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A CATEGORY THEORY APPROACH
TO CONCEPTUAL DATA MODELING (*)

by E. LIPPE (*) and A. H. M. TER HOFSTEDE (*)

Communicated by G. LONGO

Abstract. - This paper describes a category theory semantics for concepîual data modeling.
The conceptual data modeling technique used can be seen as a gêneralization of most existing
conceptual data modeling techniques. It contains features such as specialization, généralisation,
and power types. The semantics uses only simple category theory constructs such as (co)limits and
epi- and monomorphisms. Therefore, the semantics can be applied îo a wide range of instance
catégories, it is not restricted to topoi or cartesian closed catégories, By choosing appropriate
instance catégories, features such as missing values, multi-valued relations, and uncertainty can be
added to conceptual data models.

Résumé. - Cette contribution décrit une sémantique fondée sur la théorie des catégories et
développée en vue d'une modélisation conceptuelle des données. On peut concevoir la technique
ici utilisée de modélisation conceptuelle des données comme une généralisation de la plupart
des techniques existantes de cette modélisation. Elle comprend des caractéristiques comme la
spécialisation, la généralisation et des types des ensembles. La sémantique n'utilise que des
constructions simples provenant de la théorie des catégories, comme les (co-)limites ainsi que
les épi- et les monomorphismes. Par conséquent, elle peut s'appliquer à un large éventail de
catégories exemplaires; elle n'est pas limitée aux topoi ou aux catégories cartésiennes fermées. En
choisissant des catégories exemplaires appropriées, aux modèles conceptuels des données peuvent
être ajoutées certaines caractéristiques comme les valeurs absentes, les relations à plusieurs valeurs
et même l'incertitude.

1. INTRODUCTION

When developing information Systems the first crucial step is to develop a
model that describes the problem domain. This, however, is easier said than
done, as communication with problem owners can be notoriously difficult
and data can be of a complex nature. To improve this modeling process,
data modeling techniques have been introduced.
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In the past decades, data modeling techniques have shifted from
implementation oriented (such as the network model [5] and the relational
model [12]) to problem oriented. Some examples of problem oriented data
modeling techniques are the Entity-Relationship Model (ER) and its many
variants (see e.g. [11]), functional modeling techniques, such as FDM [27],
and object-role modeling techniques, such as NIAM [24].

Complex application domains, such as hypermedia and CAD/CAM, have
led to the introduction of advanced modeling concepts, such as those found
in the various forms of Extended ER (see e.g. [33], [13]), IFO [2], and
object-role modeling extensions such as FORM [17] and PSM [19].

Problem oriented data modeling techniques are usually referred to as
conceptual data modeling techniques, a name which reflects an intention
to abide by the Conceptualization Principle [14]. This principle states that
data models should deal only and exclusively, with aspects of the problem
domain. Any aspects irrelevant to that meaning should be avoided. Examples
of conceptually irrelevant aspects include aspects of (external or internai)
data représentation, physical data organization and access, as well as ail
aspects of particular external user représentations such as message formats
and data structures.

One of the most difficult aspects of modeling is to capture the précise
intentions of the problem owners. Communication with the problem owners
is therefore essential and must be supported by the data modeling technique
used. This is the reason why conceptual data modeling techniques offer
graphical représentations of their underlying concepts: as this facilitâtes
understanding of the models. A lack of graphie représentation, and the lack
of certain specialized concepts, explains why formai spécification languages,
such as Z [30] and VDM [20], never gained much popularity in this particular
field of study. This emphasis on graphie représentations has, however, a
side-effect, building sound, formai foundations has been neglected.

This lack of formai foundations in the field of information Systems has led
to a situation referred to as the "Methodology Jungle" [1], In [9] it is estimated
that during the past years, hundreds, if not thousands, of information system
development methods have been introduced. Most organizations and research
groups have defined their own methods. Hardly any of these has a formai
syntax, let alone a formai semantics. Discussion of numerous examples, many
using pictures, is a popular style for the "définition" of new concepts and their
behavior. This has led tofuzzy and artificial concepts in information Systems
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A CATEGORY THEORY APPROACH TO CONCEPTUAL DATA MODELING 33

development methods and, to some extent, in conceptual data modeling
techniques.

The goal of this paper is to define a gênerai and formai framework
for conceptual data modeling techniques. This framework should clarify
the précise meaning of fondamental data modeling concepts and offer a
sufficient level of abstraction to be able to concentrate on this meaning
and avoid the distractions of particular mathematical représentations (in a
sensé, the Conceptualization Principle can also be applied to mathematical
formalizations). These requirements suggest category theory as an excellent
candidate. Category theory provides a sound formai basis and abstracts from
ail representational aspects. Therefore, the framework will be embedded in
category theory.

The framework described may also be of use for conceptual data modeling
techniques that do have a formai foundation, as it may suggest natural
generalizations and expose similarities between seemingly different concepts.
The category theory foundation may also reduce proof obligations, due to
the principle of duality.

Another interesting application of the use of category theory can be found
in the opportunity to consider several different catégories as semantic target
domains. The catégories that act as semantic target domains are called
instance catégories. For example if one wants to study uncertainty in a
particular data modeling technique, it is natural to consider FuzzySet, the
category of fuzzy sets, as an instance category. In this sensé, the approach
outlined is more gênerai than approaches described in [32], [8] where only
topoi are possible instance catégories. Interesting catégories, such as Rel
and FuzzySet [25], [6] are not topoi.

Not every category can be used as instance category for data models.
Appropriate catégories should allow for certain constructions (e.g. coproducts
should always be defined) and they should have certain special properties
(e.g. coproducts have to be disjoint). Further, ail populations representable in
the category FinSet, consisting of finite sets and total functions, should be
representable in an instance category. The category FinSet provides a kind
of minimal semantics for data models. This category represents the intuitive
(and most standard) semantics of data models. Therefore, définitions are
mostly illustrated in terms of this category. Other catégories will, of course,
also be considered (e.g. Rel, PartSet, FuzzySet).

