently we have g(n) — ̂  — ̂ y . If we
iterate the récurrence (4) (s — 1) times we get

V^ A n ^ +
Aun = ^u[^±li +^g[ L g?

with un — X^r^o1 ^w«* After I_l°g2(^(n + 1))J itérations we reach the initial
condition. Thus we have

Llog2(i(n+l))j

A ^ = E 9[[-^—j),

Informatique théorique et Applications/Theoretical Informaties and Applications
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which gives the following closed-form expression for un :

-

n 1

E
J-O

This expression does not give much information about the behavior of un

but we can regard the plots of Figure 4 and 5 to get more information. The
séquence un seems to be of linear growth. The behavior of ~ seems to
be a constant of about 0.4 together with an oscillating function. To prove
this conjecture we try to dérive an asymptotic expression using the modified
récurrence

n - 2

Figure 4. - A plot of un. Figure 5. - A plot of ^

Note that yn = Un-i- We will apply the method introduced by P. Flajolet
and M. Golin for analyzing récurrences of the divide and conquer form
described in [2]. The before mentioned method is based on Dirichlet-
generating functions which, for a séquence {wn}, are defined as follows:

W(s) =
ï l = l n*

The coefficients of a Dirichlet-series can be recovered by an inversion
formula known as the Mellin-Perron formula.

vol. 30, n° 6, 1996
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LEMMA 1 (Mellin-Perrön): Assume thaï the Dirichlet series W(s) converges
absolutely for ^K{s) > 2. Then

W(s)n—— / W(
5(5 + 1) ^

For a detailed proof see [1]. Now consider the récurrence

where en is a known séquence and j \ is fixed by an initial condition. In
order to avoid arnbiguity we set eo = /o• = ei = 0 . Distinguishing between
odd and even cases, we find for m > 1

/2m+l = ƒ'/?/, + /m+1 + e2-m-fl-

Taking backward différences with V fn = fn — / n _ i and Ve7l — en

yields

for m > 1. Now taking forward différences of the preeeding quantities,
i - Vfn and AVen = Ven+Ï - Ven we get for m > 1

A V / 2 m - A V / m + AVe2 m , f

+i = AVe 2 m + i ,

with AV/i = ƒ2 - 2/i = e2 = AVei. We now regard the Dirichlet-
generating fonction for wn = AV/ n which is obtained by multiplying (5)
by n~s and summing over all n. The following relations hold

ra=2
co

W(s) ^ AVeïï __ 1 ^ AVe77;

Informatique théorique et AppMeations/fheoretieat Informaties: and Applications
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Since J^kZi in ~ &)AVƒ& = fn — nf\ the Mellin-Perron formula yields
a direct intégral représentation for ƒ„,. Summarizing this discussion leads to
the following lemma [2]:

LEMMA 2: If en = O(n) holds, then

n f$+lo° E{s)ns ds
fn =

where

The condition en — O(n) guarantees the convergence of the associated
Dirichlet series for $\(s) > 2. Since this growing condition is satisfied for
our en — ^5 j we can use this lemma. We flrst have to compute S(s)
associated with our séquence en. We have

A ^ n - l n - 2 n - 2 n - 3 2 T / ,
AVen = : -\ — —: ö —'• ^ (n ) .

n n — 1 n — 1 n — 2 3n2 — 2n ~ n3

Clearly, ty{z) has poles at z — 1 and z — 2. If we regard the équation
AVei = Ê2 — 2ei + eo we get AVei ~ 0 since eo and ei do not contribute
anything as we can see from the récurrence. In an analogous way we obtain
AVe? = | , and from this we get the following Dirichlet-generating fonction
for AVen :

n~l n—o

The sum YIT=3 ~^~ converges and is O(l) for every 5 with
- 2 + e, e > 0. Therefore, Lemma 2 tells us that

ds

n 2i7T Js-ioo 1 — 2~s s(s + 1) *

We choose the contour F of Figure 6 to evaluate this intégral using the
residue theorem. Let e > 0, fix a = - 2 + e and let R > 0. Then F is the
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counterclockwise contour around

with Fa = {3 + zy : \y\ < R},

F2 = {x + iR: a <x < 3},

T3 = {a + iy:\y\<R},

F4 = {x - iR : a < x < 3}.

-f

R

R

r2

4i7t
In 2

t 2iK
In 2

0

, 2i7t
In 2

j 4i7t

In 2

r4

r,

3

Figure 6. - The contour F.

If I(s) dénotes the kernel of the intégral, Le. I(s) = ]f_2-̂  Zi+ïT' t n e n

for iî —• oo our intégral equals ^ JT I(s)ds. The intégrais | jfr I(s)ds\
and | JTA I(s)ds\ are O ( ^ ) both. For T3 we have | /r31(s)ds\ = O(nQ).
Thus ^ equals O(na) plus the sum of the residues of I(s) inside F. The
singularities of I(s) inside F are

• a double pôle at s — 0,

• a simple pôle at s — - 1 , and

• simple pôles at 5 = ^ f =: xk>kel\{0}.
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For the double pôle at s — 0 we evaluate the coefficient of ^ of the
Laurent series for I(s). We get

where 0(s) := § ^ eiln<"), ie. I(s) = ï r ^ 7 B{a)\. For the pole at s = - 1
we have

Res|.s=_1(/(S)) = - H ( - 1 ) .

In order to compute the residues of the poles at \k:•> & £ 2\{0}, we set
u; = s — XA: an(i regard the Laurent series for LÜ — 0. We get

27

Summing these residues yields

}
X f c )

Since 0(0) = 0 the second summand vanishes. The same happens to the third
summand for large n. The first summand is approximately 0.4270667..., Le.
our average number of conflicts during the insertion of a single key is the
sum of a constant and an oscillating function. So what we need now is the
amplitude of the oscillating function. To bound this we use | ̂  | <
and get

E 0.0363462300939807763... (6)

If we just evaluate the sum numerically then we have approximately for
n e [128..512] :

-0.0334797879... S V ^ - < 0.0294285861...
~ 2 f c ( 1 + ) ~

For ^ , équation (6) yields an upper bound < 0.463413. Consequently,
the average number of conflicts in the case of \j~\ maximal keys is smaller
than a small constant and our conjecture has been proved. Figure 7 shows
the function ^ together with our asymptotic result for n -^ oo,

vol. 30, n° 6, 1996
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u_n/n

0.41

0 .405

4100 4200

0.395

4300 4400 4500

Figure 7. - Asymptotic and exact function

4. CONCLUDING REMARKS

This paper introduced a new insertion algorithm for DST's which can
deal with non-prefixfree keys. We have shown that the average amount of
additional work (compared with the traditional algorithm) is only small.

It is well known (see [4]) that izm.n_^ooE[/i(n)] = log (n) in probability
Le. the expected height of a DST with n nodes is log (n) if n is large which
means that DST's tend to be well-balanced. Since our model assumes the
existence of ail préfixes of a maximal key our resuit is to be understood
as an upper bound.
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