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ON SEMIDIRECT AND TWO-SIDED SEMIDIRECT
PRODUCTS OF FINITE 7-TRIVIAL MONOIDS (*) (**)

by F. BLANCHET-SADRI M

Communicated by RYTHER

Abstract. — In this paper, using results of Almeida and Weil, we give criteria for the semidirect
or two-sided semidirect product of two locally finite pseudovarieties V and W to satisfy an identity
u = v. We illustrate these criteria with various semidirect and two-sided semidirect products of
pseudovarieties of J-trivial monoids. In particular, let J; denote the class of all finite semilattice
monoids and let W; be the sequence of pseudovarieties of monoids defined by W, = J1 and
W41 = J1 *xW; (the two-sided semidirect product of J1 by W ;). Each Wy, turns out to be
perfectly related to the k-move standard Ehrenfeucht-Fraissé game. The union | J;,~., Wy, is then
the class A of all finite aperiodic monoids. -

Résumé. — Dans cet article, utilisant des résultats d’Almeida et de Weil, nous donnons des critéres
pour que le produit semidirect ou semidirect bilatére de deux pseudovariétés localement finies V
et W satisfasse une identité u = v. Nous illustrons ces critéres avec plusieurs produits semidirects
ou semidirects bilatéres de pseudovariétés de monoides J -triviaux. En particulier, soit J, la classe
des demi-treillis finis et soit W; la suite de pseudovariétés de monoides définie par W, = J; et
Wit1 = J1xxW; (le produit semidirect bilatére de J; par W ;). Chaque W i devient parfaitement
lié au jeu standard de Ehrenfeucht-Fraissé avec k tours. L'union | J;,~, Wy, est alors la classe A
des monoides apériodiques finis. -

1. INTRODUCTION

Given two pseudovarieties of semigroups V and W, their semidirect
product V « W (respectively two-sided semidirect product V x xW) is
defined to be the pseudovariety of semigroups generated by all semidirect
(respectively two-sided semidirect) products of the form S xT' (respectively
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458 F. BLANCHET-SADRI

S+ xT) with § € V and T € W. This paper relates to the following
two problems:

1. Does a given finite semigroup belong to VxW (respectively V xxW)?

2. Does V x W (respectively V «W) satisfy a given identity v = v?

The knowledge of identities for V x+ W (respectively V x «W) may help
solve the membership problem (1). For instance, if V x W (respectively

V 5«W) admits a finite basis of identities (or a finite set of generators), then
V x W (respectively V xW) has a decidable membership problem.

Almeida [2, 4] (respectively Almeida and Weil [5]) proposes a new
approach to treat problems that ask for algorithms to decide whether a given
finite semigroup belongs to the semidirect product V « W (respectively
two-sided semidirect product V % *W) of pseudovarieties V and W for
which such algorithms are known. We illustrate their methods in this paper
(and also in the papers [14, 17]). Here, we are converting bases of identities
for pseudovarieties of 7-trivial monoids into bases of identities for various
semidirect and two-sided semidirect products of such pseudovarieties (if S
is a monoid and s, ¢t € S, then s is said to be J-below ¢, written s <7t¢, if
s = xty for some z, y € S, and s, ¢ are said to be J-equivalent, written
s ~gt, if s <gt and t <7s; S is said to be J-trivial if this equivalence
relation is the identity).

Results related to those above include: A result of Albert, Baldinger
and Rhodes which implies that the join of two decidable pseudovarieties
of semigroups may be undecidable [1], and the authors mention that an
analogous result holds with join replaced by semidirect product. The authors
establish the existence of two finitely based pseudovarieties of semigroups
whose join does not have a decidable membership problem. A result of
Irastorza which implies that the semidirect product of two pseudovarieties
of semigroups admitting finite bases of identities may be equational without
such a basis [25].

1.1 Preliminaries

The reader is referred to the books of Almeida [4], Burris and
Sankappanavar [20], Eilenberg [23] or Pin [27] for terminology not defined
in this paper.

1.1.1. Varieties of finite monoids

A Semigroup is a set S together with an associative binary operation
(generally denoted multiplicatively). If there is an element 1 of S such that
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SEMIDIRECT AND TWO-SIDED SEMIDIRECT PRODUCTS OF FINITE J-TRIVIAL MONOIDS 459

1s=s1=s for each s € S, then S is called a monoid and 1 is its unit. A
subset of S is a subsemigroup (respectively submonoid) of S if the induced
binary operation makes it a semigroup (respectively monoid).

Let S and T be monoids. A monoid morphism ¢ : S — T is a mapping
such that ¢ (ss') = ¢ (s)p(s') for all 5, s € S and (1) = 1. We say
that S divides T, and write S < T, if S is the image by a morphism of
a submonoid of T.

Let A be a finite alphabet and let A* denote the free monoid on the set A
(At will denote the free semigroup on A). A7 is the set of all finite strings
(called words) ay, ..., a; of elements of A and A* = AT U {1}, where 1 is
the empty word. The operation in A* is the concatenation of these words.

A variety of finite monoids or pseudovariety of monoids is a class of
finite monoids closed under morphic images, submonoids and finite direct
products (or closed under division and finite direct products). A variety of
monoids is a class of monoids closed under morphic images, submonoids
- and direct products. Given a class C of finite monoids, the intersection of all
pseudovarieties containing C is still a pseudovariety, called the pseudovariety
generated by C.

1.1.2. Varieties of languages

Let A be a finite alphabet. A language on A is a subset L of A*. A
language L in A* is said to be recognizable if there exists a finite monoid
S and a morphism ¢ : A* — S such that L = ¢! (¢ (L)). In that case,
we say that S (or ¢) recognizes L. The notions of recognizable sets (by
finite monoids and by finite automata) are equivalent. To each language L,
we associate a congruence ~ y, defined, for u, v € A*, by v ~ v if and
only if zuy and zvy are both in L or both in A*\L, for all z, y in A*.
The congruence ~, is called the syntactic congruence of L and the monoid
M (L) = A*/ ~, is called the syntactic monoid of L. A monoid recognizes
L if and only if it is divided by M (L).

A x-variety V is a family A* V of classes of recognizable languages of A*
defined for all finite alphabets A and satisfying the following conditions:

e A*V is a boolean algebra, that is, if K and L are in A* V), then so are
KUL, KNL and A*\L.

o If ¢ : A* — B* is a morphism and L € B* V), then ¢~ 1 (L) € A* V.
oIf L € A*V and a € A, then both {u € A*|aw € L} and
{u € A*|ua € L} are in A* V.
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460 F. BLANCHET-SADRI

Eilenberg [23] proved that pseudovarieties of monoids and x-varieties are
in one-to-one correspondence. If V is a pseudovariety of monoids, then
A*YV = {L C A*|M (L) € V} defines the corresponding x-variety V. If V
is a x-variety, then the pseudovariety generated by {M(L)|L € A*V for
some A} defines the corresponding pseudovariety V.