The paper is organized as follows. Section 2 contains an informai
introduction to the important concepts of conceptual data modeling and
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a gênerai définition of the syntax. Section 3 présents mathematical results
and notations needed for section 4, which focuses on the category theory
définition of the type constructs discussed in section 2. A category theory
définition of two important and frequently occurring constraint types in data
models is the topic of section 5. Section 6 addresses the requirements that
must be imposed on catégories to be valid instance catégories.

2. CONCEPTUAL DATA MODELING

In information Systems applications capturing the data perspective turns out
to be the main challenge for successful implementation. Problem domains
in this field of study generally can be characterized as data intensive,
computationally complex opérations hardly occur. As remarked before,
conceptual data modeling techniques aim at a précise, implementation
independent, description of the data perspective of an application, which
can be easily used in the communication with the problem owners.
Formai transformations exist for translating conceptual data models to
implementation oriented data models, underlying various relational or
object-oriented database management Systems (see e.g. [15]).

This section provides those readers not familiar with conceptual data
modeling with an overview of the main type construction mechanisms and
constraint types. The graphical représentations of one technique, PSM [19],
[18], will be employed, to avoid as much confusion as possible. PSM is
sufficiently gênerai for this purpose as it seems to contain all the essential
concepts needed for conceptual data modeling. Actually, our current approach
is even more gênerai than PSM, since several restrictions in PSM have been
removed. This section concludes with the définition of a type graph, which
captures the formai syntax of conceptual data models. The semantics of a
conceptual data model is the set of its possible instantiations, referred to
as populations. Populations are only addressed informally in this section, a
formai définition is given in section 4.

2.1. Basic object types

In conceptual data modeling techniques, a distinction is made between
objects that have a structure and objects that do not have a structure. The
former are discussed in sections 2.2 and 2.3. The latter are the so-called basic
objects. Examples of basic objects are persons, projects, names, project-
codes, etc. Usually a further distinction is made between objects that can
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be représentée directly on a communication medium (e.g. names or project-
codes) and objects that cannot be represented directly on such a medium
(e.g. persons and projects). The latter depend for their représentation on the
former. This issue is referred to as identification. In a conceptual data model
each object should be identifiable, Le. be denotable in terms of objects
that can be represented directly. Persons for example could be identified
by their names, while projects could be identified by a project-code. Of
course, identification could be more complex. For certain applications it is
conceivable that a more sophisticated identification scheme is needed for
persons, as two different persons could have identical names. Identifiation
plays a crucial rôle in conceptual data modeling as ultimately ail relevant
information has to be stored on a communication medium.

Basic objects can be instances of basic object types. A basic object type
Person can for example have instances Pi and F2 at a certain point of time.
An assignment of instances to an object type is referred to as a population
of that object type. An assignment of instances to each of the object types
in a conceptual data model is referred to as a population of that conceptual
data model. Populations change in time as new objects may become relevant
or existing ones may become irrelevant.

2.2. Fact types

One of the key concepts in data modeling is the concept of relationship
type, sometimes also referred to as fact type (the preferred term in this
paper). Generally, a fact type is considered to represent an association
between object types. A graphie représentation of a binary fact type R
between basic object types A and B is shown in the PSM style in figure 1.
In gênerai relationships may be n-ary, where n > 1.

R
_ /

B

Figure 1. - Représentation of a binary fact type

A concrete example of a binary fact type is given in figure 2. This
schema captures the fact that Persons may be enrolled in Courses. A sample
population of fact type Enrollment is shown in figure 3. In this sample
population person Pi is enrolled in the courses CS114 and CS115, while
person P% is enrolled in course CS114 only.
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36 E. LIPPE, A. H. M. TER HOFSTEDE

Enrollment

is-enrolled-in has-as-participant^

Figure 2. - A concrete example of a binary fact type

Enrollment

Figure 3. - A sample population of a fact type

A fact type consists of a number of rôles (r and 5 in figure 1), denoting the
way object types participate in that fact type. An object type may participate
in more than one rôle of a fact type, consider for example figure 4. In this
figure, persons may participate either as parents, or as children (or both)
in fact type Parenthood.

is-parent-of is-child-of
Parenthood

Figure 4. - A binary fact type

Fact types themselves may play rôles in other fact types. Consider for
example figure 5, where fact type Enrollment play s a rôle in another fact
type. The schema of this figure models the fact that persons may achieve a
score for a course in which they are enrolled. In this schema it is possible
that a certain person has not (yet) achieved a score for a course in which
(s)he is enrolled. In most conceptual data modeling techniques each instance
of a fact type should have a value for each of the rôles of that fact type,
In other words, missing values in fact type instances do not occur. If for
example the two fact types of the schema of figure 5 would be replaced by
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is-enrolled-in

Enrollment

has-as-panicipam

Figure 5. - An example of fact type participating in another fact type

a ternary fact type between Person, Course, and Score, each person has to
have a score for each of the courses for which (s)he is enrolled.

2.3. Power types

While instances of fact types may be viewed as tuples, instances of power
types may be viewed as sets. An instance of a power type can be seen as
a (nonempty) set of instances of its element type, which has to be another
object type of the data model. An instance of a power type is identified by
its éléments, just as a set is identified by its éléments in set theory (axiom
of extensionality). Hence, the instances of a power type are identifiable if
and only if the éléments of its element type are identifiable. Power typing
corresponds to the notion of grouping as used in the IFO data model [2],
the notion of user-controllable grouping classes in SDM [16] and the notion
of association in [7].

A simple example of the application of power types can be found in the
Convoy Problem [16], depicted in figure 6. In this diagram, the object type
Convoy is a power type with element type Ship. As a resuit, each instance of
object type Convoy can be considered as a set of instances of Ship. Convoys
are identified by their constituent ships, whereas ships are identified by a
Ship-code, In conceptual data modeling techniques without power types, the
introduction of a Convoy-code would be required in order to identify the
instances of object type Convoy, even when such a code is not present
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consists-of is-part-of \ ^ y has-name is-name-of

Figure 6. - A simple example of a power type

Cl
Cl
C2
C2
C?.

SI
S2
SI
S2
S3

SI

S2

S3

HV-301
HV-304
PU-21

_/ Ship-
\ code

Figure 7. - A sample population of power type Convoy

in the problem domain. Furthermore, one explicitly needs to guarantee the
extensionality property of sets.

As an example of a population of power type Convoy, consider figure 7. In
this example there are two convoys, Ci and C2. Convoy Ci can be viewed
as the set {Si, 52}, while convoy C2 can be viewed as the set {5i, 52Î £3}-
Apparently, in this problem domain convoys may share ships.

In some data modeling techniques, instances of power types are simply
sets, while in other data modeling techniques these instances have their own
identity but exhibit set behavior (as in the population of figure 7). In this
paper the latter approach is preferred as it is more gênerai. From a dynamic
point of view an important différence in semantics is that in this approach
the identity of an instance of a power type remains unchanged even when
the éléments of that instance are changed.

Some data modeling techniques also offer other complex type constructors,
such as séquence types allowing séquences of instances to be defined as
instances. These type constructors are useful for System analysts but not
elementary from a formai point of view, as they can be expressed in ternis
of other type construction mechanisms.

2.4. Specialization

Specialization is a mechanism for representing one or more (possibly
overlapping) subtypes of an object type. Specialization is applied when
certain facts are to be recorded only for spécifie instances of an object type.
Suppose for example it is necessary to record cars owned by adults, Le.
persons with an âge greater than or equal to 18. This situation is captured

Informatique théorique et Applications/Theoretical Informaties and Applications



A CATEGORY THEORY APPROACH TO CONCEPTUAL DATA MODELING 39

by the schema in figure 8. Only instances of object type Adult can play
the rôle owns.

Figure 8. - A simple example of specialization

A specialization relation between a subtype and a supertype implies that
the instances of the subtype are also instances of the supertype (each Adult is
a Persori). For proper specialization, it is required that subtypes are defined
in terms of one or more of their supertypes. Such a décision criterion is
referred to as a subtype defining rule. As such, specialization corresponds to
the Compréhension Schema of formai set theory. The subtype defining rule
then corresponds to the sélection formula. Subtypes inherit the identification
schemes of their supertypes. Therefore, if persons are identified by their
name, adults are also identified by that name.

Figure 9 models a university using a schema that contains a subtype
network. The department where they study is only recorded for students.
The salary is only recorded for teachers, and the courses they teach are only
recorded for teaching assistants. This example also demonstrates that multiple
inheritance is in principle possible, since object type Teaching-assistant is
a subtype of both Teacher and Student.

2.5. Generalization

Generalization is a mechanism that allows the population of a certain
object type to be the union of the populations of other object types. Contrary
to what its name suggests, generalization is not the inverse of specialization.
Generalization originates from the Union Axiom of formai set theory. As
generalization requires the covering of the generalized object type by its
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Figure 9. - Example of a specialization hierarchy

constituent object types (or specifiers), a décision criterion as in the case of
specialization (the subtype defining rule) is not necessary.

As an example of the application of generalization, consider a problem
domain where f acts are to be recorded for cars and houses. When both for
cars and houses a price is to be recorded, their respective object types Car
and House may be generalized to an object type Product. This situation is
captured by the schema of figure 10. The main différence with specialization
is to be found in the inheritance of identification schemes. A generalized
object type inherits the identification schemes from its specifiers. Hence, if in
the example of figure 10, the object types Car and House are identifiable, the
object type Product is also identifiable. Products are represented depending
on their origin. In conceptual data modeling techniques without generalization
(e.g. NIAM), this problem domain would require the use of specialization
and consequently the (possibly artificial) introduction of a Product-code as
subtypes have to inherit their identification from their supertypes.

Figure 11 contains a more complex example of generalization. A formula
may be either a single variable, or constructed by some function (say ƒ)
from simpler formulas. This example demonstrates that generalization can
be used to define recursive object types.
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Figure 10. - Example of generalization

( ]
y J
V /

having-
right-

argument

Figure 11. - Another example of generalization

2.6. Constraints

Constraints represent restrictions on populations. They exclude populations
that do not correspond with a possible situation in the problem domain.
Consider for example the schema of figure 4. In this schema it may
be désirable to exclude cyclic parent-child relations. This implies the
spécification of a constraint that enforces the asymmetry of fact type
Parenthood.

Two types of constraints frequently occur in conceptual data modeling:
total rôle constraints and uniqueness constraints. Nearly every conceptual
data modeling technique incorporâtes these types of constraints (sometimes
in restricted variants). These types of constraints are important for the
translation of conceptual models to implementation models. Total rôle
constraints suggest mandatory fields, or combinations of fields, while
uniqueness constraints can be used as a guarantee for integrity and as a
base for efficient access mechanisms.
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A total rôle constraint over a number of rôles states that ail instances in
the object types playing these rôles have to participate in at least one of
these rôles. In figure 6, the simplest example of a total rôle constraint would
be a total rôle constraint over the rôle has-name. Such a total rôle constraint
captures the requirement that each Ship has to have a Ship-code. In figure 4,
a total rôle constraint over the rôles is-parent-of and is-child-of expresses
that each Per son is either a parent or a child (or both). The gênerai définition
of a total rôle constraint allows the spécification of such a constraint over
rôles associated with different object types.

A uniqueness constraint over a number of rôles states that certain
combinations of values in these rôles should occur at most once. In its
simplest form, Le, ail rôles involved are part of the same fact type, a
uniqueness constraint is also referred to as a key. A key on a number of rôles
of a fact type excludes that two different instances of that fact type have
identical values in all these rôles. A key on the rôle with name has-name in
figure 6 expresses that each ship has at most one ship-code. A key on the
rôle named is-part-of ensures that convoys do not share ships. More complex
forms of uniqueness constraints are possible, e.g. over rôles in different fact
types, but not treated in the context of this paper.