Let V be a pseudovariety generated by the monoids Si, ..., Sp. Thus
V is generated by S = S1 X --- x Sy,. Let V be the x-variety associated to
V. Then A*V is the boolean closure of the sets ! (s) for all s € S and
all morphisms ¢ : A* — S. Consequently, A*V is finite.

1.1.3. Products of varieties of finite monoids

Let S and T be monoids. By a left unitary action of T and S, we mean a
monoid morphism ¢ from 7" into the monoid of monoid endomorphisms of
S with functions written and composed on the left. If we write S additively
and let O denote its unit, 7" multiplicatively and let 1 denote its unit, and
abbreviate ¢ (t) (s) by ts, the condition that ¢ is a monoid morphism mean
that ,

o (tt)ys = t(t's)

els =35
for all s € S and ¢, ¢ € T, and the condition that ¢ (t) is a monoid
endomorphism of S means that ¢ (s + s') = ts + ¢s’ and t0 = 0 for all s,
s' € S and t € T. By a right unitary action of T on S, we mean a function

TxS— S

(t, s) — st

satisfying the following conditions:
o s(tt') = (st)t

esl = s
e(s+s)t =st+st
e 0t =0

forall s, s € Sand ¢, t/ € T.

Given a left unitary action, we define the associated semidirect product
S T as the monoid with underlying set the cartesian product S x T' and
operation defined by

(s, ) (s', ¥) = (s + 1/, tt').

An easy calculation shows that S+ T is a monoid with unit O, 1).
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Now, given a left and a right unitary actions in such a way that
t(st') = (ts)t' for all s € S and ¢, ¢ € T, we define the associated
two-sided semidirect product S = *T as the monoid with underlying set
S x T and operation defined by

(s, t) (', ) = (st' + t5', t').
An easy calculation shows that Sx*T is a monoid with unit (0, 1). When the
right unitary action of T on S is trivial, then S % +T is in fact a semidirect
product. Two-sided semidirect products were introduced by Rhodes and
Tilson [31].
Neither x nor % is associative on monoids.

Given two pseudovarieties of monoids V and W, their semidirect product
VW (respectively two-sided semidirect product V+xW) is defined to be the
pseudovariety of monoids generated by all semidirect (respectively two-sided
semidirect) products S*T (respectively Sx+T") with S € V and T € W. The
operation % on pseudovarieties is associative and commutes with directed
unions [4]. The operation xx on pseudovarieties is not associative. We will
represent by V¢ the semidirect product of i copies of the pseudovariety V.

For a pseudovariety V of monoids, we will denote by F4 (V) the free
object on the set A in the variety generated by V. The following lemmas
are representations of F4 (V x W) and F4 (V »xW) as submonoids of
Fp (V) % F4 (W) and Fp (V) «xF4 (W) respectively (where B is an
appropriate set) (these lemmas apply more generally [4, 51).

LemMa 1.1 (Almeida [2]): Let V and W be pseudovarieties of monoids that
admit finite free objects on finite sets. Then so does the pseudovariety VxW.

Moreover, for a finite set A, let T = Fy (W) and S = Fp (V) where
B = T x A. There is an embedding of Fa (V x W) into S xT defined
by a — ((1, a), a), where the left unitary action of T on S is given by
t(t', a) = (t¢, a) for t, ' € T and a € A.

Lemma 1.2 (Almeida and Weil [5]): Let V and W be pseudovarieties
of monoids that admit finite free objects on finite sets. Then so does the
pseudovariety 'V *« xW., '

Moreover, for a finite set A, let T = Fo(W) and S = Fp (V) where
B = T x A x T. There is an embedding of Fa(V W) into S sxT
defined by a — ((1, a, 1), a) , where the left unitary action of T on
S is given by t(t1, a, t2) = (tt1, a, t2) and the right unitary action by
(t1, a, t2)t = (t1, a, ta2t) for t, t1, ty € Tand a € A.
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462 F. BLANCHET-SADRI

1.1.4. Identities and varieties of finite monoids

We end this section with a few more definitions and notations. Let A be a
set. A monoid identity is an expression v = v with u, v € A*. The identity
u = v is said to hold in a monoid S (or S satisfies u = v) and we write
S E u = v if, for every morphism ¢ : A* — S, we have ¢ (u) = ¢(v).
A monoid S satisfies a set of identities £ (S = &) if S |= e for every
e €& Wewrite V |E uw=uif for every S € V we have S | u = v.
An identity u = v is deducible from a set £ of monoid identities and
we write £ | u = v if, there exist words wg, wi, ..., wy € A* with
u = wp, v = wg, and there exist words a;, b; € A*, u;, v; € A*, and a
morphism ¢; : A* — A* such that w; = a; @; (u;) b, wiy1 = ai @i (v;) b,
and u; = v; € E orv; = u; € € for every 0 < ¢ < /L.

Given a set £ of monoid identities, the class of all finite monoids that
satisfy every identity in £ is a pseudovariety V (£) that is said to be defined
by €. The set £ is also said to be a basis (of monoid identities) for V (£).
Pseudovarieties are ultimately defined by sequences of identities (that is,
a monoid belongs to the given pseudovariety if and only if it satisfies all
but finitely many of the identities in the sequence), and finitely generated
pseudovarieties are defined by sequences of identities (that is, a monoid
belongs to the given pseudovariety if and only if it satisfies all the identities
in the sequence) [24].

1.2. Games and aperiodic monoids

Let A be a finite alphabet. The set A* Vy = {0, A*} constitutes level 0 of
Straubing’s hierarchy of star-free languages on A. The set A* Vi, which
constitutes level k + 1 of the hierarchy is then defined as the boolean algebra
generated by the languages of the form Loay L1 ... a; L; where ¢ > 0,
Ly,...,L; € A*V; and a1, ...,a; € A. We are led to x-varieties of
languages V. for every k > 0. We will denote by V, the pseudovariety of
monoids corresponding to V. In particular, Vy is the trivial pseudovariety
of monoid I. Sraubing’s hierarchy which was defined in [35] is related to
Brzozowski’s dot-depth hierarchy defined in [21]. Straubing’s hierarchy is
strict [19, 38] and | J;.~ Vi is the pseudovariety of aperiodic monoids A.

Each level of the hierarchy A* Vi, A*V,, ... contains a subhierarchy
that can be defined in the following way. For every m > 1, we define
A*Vi41,m as the boolean algebra generated by the languages of the
form Lopay L1 ...a; L; where 0 < ¢ < m, Lg,...,L; € A*V; and
ai, ..., a; € A. We have then A* Vi = J,,;5>1 A" Vi,m. We are led to
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SEMIDIRECT AND TWO-SIDED SEMIDIRECT PRODUCTS OF FINITE J-TRIVIAL MONOIDS 463

*-varieties of languages V. ,, for every k, m > 1. We will denote by Vi,
the pseudovariety of monoids corresponding to Vi .

The set A* V) is the boolean algebra generated by the languages of the
form A*a1 A* ... a; A* where i > 0 and a1, ..., a; € A, and hence WV
is the x-variety of piecewise testable languages. From a result of Simon
[32, 33], V1 is the pseudovariety of J-trivial monoids J. We then have an
algorithm to test whether a recognizable language is of level 1 in Straubing’s
hierarchy.

For each integer m > 1 and each u € A*, we define a,, (u) to be the set of
all the subwords of u of length less than or equal to m (a word a1 ... a; € A*
is a subword of a word v € A* if there exist words v, ..., v; € A* such
that v = wgay v1 ... a; v;). We consider the equivalence relation «;, on A*
defined by u oy, v if am (u) = am, (v). We will abbreviate g (u) by a (u)
the set of letters that occur in u. Note that o, is a congruence of finite
index on A*. By definition, a language is piecewise testable if and only if it
is the union of classes modulo «,, for some m. More precisely, a language
is in A* V1, if and only if it is the union of classes modulo a;,. We will
also denote V1 4, by Jin.

We proceed with a generalization of oy, related to an Ehrenfeucht-Fraissé
game. We identify each u € A* with a word model v = ({1, ..., |ul},
<™, (R¥)aeA)where the universe {1, ..., |u|} represents the set of positions
of letters in the word u, <* denotes the usual order relation on {1, ..., |ul},
and R} are unary relations on {1, ..., |u|} containing the positions with
letter a, for each a € A. The game Gy, (u, v), where ™ = (my, ..., mg) is
a k-tuple of positive integers and u, v € A*, is played between two players I
and 77 on the word models u and v. A play of the game consists of £ moves.
In the ith move, Player I chooses, in u or in v, a sequence of m; positions;
then, Player 11 chooses, in the remaining word (v or u), also a sequence of
m; positions. Before each move, Player I has to decide whether to choose
his next elements from u or from v. After £ moves, by concatenating the
position sequences chosen from u and from v, two sequences pi, ..., Dn
from v and ¢, ..., g, from v have been formed where n = m1 + - - - +my.
Player 11 has won the play if the following two conditions are satisfied:

1. p; <“p; if and only if ¢; <“gj forall 1 <4, j < n.
2. RY p; if and only if RY¢; for all 1 <4, j < n and a € A.

Equivalently, the two subwords in « and v given by the position sequences
P1, ..., pn and q1, ..., gp should coincide. If there is a winning strategy
for Player II in the game to win each play we say that Player I/ wins
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464 F. BLANCHET-SADRI

Gin (u, v) and write u am v. The special case G, (u, v) where 1) denotes
the k-tuple of 1’s is the standard k-move Ehrenfeucht-Fraissé game [22].
The equivalence relation a,; naturally defines a congruence on A*. For
fixed m, we define the pseudovariety Vg as follows: an A-generated
monoid S is in Vi if and only if S is a morphic image of A*/ap.
It is known that each Vg is decidable [15]. Note that the equalities
®(m) = am and V(y) = Jn hold. The pseudovariety Vj (respectively
Vi m) turns out to be the union U(ml,..,‘mk’) Vim,,...,m,) (respectively
Ugm, my, ooy mies) Ym,ma, .ymi_y) [37, 38, 26]. If m = (ma, ..., my), then
(m, m) will denote (m, mq, ..., mg).

1.3. Identities and aperiodic monoids

Blanchet-Sadri [11, 12] describes a simple basis of identities Ay, for Jp,.
Let m > 1 and let X be a countable set of variables =1, z9, 3, ... Letting
T = 1, the basis Ay, consists of the following type of identities on X’ +.

Ui oos ULTV] oo UV = U o0 UL VL ... Uy )

where {z} C a(u1) C -+ Ca(y) and {z} C a(v1) C --- C a(v;), and
where 7 + j = m. The basis 4; is equivalent to the identities zy = yz
and 2?2 = z, Ay to (zy)? = (yz)? and zyzzz = zyzz, and Aj to
(zy)? = (yz)3, zyzzzuzvz = ryzzurvz and 2VTUTZTYT = ZVTUTZYL.
The pseudovarieties J;, Jo and J3 are hence finitely based. However, for
every m > 4, the pseudovariety J,, is not. Also, in [12] we show that
V3.1 is ultimately defined by the following two types of identities on X'+
(x = z1 and y = z2):

Us ...u1x2v1 e V= U .. UL TV L. Yy

where {z} Ca(u1) C - Ca(yw) and {z} C a(v1) C- - C a(y) and
Ui oot ULTYVL <o U = Uj o U YT VY .. U

where {z, y} Ca(u1) C--- Ca(w)and {z, y} Ca(v) C - Ca(y),
and where 7 > 1.

Almeida [3] gives a basis of identities B,, for J’l’"""1 which we now
describe. Let m > 1. Letting z = z1 and y = x3, the basis B, consists of
the two following types of identities on X'+:

Um ..‘uleZUm...ulx,
Um ++ - V1TY =Um ... V1 YT
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where {z} C a(u1) C -+ C a(upm) and {z, y} C a(v1) C -+ C a(vm)-
There, he also shows that for every m > 3, the pseudovariety J7* is not
finitely based. Almeida’s basis B; is equivalent to the identities zuz? = zuz
and zuyvzy = zuyvyz (previously shown in [29] to describe J3). It is
known that | J,,~; J1* is the pseudovariety R of all R-trivial monoids [34]
and that each J7* is decidable [28].

In this paper, we discuss a technique to produce indentities for
the semidirect or two-sided semidirect product of two locally finite
pseudovarieties V and W. In this case both V and W have finite free
objects on finite alphabets.

The notion of congruence plays a central role in our approach. For any
finite alphabet A, we say that a monoid S is A-generated if there exists a
congruence v on A* such that S is isomorphic to A*/v. A pseudovariety of
monoids V is locally finite if for any A there are finitely many A-generated
monoids in V. Equivalently, there exists for each A a congruence y4 of
finite index such that an A-generated monoid S is in V if and only if S
is a morphic image of A*/va4.