Total rôle and uniqueness constraints play a crucial rôle in the
détermination of identification schemes. Total rôle constraints ensure that
instances participate in the fact types used in the identification scheme, while
uniqueness constraints ensure that no two different instances are related to
exactly the same combination of values in those fact types. Consider for
example the schema of figure 6. Ships may be identified by their code if
and only if each ship has to have a ship-code (total rôle constraint on rôle
has-name) and no two ships share the same code (uniqueness constraint on
rôle is-name-of). If both conditions are fulfilled, ships may be denoted by
their corresponding code without loss of information.

2.7. Type graphs

The focus in this section is on syntactical aspects of conceptual data
models. A gênerai syntactic description of a conceptual data model is a type
graph. The nodes of the graph correspond to the object types and the labeled
arrows détermine the way they participate in the various constructions. The
notion of a type graph presented in the following définition can be compared
to the définitions presented in [28] and [32].
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The set of nodes of a graph G is denoted as Go and its edges as G\.
The source of an edge e: A —> B is denoted source(e) = A, and the target
as target (e) = B.

DÉFINITION 2.1: A type graph G is a directed multigraph where the edges
have labels from the set {rôle, spec, gen. power_rôle, elt_rôle}, such that
there are no cycles consisting of edges with label spec or gen. Further there
is a bijective function pow from edges with label power_role to edges with
label elt_role such that source(pow(jp)) — source(p). The function type
yields the label o f an edge. D

The relation between a power type and its element type is given its own
identity. Rôles are translated to edges labeled by rôle. The resulting graph
is a multigraph, since an object type may participate via more than one
rôle in a fact type.

The définition of a type graph is very libéral. The définition allows a
node to be a power type as well as a fact type, a binary fact type to be
a subtype of a ternary fact type, a power type to have several element
types etc. Excluding these "peculiarities" from data models turns out to be
unnecessary from a theoretical point of view as it is possible to give such
data models a formai semantics. Hence, restrictions, other than on certain
cycles, will not be imposed.

Figure 12. - A sample PSM schema

As an example of a type graph consider figure 13, which contains the
associated type graph of the PSM schema of figure 12.

DÉFINITION 2.2: The set of specifiers of a node n in the context of a type
graph G> with nodes Go &nà edges G\, is defined by:

{s
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Figure 13. - T^pe graph of the schema of figure 12

The specifiers of node D in the context of the type graph of figure 13
are the nodes E and F.

The edges with type spec or gen are called the subtype edges. These edges
play an important role in the category theory formalization of constraints as
they identify corresponding instances. Subtype graphs do not contain edges
other than subtype edges.

DÉFINITION 2.3: The subtype graph of a type graph G is defined as the
subgraph of G with as nodes the nodes ofG, i-e. Go> and as edges, the subtype
edges of G- •

The following définition is useful because the subtype relation should be
transitive. A subtype path connects an object type with one of its supertypes.

DÉFINITION 2.4: A subtype path P in a type graph G is apath in the subtype
graph of G' D

3. MATHEMATICAL PRELIMINAIRES

This section introduces the mathematical terminology and notations, that
are used in this paper. In gênerai these are similar to those in [10]. This
section also contains some category theory proofs that are used later on.

3.1. Basic définitions

We start with some basic définitions and notations for some category
theory properties. Isomorphisms are very important in category theory. The
définition of isomorphic arrows is a natural one, although it is not used
frequently.

Informatique théorique et Applications/Theoretical Informaties and Applications
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DÉFINITION 3.1: An arrow f: A
B —> A exisîs such that ƒ o g —

> B is an isomorphism iff an arrow g:
and g o ƒ = Id^- Q

DÉFINITION 3.2: Two objects A and B are isomorphic, written A ~ B, iff
an isomorphism f: A —> B exists. Two arrows ƒ; A —> B and g: C ^ D
are isomorphic, written ƒ = g, iff isomorphisms i\: A-* C and %2 : B —> D
exisî such that the following diagram commutes:

D

Next, notations for some limits and colimits are introduced.
The apex of a colimit cocone over a diagram D is denoted as 7jr>, while

the arrows of the cocone are denoted as â > : n.—> JD for a node n in D.
Given a coproduct A + B, and arrows ƒ : A —> C and # : B —> C

a unique arrow must exist, denoted {{f;g)) : A + 5 —> C, such that the
following diagram commutes.

Likewise, given a product A x B, and arrows ƒ : C —» A and g : C ^> B
a unique arrow must exist, denoted {{f,g)) ' C —> A x 5 , such that the
following diagram commutes.

vol. 30, n° 1, 1996
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3.2. Sums and coniplementability

In this paper sums are used frequently. As described in section 4, it is
required that the instance category has disjoint sums.

DÉFINITION 3.3: Let A and B be two objects in a category with an initial
object 0 and a coproduct A + B. Then the following diagram commutes.

If this diagram is a pullback and the canonical injections I4 and IB are
monomorphisms, then the coproduct A-\- B is a disjoint coproduct. D

It is well known that coproducts in Set are disjoint. The coproduct of
two sets A and B in Set is the amalgamated union that is different from
the normal union, since common éléments from A and B are represented
twice. For example, the coproduct of A = {a, b} and B — {a, c} is the
set A + B - {a' ,6' ,a",c"}. The injection function from A to A + B
is {a H a ' , i H-> &'} and the injection function from B to A + B is
{ a n a!! ,c*-^ c"}. It is shown in appendix A that several other interes ting
catégories also have disjoint coproducts.

DÉFINITION 3.4: Let f : Si -* A and g : S2 —> A be two monomorphisms,
and let 0 be the initial object. If the following diagram is a pullback then the
subobjects corresponding to ƒ and g are disjoint subobjects.

Si S2

D
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The notion of complemented subobject is the category theory gene-
ralization of complemented subsets in Set.