Let V and W be two locally finite pseudovarieties of monoids. Let
be the congruence generating W for the finite alphabet A and let 3 be the
congruence generating V for the finite alphabet F4 (W) x A (F4 (W)) is
isomorphic to the quotient A* /). The idea is to associate with V « W a
congruence ~g , on A*. Section 2 gives a criterion to determine when an
identity on A holds in VxW with the help of ~g .,. This leads to a proof that
such V x W are locally finite and hence decidable. The essential ingredient
in our proof is a semidirect product representation of the free objects in
V + W due to Almeida [2]. If § denotes instead the congruence generating
V for the finite alphabet F'4 (W) x A x F4 (W), we can associate with
V % %W a congruence ~3 , on A* and obtained similar results by applying
a result of Almeida and Weil [5].

In Section 3, further exploration of the basic criteria of Section 2 leads
to bases of identities for the products V % J,, (Section 3.1) and V »xJ,
(Section 3.2) where V denotes a locally finite pseudovariety of monoids
whose generating congruence is included in «;. Case studies are then
proposed. We study semidirect products of the form Jy,, *...%J,, (Section
3.1.1-3.1.2) and (J1 * Jm, )¢ * I, (Section 3.1.3) where V¢ denotes the
reversal of V. A simple basis of identities is described for each of these
semidirect products. Our results imply the relations J; x J,, = J ’I"H and
Iy %ok Iy, = Iy * Iing oo, - We also study two-sided semidirect

vol. 30, n° 5, 1996



466 F. BLANCHET-SADRI

products of the form Jy,, x*J,, (Section 3.2.1) and some iterated two-sided
semidirect products of J; (Section 3.2.2). We give a basis of identifies for
Jm, **Jm, and for each W; where W1 = J; and W1 = W; %xJ;. Our
results imply that the k-more standard Ehrenfeucht-Fraissé game is perfectly
related to W), where W) = J; and for all s > 1, W/ 41 = J1 WY (we
have W}, = Vl %). Our results also imply the relations J; **V,; = V(l )
and A = [y, Wi

2. IDENTITY CRITERIA FOR SEMIDIRECT PRODUCTS OF LOCALLY FINITE
PSEUDOVARIETIES

In this section, we give criteria to determine when an identity is satisfied
in the semidirect or two-sided semidirect product of two locally finite
pseudovarieties of monoids.

2.1. Preliminaries on locally finite pseudovarieties

Let A be a finite alphabet. Let W be a locally finite pseudovariety of
monoids and let v4 be the congruence of finite index on A* such that an
A-generated monoid S belongs to W if and only if S is a morphic image
of A*/~v4. The pseudovariety W admits finite free objects on finite sets.
Let 7y, from A* into F4 (W) be the canonical projection that maps a to
the generator a of Fy (W). If u, v € A*, then ny,(u) = 7y, (v) if and
only if uvy4w.

DerINITION 2.1: Let A be a finite alphabet. Let w = ay ... a; € A*. We
write o, (u) for the word

(1, a1) (71'7A (a1), a,z) (ﬂ-'YA (al ai_l), ai)

on the alphabet B = F4 (W) x A. Also, if w € A*, we write o, (u) for
the word

(mya(w), a1) (my,(war), ag) ... (7y, (wai ... ai—1), a;).

DErINITION 2.2: Let A be a finite alphabet. Let uw = a1 ... a; € A*. We
write Ty, (u) for the word

(1,01, my,(az. .. ai))(my, (a1), a2, 7y, (a3. .. a;)) . . . (7y,(a1. . . ai—1), i, 1)
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on the alphabet B = F4 (W) x A X Fy (W). Also, if w, w' € A*, we write
w, w'
Ty (u) for the word

(T p (W), a1, 7y, (az ... a;w')) (1, (wa1), az, 7y, (a3 ... a;w'))

ooy, (war ... oai1), ag, Ty, (W)).
2.2. On semidirect products of two locally finite pseudovarieties V and W

Fix two locally finite pseudovarieties of monoids V and W. Let 54

(respectively -4) be the congruence of finite index generating V (respectively
W) for the finite alphabet A.

2.2.1. The case V * W

Let A be a finite alphabet and let B = F)y (W) x A. If u, v € A*, we
write u ~g, 4,v for oy, (u) Bp oy, (v) and u~y4 v.

Lemma 2.1: The equivalence relation ~g, ., is a congruence of finite
index on A*.

Proof: We will abbreviate Sp by § and 4 by « throughout the proof.
Assume u ~3 v and u' ~g ,v'. We have

oy (u) Boy (v) and Uyv

and similarly with u and v replaced by ' and v'. Since v is a congruence
we have uu'yvv'. The above, the fact that my (u) = 7y (v), and the fact
that § is a congruence imply that

oy (W) = o (u) o (W) = 0y (u) 05 (u) Boy (v) 5 (V) = oy ().

Thus ww' ~g yvv' showing that ~g ., is a congruence. This obviously is a
congruence of finite index since § and v are. O

The following lemma provides an identity criterion for V. x W.

LEMMA 2.2: Let A be a finite alphabet, let B = Fy (W) x A and let u,
v € A*. We have

Vx W satisfiesu =vif andonlyif u ~g, ,v.

Consequently, an A-generated monoid S belongs to V « W if and only if S
is a morphic image of A*| ~pg, 4,

Proof: We will abbreviate Sp by § and v4 by ~ throughout the proof.
Let v = v be an identity on A. Then u = v holds in V « W if and only if
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u and v represent the same element of F4 (V x W). By Lemma 1.1, this
is equivalent to u and v having the same image under the embedding of
Fs (VxW)into Fg (V) x F4(W) defined by a — ((1, a), a), where the
left unitary action of F4(W) on Fp (V) is given by ¢ (¢, a) = (t', a) for
" t,t' € F4 (W) and a € A.

Letu =a1...a; and v = by ... b;. Then, u is mapped to

((1, @1) + (a1,a2) + -+ (a1 ... ai-1, @), a1 ... a;), 2

and v to

((1, bl) -+ (b1, bz) +---+(bl bj_l, bj), by ... bj), 3

(here, Fp (V) is written additively). The identity u = v holds in V x W
if and only if corresponding components of the pairs (2) and (3) coincide.
The condition “the first components of (2) and (3) coincide” is equivalent
to 0y (u) Boy (v), and the condition “the second components of (2) and (3)
coincide” is equivalent to uywv. [

CoroLLARY 2.1: If A is a finite alphabet and if V and W are two locally
finite pseudovarieties of monoids, then V « W is locally finite and it is

decidable in polynomial time whether a finite A-generated monoid belongs
to Vx W,

Proof: Let A be a finite alphabet. A finite A-generated monoid S belongs
to V x W if and only if S is a morphic image of Fi4 (V x W) (which is
isomorphic to A*/ ~g, -, and hence finite). This is equivalent to saying that
S satisfies all the identities of Fi4 (V*W) in | A| variables. But, by a theorem
of Birkhoff (see [20]), this set of identities is finitely based and so there is a
polynomial time algorithm to decide whether S belongs to V+W. O

2.2.2. The case V W

Let A be a finite alphabet and let B = F4 (W) x A x F4 (W). If u,
v € A%, we write u = g, ,v for 7,, (u) Bp 7y, (v) and u,, v.

Lemma 23: The equivalence relation = g, ., is a congruence of finite
index on A*.

Proof: We will abbreviate fp by 8 and v4 by 7 throughout the proof.
Assume u =g v and v’ ~g ,v'. We have

Ty (u) By (v) and wyw
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and similarly with u and v replaced by «' and v'. Since v is a
congruence we have uu’ vy vv'. The above, the facts that my (u) = 7y (v) and
7y (u') = 7y (v'), and the fact that 3 is a congruence imply that

7y (wu') = 7',}’“' (u) 7%t (u) |
=7V () i (W) BV (0) 0 (o)) = 7y (00).

Thus uu' =3 ,vv’ showing that ~g - is a congruence. This obviously is a
congruence of finite index since 8 and « are. [l

We end this section by giving an identity criterion for V «xW.

LeEMMA 24: Let A be a finite alphabet, let B = F4 (W) X A x F4 (W)
and let u, v € A*. We have

V xxW satisfies u = vif and only zf U RIGy vl

Consequently, an A-generated monoid S belongs to V W if and only if
S is a morphic image of A*| =g, ~,-

Proof: We will abbreviate g by [ and 4 by ~ throughout the proof. Let
u = v be an identity on A. Then v = v holds in VxxW if and only if w and v
represent the same element of )y (V+xW). By Lemma 1.2, this is equivalent
to u and v having the same image under the embedding of F4 (V W) into
Fp (V) % xF4 (W) defined by a — ((1, a, 1), a), where the left unitary
action of Fy (W) on Fp (V) is given by t (¢1, a, t2) = (tt1, a, t2) and the
right unitary action by (t1, a, t2)t = (¢1, a, t2t) for ¢, t1, t2 € Fq (W)
and a € A.

Letw=ay ... a; and v = by ... b;. Then, u is mapped to

((1,a1,a2 ... ai)+(a1,a2,a3 ... ai)+---+(a1 ... a;j—1, ai, 1),a1 ... a;),
4

and v to

((1,b1,b2 ... bj)+ (b1, bz, b3 ... bj)+--+ (b1 ... bj—1,b5,1), b1 ... bj),

(5)
(here, Fg (V) is written additively). The identity v = v holds in V xW
if and only if corresponding components of the pairs (4) and (5) coincide.
The condition “the first components of (4) and (5) coincide” is equivalent
to 7, (u) A7, (v), and the condition “the second components of (4) and (5)
coincide” is equivalent to u~yw.
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CoROLLARY 2.2: If A is a finite alphabet and if V and W are two locally
finite pseudovarieties of monoids, then V «xW is locally finite and it is
decidable in polynomial time whether a finite A-generated monoid belongs
to V x*xW

Proof: The proof is similar to that of Corollary 2.1.

3. ON SEMIDIRECT PRODUCTS OF A LOCALLY FINITE PSEUDOVARIETY V
BY J,,

Fix a locally finite pseudovariety of monoids V and let B4 be the
congruence of finite index generating V for the finite alphabet A. Here
we assume that 34 C a1. In Section 3.1, we give a basis of identities for
V x J,, and in Section 3.2, a basis for V x xJ,.

We will need the following properties of the congruence o, or
repeatedly.

LemMA 3.1 (Simon [33]): Let m > 1. Let A be a finite alphabet and let
u, v € A*. We have u ooy uv (respectively u ony vu) if and only if there exist
words Ui, ..., Um SUch that w = Uy, ... uy (respectively u = uy ... Upm)
and a(v) C a(u1) C -+ C a(um).

Lemma 3.2: Let m > 1. Let A be a finite alphabet and let u, v € A*. If
Oa,, (U) @1 0q,, (V), then womv.

Proof: Put w = a1 ... a;, v = by ... bj. Since o0q,, (u) 1 0q,,(v), the
letter (7q,, (@1 ... ai-1), a;) which is in o4, (u) is also in o4, (v), and
the letter (7q,, (b1 ... bj—1), bj) which is in o, (v) is also in o4, (u). So

there exist 1 < k < ¢ and 1 < ¢ < j satisfying
(Wam (a1 . a.i_1), a,;) = (’Iram (bl ce. bg_l), b@).,

(7ram (b1 ce bj_l), b]') = ('ﬂ'am (a1 v a;,;_l), ak).

We conclude that ay, (u) = am (a1 ... @) = am (b1 ... b¢) C am (v) and
am (v) C am (u) follows similarly. O

LemMA 3.3: Let k > 1 and let m be a k-tuple of positive integers. Let A
be a finite alphabet and let u, v € A*. If T, (u) 1 Ta, (v), then ua myv
and therefore u oum v.

Proof: The condition Ty, (u) 1 Ta,, (v) is equivalent to waqy myv. O
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We will also need the following property of the congruence c(y, m). If
u=aj...an is a word on A and 1 < ¢ < j < n, then w(s, j], u (s, 7),
u (i, j] and u [z, j) denote the segments a; ... aj, Gi41 ... Gj—1, Qit1 - .. Gj,
and a; ... a;j—1 respectively (u[i, i) denotes the empty word).

Given a finite alphabet A and a word u € AT, the (m) first positions
in u are defined as follows: Let u; denote the smallest prefix of u such
that o (u1) = a(u); call p; the last position of w;. Then, let up be the
smallest prefix of u (p1, |u|] such that & (up) = a(u(p1, |ul]); call p2 the
last position of ug if u (p1, |u|] is nonempty, otherwise let p; = p1. Continue
this way. Then having defined um,m—1 and pp—1, let u,, be the smallest
prefix of u(pm—1, |u|] such that & (um) = a (u(pm-1, |ul]); call pm the
last position of wuy, if u(pm—1, |u|] is nonempty, otherwise let pm = prm—1.
If |a (u)] = 1 (Ja (u)] denotes the cardinality of « (u)), p1, ..., pm are the
(m) first positions in u and the procedure ends. If |a (w)] > 1, p1, ..., Pm
are among the (m) first positions in u. The rest are found by repeating the
process to find the (m) first positions in u[1, p1) (if nonempty) and the
(m — 1) first positions in w(p;, pi+1) (f nonempty) for all 1 < ¢ < m.
Similarly, the (m) last positions in w are defined by finding suffixes of
u. Together, the (m) first and (m) last positions in u are called the (m)
positions in u. These positions were defined in [9].