DÉFINITION 3.5: A morphism ƒ : A —> B is complementable iffthere exists
g : C —> B such that B = A + C with ƒ and g as the coproduct arrows.
In this case g is a complement of ƒ. The object C is frequently notated as
B-A. •

Note that in a category in which ail sums are disjoint ail complementable
morphisms must be monomorphisms.

DÉFINITION 3.6: A subobject corresponding to a monomorphism ƒ is a
complementable subobject ijf ƒ is complementable, D

Ail monomorphisms in Set are complementable. Appendix A describes
complementability in several other possible instance catégories.

3.3. Properties of colimits

This section contains proofs of some properties of colimits that are used
later on.

In our formalization subtype relations are represented by complementable
monomorphisms. Further, it is necessary to compute colimits of diagrams
that consist of complementable monomorphisms. The following lemmas are
important for these computations.

LEMMA 3.1: Given a category K in which ail sums exist. Let ƒ : A —> B
and g : A —> C be morphisms in K such that ƒ is complementable. Then the
pushout P of ƒ and g in K exists and the pushout morphism p : C —» P
is complementable.

Proof: Since ƒ is complementable there exists ƒ : B - A —> B,
Let P — C + (B - A) with injection morphisms IQ : C —> P and

TB-A : B - A -> P. Let p = l£ and \et q : B -^ P = ((p o g- i £ _ 4 ) ) .
The following équations hold for q:

qo f = pog (1)

Q°f = lB-A (2)
We will now prove that P together with the arrows p and q forms a

pushout of ƒ and g. Let r : B —> X and s : C —» X be such that

rof = sog ( 3 )
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Then the universai pushout arrow u from P to X can be constructed by
u = {(r o f; s)), u satisfies the following équations:

u o l£_A = r o ƒ (4)

u op = s (5)

If u is a valid pushout arrow the following diagram must commute:

X

Since we already have 1 and 5 it only remains to show that u o q = r.
Let v = ((r o f;ro ƒ)), then

v o ƒ = r o ƒ (6)

vof = rof (7)

Since v must be the unique solution to équations 6 and 7, it can be
concluded that v — r. Using équations 6, 3, 5, and 1:

v o f — rof^sog — uopog — uoqof (8)

U s i n g équa t ions 7 , 4 , and 2:

v o f = r o f = uo IQ_A = uo qo f (9)

From équations 8 and 9 it can be seen that v — u o q is also a solution
to 6 and 7, and therefore v = r = u o q.

To complete the proof that F is a pushout it must still be shown that u is
unique. Suppose there exists v! : P —> X such that uf op = s and uf oq~ r.
From équation 2: u1 o IQ_^ — ufoqof — rof. Since u is the unique
solution to équations 4 and 5 it can be concluded that u — u\

Informatique théorique et Applications/Theoretical Informaties and Applications



A CATEGORY THEORY APPROACH TO CONCEPTUAL DATA MODELING 49

From the construction process for P it is obvious that the pushout P can
always be constructed if ail sums exist. Furthermore, since p is a coproduct
injection arrow it is by définition complementable. D

LEMMA 3.2: Given a category K in which ail sums exist and are disjoint.
Let f: A —> B and g: A —> C be complementable monomorphisms in K.
Then the pushout P of ƒ and g in K exists and the pushout arrows are
complementable monomorphisms.

Proof: By applying the previous lemma twice it follows immediately
that the pushout of ƒ and g must exist and that the pushout arrows are
complementable. Since ail sums are disjoint in K ail complementable arrows
must be monomorphisms. D

LEMMA 3.3: Given a category C that has an initial object and in which
ail sums exist and are disjoint. Let D : G —> C be a diagram consisting of
complementable monomorphisms. Then the colimit ofD exists and its arrows
are ail complementable monomorphisms.

Proof: Ail colimits can be constructed using the initial object and pushouts
(e.g. see proposition 8.3.7 in [10]). The main proof goes by induction on
this construction. The induction hypothesis is that all constructed arrows
are complementable monomorphisms. In the construction process two cases
can be distinguished:

• A pushout is constructed of two arrows from the initial object. Such a
pushout is equivalent to a coproduct, as sums are disjoint the constructed
arrows of the pushout must be complementable monomorphisms, because
ail sums exist this pushout also exists.

• A pushout is constructed of two arrows, that do not both have the
initial object as source. For each such arrow there are two possibilities: the
arrow is part of the diagram, in which case it must be a complementable
monomorphism, or the arrow was constructed in a previous step, and by
our induction hypothesis it must also be a complementable monomorphism.
Application of lemma 3.2 yields that the pushout exists and that constructed
arrows are complementable monomorphisms. •

The following two lemmas describe how the colimit of a diagram changes
if the diagram is extended.
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LEMMA 3.4: Given a commutative diagram D such that the colimit of D
exists. Let Df be the diagram that consists of D extended with the arrows
and apex of its colimit. Then diagram D' commutes.

Proof: Let P\ and P% be two paths in Df that both start in the same
object S and both end in object T. Since there are no arrows leaving 7^,
it must always be the last element in any path that contains 70. So, two
cases can be distinguished:

• T ^ 7x). In this case both Pi and P2 contain edges from D only and
therefore they commute.

• T = 7£>. Let L\ be the last but one object in Pi and L2 be the last but one
object in Pi. The last edge in Pi must be a^1 and the last edge in P2 must
be otp . Ail other edges in both paths must be part of D. From the définition
of the colimit, for every edge e in D the following diagram commutes:

1D
target(e)
D

source(e) ^target(e)

Thus the subpath a^Tge ^ o e can be replaced by a^ m c e . We can prove
by induction on the path that Pi and P2 must both be equal to a^. Therefore
the entire diagram Df commutes. •

LEMMA 3.5: Given a diagram D and an arrow a : A —» B where A is a
node that is not in D, and B is a node that is in D. Let D1 be D extended
by a. Then the apex of the colimit of D is isomorphic to the apex of the
colimit of D1', provided that both colimits exist

Proof: Omitting a^, from the colimit of Df gives a cocone over D. Thus a
unique arrow p : 7£> —> 7£>/ exists. In a similar way, adding the arrow a^oa
to the colimit of D gives a cocone over D1'. This implies the existence of a
unique arrow p' : 7^/ —> 7^. Due to the couniversal properties of the colimit
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pf op = Id7£> and p opf = Id^pr. Therefore, 7£> and 7^/ are isomorphic.