Lemma 3.4 (Blanchet-Sadri [9]): Let m > 1. Let A be a finite alphabet
and let u, v € AY. Let p1, ..., pr (p1 < -+ < pr) (respectively qu, ..., q
(g1 < -+ < qp)) be the (m) positions in u (respectively v). We have
Wy, m) v if and only if the following three conditions are satisfied:

1.k = ¢
2. RYpiifand only if R} q; forall1 <1<k and a € A.
3. u(pi, pit1) @1 v (¢, giy1) forall 1 < i < k.

For sections 3.1 and 3.2, fix a sequence u; = v;, ¢ > 1 of identities on
X* defining V and call it £.

3.1. The case V x J,,

We now give a basis of identities for the pseudovariety V x Jp,.

Let m > 1. The basis &}, consists of the following type of identities on X™*:
Wiy « . W U = Wyy - .. W] Vi (6)

where o (u; v;) C a(wi) C -+ C a(wm), and where ¢ > 1.
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TueorEM 3.1: Let m > 1. The pseudovariety V x ., is defined by E,,.

Proof: Fix m > 1. For the inclusion V xJ,, C V (£,), we use Lemma
2.2. Let u = v be any identity of type (6), that is

U= Wm ... W1 Uy,
V= Wy ... W Vs,
where « (u;v;) C a(wi1) € -+ C a(wp), and where ¢ > 1. Then we

need to show that u ~ 8p, an v, or 04, (u) BB 0a,, (v) and v a,, v where
A = a(uww) and B = F4(J,) X A. By Lemma 3.2, this amounts to
verifying that o4, (u) Bp 04, (v) (here O C a3 by assumption). First, we
note that for every w on A satisfying o (w) C « (w1 ), we have the equality
Ta,, (Wm <. W1 W) = Mg, (W ... w1)since a(wy) C -+ C a(wpm). This
comes from Lemma 3.1. It then follows that

o, (W « .. w1 W) = 7Tq,, (W ... w1)

for every prefix w of u; since a (u;) C a (w1). A similar statement can be
made for every prefix w of v;. These statements are used in the computation
of oo, (u) and o,,, (v) which follows. If w = a1 ... an on A, we will
abbreviate the word

(7o, (Wi w1), a1) (Ta, (Wm ... w1), a2) ... (Ta,, (Wm ... w1), an)

on the alphabet B by o (w). We have the equalities

Oa,, (u) =0Oa,, ('U/m S 'wl) g (ul),

Oa,, (V) = 0a,, (Wm ... w1)o (v;).

Now, we have o (u;) Bp o (v;) since u; 84 v;, and therefore o, (u) and
Oa,, (v) are fp-equivalent. This shows that V x J,, satisfies u = v.

For the reverse inclusion, it suffices to show that if an identity v = v
holds in V % J,,, then it is a consequence of &,. Again by Lemma 2.2
and Lemma 3.2, our hypothesis on the identity w = v means that
0w, (u) BB 0q,, (v) where A = a(wv) and- B = F4(J) x A. Let
u'a be the shortest prefix of u satisfying m,,, (v’ a) = 7o, (u). The
word u can hence be factorized as u = u'au” for some v/, u" € A*.
Since 7, (W'au") = m,,, (Wa), there exist wi, ..., w,m € AT with
va = Wy ... w1 and a(v”’) C a(w;) C - C a(wny) by Lemma 3.1.
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Now, let v'b be the shortest prefix of v satisfying 7o, (v'b) = 7q,, (v)
giving a factorization v = v'bv" for some v/, v/ € A*. We have

where for every w = a1 ... a, on A, the word

(7a,, (w), a1) (7a,, (u), a2) ... (7a,, (v), an)

on the alphabet B has been abbreviated by o’ (w) (74, (u) = 7a,, (v) by
Lemma 3.2). We first note that a,, (u') is lacking an element of ay, (u)
ending with a, and a;, (v') is lacking an element of ay, (v) ending
with b. The sets a(oq,, (W), {(7a,, (¥'), @)}, a(d'(v")), a(oa,, (V)),
{(7a.,, (v), b)} and o (o'(v")) are pairwise disjoint except possibly for the
pair & (7a,, (), (70, (v), the pair {(Ta,, (W), &)}, {(Ta,. (v)), D)}
and the pair a (o/(v")), a(0'(v")) (this fact will be used in the rest of
the proof). To see this, the letters in oy, (4'), 04, (v') and the letters
(Ta, (W), @), (7q,, (V'), b) cannot appear in o’ (u”) nor in o’(v") since
every letter in o'(u”) or ¢'(v") has m,, (u) as first coordinate; the
letter (7a,, (v'), a) (respectively (mq,, (v'), b)) cannot appear in o, (u)
(respectively o, (v')) because of the choice of u'a (respectively v'b; and the
letter (7o, (v'), a) cannot appear in o, (v') since every letter in o4, (V')
has as first coordinate a word that is lacking an element of ., (v) ending with
b but contained in v’ (similarly (7q,, (v'), b) cannot appear in oy, (u')).
Second, if a # b, then the letter (mq,, (v'), a) which is in a (o4, (u))
is not in a(oq,,(v)). We get a contradiction since oq,, (u) a1 oq,, (v).
So (mq,, (v), a) = (mq,, (v'), b), yielding a = b. Consequently, we
get oq,, (V) BB oa,, (V'), and o' (u") Bp o' (v"") or v B40". The identity
u” =" is deducible from the defining basis of V since u” S4v”. We hence
see that v'au” = Wy, ... w1 ¥ = wy, ... w1 v’ = wav” is deducible from
&, Now, since o, (v') and o4, (v') are fp-equivalent, we can repeat
the process. Since u and v obviously start with the same letter (oo, (u)
and o4, (v) have the same alphabet and their first letter is the only one
to have 1 as first coordinate), the process terminates with a deduction of
u=wv from &, O

CoroLLarY 3.1: The pseudovariety V x J is ultimately defined by &,
m > 1.
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Proof: The result follows from VxJ =V x|J,,51 Im = Upm>1 V*Im
and Theorem 3.1. O - -
3.3.1. A basis of identities for Jp, x Jm,

In this section, we give a basis of identities for the pseudovariety J,, *Jm,.

Let m1, my > 1. Letting £ = z1, the basis (Ap,)p,, consists of the
following type of identities on X T:

Wmy - W1 U -.. UT TV ... Vj = Wm, oWl U - ULVT .- Uy

where o (u; vj) C a(w1) C -+ C a(wn,), where

{z} Ca(u) C - Caly) and {z} Ca(vu)C - Caly),

and where 7 4+ 5 = ma.

COROLLARY 3.2: Let mq, my > 1. The pseudovariety Jp,, x Iy, is defined
by (Am,)m,-
Proof: By Theorem 3.1 using the fact that o, € o1 and

Jm1 = V(Aml)- d

CoroLLARY 3.3 (Blanchet-Sadri [14]): Let m > 1. We have the relation
JixJn, = JT'H.