D

4. THE TYPE MODEL

Having introduced the syntax of type graphs, we will now describe their
semantics. As is customary, the semantics is described as a set of models.
A type model captures the notion of a population of a given type graph. A
population corresponds to a state of the problem domain. In this section only
type graphs without constraints are considered, the semantics of constraints
are described in the following section.

DÉFINITION 4.1: A model M of a graph G in a category C is a graph
homomorphism from G to C. D

DÉFINITION 4.2: Given a category F in which ail sums and products exist
and in which ail sums are disjoint, a type model for a given type graph G
in Fy is a model M : G —> F. F is referred to as the instance category of the
model D

The type model maps the object types in a type graph onto objects in
the instance category and the edges onto arrows in this category. To avoid
notational clutter the model homomorphism is sometimes omitted if it is
clear from the context. For example, the product of two object types is
sometimes written as A x B instead of M (A) x M(B).

This type model has to satisfy several requirements, that are introduced
in the following paragraphs. The full définition of a valid type model for a
type graph is presented in section 4.5.

4.1. Fact types

In the past, fact types have often been formalized by viewing them as
subsets of a cartesian product. This has commonly been referred to as the

vol. 30, n° 1, 1996



5 2 E. LIPPE, A. H. M. TER HOFSTEDE

tuple oriented approach. As an example consider figure 1. A population of
this fact type, represented in the tuple oriented approach, could be:

The disadvantages of the tuple oriented approach are obvious: the
représentation of instances is overly spécifie. Instances of fact type R
could as well be considered éléments of the product Pop(S) x Pop(A) as
Pop(A) x Pop(B). A cartesian product imposes an ordering on the various
parts of the relation. Consequently, algebraic operators do not have important
properties such as commutativity and associativity. This observation has led
to the mapping oriented approach [22], where fact type instances are treated
as functions from the involved rôles to values. In this approach, the above
sample population would be represented as:

Pop(R) = {{r H-• ai, s H-> &i}, {r \—> a,2,s »—> &i}}.

Clearly, this approach does not suffer from the drawbacks of the tuple
oriented approach. No ordering is imposed, while at the same time the
various parts of a relation remain distinguishable.

R

Figure 14. - TVpe graph of the schema of figure 1

Still, however, one may argue that the mapping oriented approach imposes
unnecessary restrictions. Why do instances have to be represented as
functions] Isn't it sufficient to have access to their various parts? The
categorical approach pursues this line of thought. The actual représentation of
fact type instances becomes irrelevant, their components become available by
"access-functions". As an example consider the interprétation of the sample
population in the category FinSet. The type graph of the schema of figure 1
is shown in figure 14. Category theoretically, a population corresponds to a
mapping from the type graph to an instance category. The sample population
therefore, could be represented as (note that there are many alternatives!):

r = {f\ •-»• ai> h *-

s - {h •-• &i, h ^ M -

In this approach, the two fact type instances have an identity of their own, and
the functions r and s can be applied to retrieve the respective components.
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Note that in this approach it is possible that two different fact type instances
consist of exactly the same components. This is in line with object orientée!
approaches, where different objects may have identical properties.

Apart from FinSet it is also possible to choose other instance catégories,
a subject further elaborated upon in section 6.1. The category PartSet,
where the objects are sets and the morphisms partial functions, allows
certain components of fact type instances to be undefined:

r = {ƒ2 •-> a2},

s = {fi •-• 61 ,h *-> h}-

In this population, fact type instance f\ does not have a corresponding object
playing rôle r. Clearly, PartSet can be used to model techniques where
missing (or unknown) values are allowed.

Another possible choice of instance category is the category Rel, where
the objects are sets and the morphisms relations. In Rel the components
of fact type instances correspond to sets, as rôles are mapped on relations.
A fact type instance may be related to one or more objects in one of its
components. A sample population could be:

r = {ƒ2 •-* a\,h •-

s = {/i »-> buf2 >-• 61, h *-> fe}.

As can be seen, the categorical formalization of fact types does not impose
any extra requirements on the définition of type model.

4.2. Subtype relationships

The model must express the subtype relationships between different object
types. The subtype diagram describes these relationships between object
types.

DÉFINITION 4.3: The subtype diagram of a model M of a graph G with
subtype graph S is M functionally restricted to S. •

The arrows in the subtype diagram represent the injections from an object
type to one of its supertypes.

Intuitively, ail éléments in an object type must be uniquely represented
in ail of their supertypes. In other words, we want (categorically) that each
subobject of an object type corresponds with a unique subobject of each
of its supertypes.
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As multiple inheritance is allowed it is possible that there are several
different paths in the subtype graphs between two object types. The resuit
of injecting an object type into one of its supertypes should not depend on
which of these paths is selected. Therefore, we require that ail paths in the
subtype diagram between two nodes should have the same value in the type
model. To put it differently, the subtype diagram must commute.

Intuitively, each instance of an object type should correspond to a unique
instance in each of its supertypes. Translated into category theory terras this
becomes: each subobject in a given object type should correspond with a
unique subobject in each of its supertypes. As the following lemma shows,
a sufficient condition for this requirement is that ail arrows in the subtype
diagram are monomorphisms.

LEMMA 4.1: Let T and S be object types such that a path P exists in
the subtype graph between T and S. If ail arrows in the subtype diagram
are monomorphisms then each subobject of M(T) corresponds to a unique
subobject of M(S).

Proof: Let ai , a 2 be two arrows that are éléments of the same subobject of
M(T). The définition of a subobject implies that ai and a2 must factor one
another. The composition of two monomorphisms is also a monomorphism.
Therefore, M(P) o ai and M(P) o a<i are also monomorphisms that factor
one another and are therefore element of the same subobject of S.

If we consider two arrows ai, a2 that are éléments of different subobjects
of M(T), then M(P) o ai and M(P) o a% must be éléments of different
subobjects of M (S). If this were not the case M(P) o ai and M(P) o a^
would factor through one another, and because M(P) is a monomorphism
this would imply that ai and 0,2 would also factor through one another, which
is contrary to the assumption that they are not part of the same subobject
of T. D

4.3. Generalization

A generalized object type is the union of a given set of object types,
called its specifiers. Simply using sums for generalized types does not
work, because sums are disjoint in the instance category. This implies that
instances of object types that are a sub type of more than one spécifier would
be represented multiple times in the sum. This problem can be solved by
using a more gênerai colimit.
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The collection of instances of a generalized type with a set of specifiers V
is completely determined by the subtype relationships among the subtypes
of éléments in V. The foliowing définitions give a formai description of a
diagram that only contains the relevant subtype relations among subtypes
of éléments of V.

DÉFINITION 4.4: Given a graph G and a set ofnodes N G Go, G dominâted
by N is equal to a subgraph D of G that is defined as follows: The edges of
D are the edges front G\ that occur on a directed path that ends in a node
n G N, The nodes of D are the nodes that occur in one of its edges. •

DÉFINITION 4.5: Given a diagram D : G —> C and a set ofnodes V Ç GQ.

Let Gy be G dominâted by V. Theny D dominâted by V is equal to D
functionally restricted to Gy. •

The instance universe U^ represents the collection of all instances of a
set V of object types. The instance universe is used as the generalization
of a set V of specifiers.

DÉFINITION 4.6: The instance universe determined by a set of object types
V Ç QQ in a given type model M, denoted as U^, is the apex ofthe universal
cocone with as base the subtype diagram dominâted by V. •

The remainder of this section contains some lemmas that prove that the
use of the instance universe for generalization corresponds with the intuitive
properties that generalization should have.

In many practical data models the subtype graph forms a forest. If the
subtype graph dominâted by V forms a forest, different roots should not
have instances in common. Therefore, the generalization of V should be
equal to the disjoint sums of the roots.

LEMMA 4.2: If the subtype graph dominâted by V is a forest then Uj^ is
equal to the sum of the roots of the trees in the forest.

Proof: From lemma 3.5 it follows that the apex of the colimit of a forest-
like diagram is equal to the colimit of this diagram after removing one of
the leaves. In this way ail nodes in the diagram except the roots of the trees
can be removed. This leaves a discrete diagram and the colimit of such a
diagram is the sum of the nodes. D

As explained in section 4.2, it is désirable that the subtype diagram

commutes and that its arrows are all monomorphisms. Further, the gene-
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ralization of a set of specifiers V should always be computable, in other words
the colimit Uj^ must exist. A sufficient condition for having generalization
satisfy all of these requirements is that ail subtype arrows are complementable
monomorphisms. The following lemma shows that these requirements are
indeed satisfied if subtype arrows are complementable.

LEMMA 4.3; Let C be a category in which ail sums exist and are disjoint.
Let S be a commuting diagram in G whose arrows are complementable
monomorphisms. Then for any set V of object s in S it is possible to extend
S with an object type that is a generalization of V. The resulting diagram
commutes and its arrows are complementable monomorphisms.

Proof: Since ail sums in C are disjoint it follows immediately from
lemma 3.3 that U]^ exists, and that ail newly constructed arrows are
complementable monomorphisms. Since S is a commuting diagram it follows
from lemma 3.4 that the newly constructed diagram must also commute. D

Generalization should not create any new object type instances. The
following lemma shows that tins is indeed the case.

LEMMA 4.4: Let S be a subtype diagram and let O be a set of objects
in 5. Let S{ be the diagram that is constructed by adding a new object
type G that is the generalization of O, together with the corresponding
generalization arrows from the éléments of O to G. The apex of the colimit
of S is isomorphic to the apex of the colimit of Sf.

Proof: Removing a^f from the colimit of S' leaves a cocone over 5.
Therefore, a unique arrow p : 75 —> 75/ exists such that for all nodes n in
S the following diagram commutes:

Let S o be equal to S dominated by O. From the définition of a generalized
object type we have G = 7sG. As SQ is a subdiagram of S there is a unique
arrow PQ : G —• 75, such that for ail nodes UQ in 5^ the following diagram
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commutes:

Observe that S" is equal to S plus {a^ |o £ O}. After adding pc to
the colimit of 5 a cocone over 5" is obtained. Therefore a unique arrow
V1 : 7S' —* 75 m u s t exist, such that for ail nodes n in S" the following
diagram commutes:

Due to the universal properties of the colimit p1 o p = Id7s and
p opf = Id7s,. 75 is therefore isomorphic with 75'. •

It is possible to have generalizations of generalized types. Since the subtype
graph may not contain cycles, such generalizations can always be computed.
It would have been possible to allow cycles, but then the définition of
instance universe would be more complicated. Further, this extra generality
is not very useful because all object types that are part of a cycle in the
subtype graph must be isomorphic.

Example 4.1: The use of generalizations will be illustrated with an example
that is loosely based on figure 9. The example describes a university with
students (S) and teachers (T). Teaching assistants (TA) are a specialization
of both types. The object type person P is a generalization of students and
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teachers. So the model gives the following diagram, that is a pushout.

P

Since the subtype diagram must commute, we have that

P rt QS _ QP ^ QT

which means that every teaching assistant has a unique représentation as a
person. As P is a generalization of S and T we have that

= (S-TA)+TA + (T- TA).
a

4.4. Power types

Power types are object types whose éléments are sets of éléments of other
object types. Each power type has a relation that relates the éléments of the
power type to the éléments of the underlying object type. An essential feature
of a power type is that its éléments, that are essentially sets, are identified
by their members in the underlying object type. This means that there can
be no two éléments of a power type with the same set of members. In other
words, it is not possible to interchange two different éléments of a power
type without structurally altering the corresponding element-of relation.