Proof: Since we are dealing with equational pseudovarieties, the equality
JixJm = JT’H means that J; « J,,, and JT'H satisfy the same identities.
Almeida [3] shows that J71n+1 is defined by B, and Corollary 3.2 shows
that J1 xJ,,, is defined by (A;).,. But it is easy to see that By, is equivalent
to (A1), O

The relation J1 xJ = R is known to Brzozowski and Fich [18]. The
equality J1 « J,, = J7F! gives a proof that a conjecture of Pin [28]
concerning tree-hierarchies of pseudovarieties of monoids is false [14]
(another proof using different techniques is given in [15]). Almeida [3]
implies that J1 x J,, admits a finite basis of identities if and only if m = 1.

3.1.2. A basis of identities for Jm, x ... x I,

In this section, we give a basis of identities for the pseudovariety
Joy * o0 I,

CoroLLARY 3.4: If k > 2 and ma, ..., my are positive integers, then the
pseudovariety Jpy, * ... Iy, is defined by (Anh)',n?+,_,+mk.
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Proof: The proof is by induction on k. For k£ = 2, the result is
Corollary 3.2. Assume the results holds for k. Now, Lemma 2.2 provides a
congruence [, generating Jp,, * ... *Jpm, . For k =2, (o =™, am, s then
Br+1 =N B Qg We have i, C a, C oy for & > 2. Using the inductive
hypothesis, Theorem 3.1 and the inclusion fx C a1, we get that

J',nl * ... *J7nk+1 = (J7nl * ... *J',nk) *J777/k+1

is deﬁ/ned by ((Am,)m.4-4my)me.,- But the latter is equivalent to
(Anll)ﬂ12+~"+'lnk+1‘

CoroLLARY 3.5: If k > 2 and m1, ..., my are positive integers, then we
have the relation Jpm, * ... *Jm, = Iy * Iyt -

Proof: Since we are dealing with equational pseudovarieties, the equality
Jm, * oo * I, = Iy * Imp+tm, means that Jp, * ... xJpy, and
Jim, * Iyt +m, satisfy the same identities. Corollary 3.2 shows that
Jm, * Jmgtgm, is defined by (Am, )i, 4. 4m, and Corollary 3.4 shows
that Jpn, * ... % I, is also defined by (Am, ), 4opm, - O

3.1.3. A basis of identities for (J1 x I, )? * T,

Given any pseudovariety of monoids V, define V¢ = {S¢|S € V}
(here, S? is the monoid S reversed). The set V¢ is a pseudovariety of
monoids. In this section, we give a basis of identities for the pseudovariety
(J1 *x T, ) * T,y

Let m1, mg > 1. Letting z = z1 and y = x3, the basis Cyn,,m, consists
of the following two types of identities on X'+:

2
u',nz PSR 7% N A 75 N 'U',nl =U7n2 Lo U1V L. v',nl

where {2} Ca(v1) C - Ca(vm,) Ca(u) C- - C a(vm,), and
Umy -« UL TYVL - .. U, = Umy - - - UL YTVL - .. U,

where {z, y} C a(v1) C - C a(vm,) C a(w) C -+ C a(vm,). The
basis Cy,, 1 turns out to be close to a basis in Section 3.2.1.

COROLLARY 3.6: Let m1, mg > 1. The pseudovariety (J1 % Jim,)? * I,
is defined by Cp, m,.

Proof: Let A be a finite alphabet and let u, v € A*. We have (J; xJp,,)?
satisfies © = v if and only if Jy x J,, satisfies u¢ = v? if and only if
Oa, (u0) 104, (v?)and u? am, v9 (the notation w? refers to the reversal
of w). We therefore conclude that the congruence generating (Jq1 x Jp,,)?
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for A is included in «;. The latter, Theorem 3.1 and J1 * Jp,, = V (Bp,)
implies the result.

3.2. The case V »xJ,,

We now give a basis of identities for the pseudovariety V #xd,.
Let m > 1. The basis &), consists of the following type of identities on X'*:

/ / / /
Wy ovoe WL UWY e Wyyy = Wiy« WLV WY - .. Wiy )

where o (u;jv;) € a(wi) € -+ € a(wm) and

o (ujv) Ca(w)) € Ca(wy),

and where 7 > 1.

TueOREM 3.2: Let m > 1. The pseudovariety V »xJ3, is defined by EL),.

Proof: Fix m > 1. For the inclusion VJ,,, C V (€)),), we use Lemma 2.4.
Let u = v be any identity of type (7), that is

/ !
U= Wy ... WU W] ... Wy,

V= Wy .. WV WY L Why,
where
a(uivi) Ca(w) C--- Ca(wn),
Ol(’Ll,i’Uz‘) C a(wll) c..-C a(w;‘n)>

and where ¢ > 1. Then we need to show that 7o, (u) BB 7o, (v) and v am v
where A = a(uv) and B = F4 (J;m) X A X F4 (Jrn). By Lemma 3.3, this
amounts to verifying that 7o (u) 8B 7a., (v) (here Sp C a1 by assumption).
First, we note that for every w on A satisfying

a(w) € a(w),

we have the equality 7o, (Wm ... w1 w) = 7q, (Wn ... w1) since
af{wy) C -+ C a(wpy). This comes from Lemma 3.1. It then follows
that 7o, (Wi ... w1 W) = Ta,, (Wn ... wy) for every prefix w of u; since

a(u;) € a(wy). A similar statement can be made for every prefix w of
vi. Second, we note that for every w satisfying o (w) C a(w}), we have
the equality
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Ta,, (WW) ... w,) = o, (W) ... wh,) since
a(wy) C - Ca(wy)
This also comes from Lemma 3.1. It then follows that
T, (WW] ... W) = 7, (W) ... wl,)

for every suffix w of u; since o {u;) C a(w}). A similar statement can be
made for every suffix w of v;. These statements are used in the computation
of 7, (u) and 74, (v) which follows. If w = a1 ... a, on A we will
abbreviate the word

= (wm ..ow1), a1, T, (W) ... W)
Ao, (Wi o w1), Gn,y o, (W .. W)

on the alphabet B by 7 (w). We have the equalities

1, w0
Ta,, (0) = Tar 1 m (Wm -~ w1) T (i) 7o w1 (wh ... w),),
_ Lwl.wl, Wy ... Wi, 1 / !
Ton, (V) = Tal, (Wm .- w1) T () 7007 (wy ... wy,).

Now, we have 7 (u;) 8p 7 (v;) since u; 84 v; and therefore 7, (u) and
Tan (V) are fp-equivalent. This show that V #xJ,, satisfies u = v.

For the reverse inclusion, it suffices to show that if an identity v = v
holds in V %xJ,,, then it is a consequence of &),. Again by Lemma 2.4,
our hypothesis on the identity « = v means that 7o, (u) 0B 7o, (v) and
uomv with A = a(uv) and B = F4 (J;m) X A X Fg (J,). First of all,
Tam (4) BB Ta,, (v) implies w e ) v by Lemma 3.3. Since u and v are
either both empty or both nonempty, we treat the case where u and v are
both nonempty (the other case is trivial). Let p1, ..., pr (p1 < -++ < p)
(respectively ¢1,...,q¢ (g1 < -+ < g¢¢)) be the (m) positions in u
(respectively v). The three conditions of Lemma 3.4 are satisfied. In fact,
since Tq,, () OB Ta,, (v), we can say better (in the sense that the following
three conditions imply the three conditions of Lemma 3.4 since 84 C a1):

ok =L

o Ry p; if and only if R; g; forall 1 < j < k and a € A.

o u(pj, pj+1)Bav (g, gj+1) for all 1 < j < k (this follows by an
argument similar to that of the proof of u” 84 v" in Theorem 3.1).

The latter implies that w (p;, pj4+1) = v(gj, gj+1) is a consequence of
Eforall 1 <35 <k
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Fix j. If w(pj, pj+1) is nonempty, rewrite w[1, p;] as wy, ... w1 and
/ ; .
w[pjt1, ul] as wy ... wy, for some wi, ..., Wp, W, ..., w;, with

a(u(pj, pj+1)) C a(wi) C - C a(wn),
Oz(’u,(pj, pf+1)) C a(wi) c.---C a(w:n)'

This can be done based on the choice of the p;’s. Since £ Fu (pj, pj+1) =
v(gy, gj+1) we get

" / / / /
EmEwm oo w1 u (P, Pjg1) W] . Wy = Wy« .. W1V (G, Q1) WY - - - Wy

We can repeat the process for each j, and we get a deduction of u = v
from &/. O

CorOLLARY 3.7: The pseudovariety V %xJ is ultimately defined by EV,,
m > 1.

Proof: The result follows from V xxJ = Um>1V *xJ,;, and
Theorem 3.2. [ B
3.2.1. A basis of identities for Jm, »*Jm,

In this section, we give a basis of identities for the pseudovariety
Iy %I,

Let m1, my > 1. Letting = 1, the basis (Am, )y, consists of the
following type of identities on X'7:

Wiy «vr WIUj - ULTVL .. VWY o Wy,
= Wmy +-- W1 U; -.. ULV ...’U]"wll ’w;nQ
where
(uivj) Ca(w) C - C a(wn,)
and
a(uivj) Ca(wy) C - Ca(wy,)
where
{z} Ca(wm)C - Ca(w)
and

{z} Sa(n) C - Caly),

and where ¢ + j = mg.
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In the case m1 = 1 and mg = m, the basis (A1)}, is equivalent to the
set consisting of the following two types of identities on X+ (z = z; and

y = z2)
Um - UL V] .. Uy = Uy ... ULTV] - .. Um

where {} Ca(u1) C - Ca(um)and {z} C a(v;) C - C a(vm), and
Um oo UL TYVL <. Uy = Uy - UL YLV .. Uy

where {z,y} Ca(u1) C - Ca(up)and {z,y} Ca(v) C--- C a(vm)

CoroLLARY 3.8: Let m1, my > 1. The pseudovariety Jn,, x*J ., is defined
by (A’ml);‘lng'
Proof: By Theorem 3.2 using the facts that

a',nl g a1 a;nd Jml = V (A'n'h)' D

COROLLARY 3.9: Let m > 1. We have the relation J1 xx J,, = V(l.,m)~
More generally, if k > 1 and m is a k-tuple of positive integers, then
J1 Vg = V(l,ﬁz)-

Proof: By Lemma 2.4 using the fact that u = 4, o, v if and only if
uQ(y ) v- U

The relation Jy »xVj = V41 1 is known to Weil (this is a particular
case of Proposition 2.12 in [40]).

3.2.2. On iterated two-sided semidirect products of J1
In this section, we study some iterated two-sided semidirect products of J;.
Let & > 2. Letting x = z1 and y = z2 the basis Dy consists of the
following two types of identities on X'+:
Uk—1 - - ulsczvl oo V1 = UE—-1 .--ULZTVY ... V-1
where {z} C a(u1) and {z} C a(v1), where a(u; v;) C a(u;+1) and
a(uiv;) C a(viyr) for 1 <7< k-1, and
Uk—-1 --- ULTYV] ... Vg1 = Uk—1 .- - UI YT V1 ... V-1

where {z, y} C a(u1) and {z, y} C a(v1), where & (u; v;) C o (uit1)
and o (u;v;) C a(vi41) for 1 < i< k- 1.

CoroLrary 3.10: Let W; be the sequence of pseudovarieties of monoids
defined by W1 = J1 and W1 = WixxJ1. If k > 2, then the pseudovariety
Wy is defined by Dy.

vol. 30, n® 5, 1996



480 F. BLANCHET-SADRI

Proof: The proof is by induction on k. For k£ = 2, the result is
Corollary 3.8. Assume the result holds for £. Now, Lemma 2.4 provides a
congruence (3 generating Wy. For k = 2, B =R, o,; then Brp1 == 3, o, -
We have B C ay for k > 2. Using the inductive hypothesis, Theorem 3.2
and the inclusion B C a1, we get that W1 = Wy xxJ1 is defined by
(Dg)}. But the latter is equivalent to D4i.

We end this section with an iterated two-sided semidirect product of Jq
perfectly related to the standard Ehrenfeucht-Fraissé game.

COROLLARY 3.11: Let W/ be the sequence of pseudovarieties of monoids
defined by Wy = J1 and Wi, ; = J; »W{. Let k > 1, let A be a finite
alphabet and let u, v € A*. We have W), satisfies w = v if and only if
uoq, v. In other words, W), = Vi, .

Proof: The proof is by induction on k. For k = 1, the result trivially
holds. Assume the result holds for £. Then WZ 1= J1 **W}C =J1%xxV7y,
(by the inductive hypothesis). But the latter equals V(y 1,y or Vi by
Corollary 3.9.

COROLLARY 3.12: Let W', be the sequence of pseudovarieties of monoids
defined by W’} = Jy and W | = J; »xW[. We have the relation
A = Ukzl Wi

Proof: Let £k > 1 and let m be a k-tuple of positive integers. We
have Vi, C V5 C Vi where n = my + --- + my. [6]. We have then
A = U>1 Vi, = U1 Wy by Corollary 3.11. O
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