Suppose there is a power type P with corresponding underlying object
type E and power-relationship object type R, with the corresponding
edges e : R —• E and p : R —>• P with type(e) = elt-role and
type(p) = power_role such that pow(p) = e.

If two éléments of the power type have the same éléments then a
permutation of the power type exists that leaves the member relationship
essentially unchanged. In "set-like" catégories permutations are equivalent to
automorphisms, Le. isomorphisms that are endomorphisms. So a first intuitive
guess would be to require that no automorphism a : M(P) —> M(P) with
a y£ Idjv (̂p) such that a o M(p) = M(p) exists, however, this is not
sufficient as the following example shows.
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Example 4.2: This example uses a model M : G —> Set. M(E) — {ei},
M(P) - {pup2}, M(R) = { r i , r 2 } , Af(e) - {n •-> eur2 H-> ex},
^ ( p ) — ( r i *-* Pi iT2 •—> P2}- Essentially this describes two sets pi and
P2 that have the same member ei. If we choose the obyious automorphism
a = {pi »-> p2,P2 •—> Pi} it is not true that a o M(p) = M(p). D

The problem here is caused by the fact that éléments of M{R) have
their own identity. We are not interested in the identities of the éléments in
M(R). These éléments (Le. the tuples in the relationship) can be permuted
in arbitrary ways without affecting the power sets. Thus if there is an
automorphism b : R —> R then e o b and p o b are for our purposes
equivalent to e and p respectively. This leads to the following définition
of the extensionality property.

DÉFINITION 4.7: Two arrows x and y, with source(a;) = source(y), fulfill the
extensionality property iff, for ail automorphisms b : target (y) —> target(y)
such that b ̂  Idtaxget(y), no automorphism a : source(y) —> source(y) exists
such that b o y o a — y and x o a = x

D
The arrows from the previous example do not have the extensionality

property, as can be seen by selecting b — {r\ i—• r<iyr<i t—• r i } .

4.5. Définition of valid type model

We now present the full définition of a valid type model for a type graph.

DÉFINITION 4.8: A type model M : Q —> F for a given type graph G in a
category F, is a valid type model iff,

1. ifx is an edge ofG and type(x) = spec then M(x) is a complementable
monomorphism.

2. ifx is an edge ofG and type(x) = gén then M(x) ~ a^urce^T , where
D is equal to the subtype diagram dominated by the specifiers of target(x).
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3. the subtype diagram of M commutes.
4. if x and y are edges of0> with pow(y) = x then M(x) and M (y) have

to fulfill the extensionality property. D

Example 43: The following type graph describes a simple conceptual
data model.

D power _role

spec r

1t

rôle

elt-role
C + rôle

rôle

G

The following is a type model of this type graph in Set. The value of the
set of éléments for each object type is equal to the éléments that occur in
the corresponding arrows, and has therefore been omitted from the figure.

D

{di,e2)

<O3, /2>

U

< C l , j

This type model is indeed a valid type model. There is one specialization
arrow from C to A that is an injective function, and in Set ail injective
functions are complementable monomorphisms. Obviously, the subtype
diagram commutes since it only contains one specialization arrow. The
power type D has one instance that represents the set {ci,C2}. It is not
difficult to see that s and t fulfill the extensionality property. D

5. CONSTRAINTS

Each schema can have several associated constraints. This section describes
the semantics of constraints. A constraint puts further restrictions on the set
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of valid type models for a given schema. Two important kinds of constraints
that are used frequently in conceptual data modeling techniques are the
total rôle constraint and the uniqueness constraint. The semantics of these
constraints are described in the following sections. The basic framework
described in this paper could be extended by arbitrary constraints that can
be described in a category theory way.

5.1. Total rôle constraint

The intuitive semantics of a total rôle constraint is that ail éléments of
a given set of object types participate in a given set of rôles. A total rôle
constraint is determined by a set of edges r Ç Qi<

In the simplest example of a total rôle constraint, r consists of a single
edge e. This total rôle constraint means that ail éléments of target (e) must
participate in e. In a model in the category Set this implies that M (e)
must be a surjective function. More generally we require that M(e) must
be an epimorphism.

A slightly more complicated example is r = {ei,e2}. Two cases can be
distinguished, depending on whether both edges have the same target. In the
first case both arrows have the same target t — target(ei) = target(e2). The
intuitive meaning of this constraint is that each element of t must participate
in at least one of these two edges. For the semantics of the constraint,
first construct the sum arrow ei + e2 : source(ei) + source(e2) —> t + t.
Intuitively speaking each element of t must be present in target(ei + €2),
however, as t + t is a disjoint sum every element is represented twice.
Therefore an arrow is needed that maps each element of t + t onto the
corresponding element of t. This can be achieved as follows. From the
définition of the coproduct it follows that there are two injection arrows
II : t —• t + 1 and Ir : t —> t +1 . Further, there is a unique arrow
((Idt;Idt)) :£ + £—>£, such that the following diagram commutes.
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The meaning of the total rôle constraint is that
must be an epimorphism.

source(ei) + source(e2)

o (ei +

ep%

If target (ei) ^ target (e2), it is possible that one of these is a subtype
of the other. In this case we first inject the éléments of the subtype into the
supertype and then follow the same procedure as in the previous case. Note
that the supertype is always equal to UJ^Tge a rge ^e2)\

The full définition of the semantics of the total role constraint is given
below.

DÉFINITION 5.1: Given a valid type model M and a total role constraint
over T C gx. Let s = Eter M(*)» V = {target(M(t))|t E r}. The
définition of the instance universe U^ implies that for each t E r an arrow
it : target(M(t)) —* U]^ exists. Since target(s) is a coproduct, these it
détermine a unique arrow 0 : target (s) —> f/̂ . M satisfies the total role
constraint r iff © o s is an epimorphism.

Et 6 r

epi
0

UM

D
The total role constraint can be seen as a generalization of several types of

constraints found in other data modeling techniques, such as the collection
cover constraint and the subtype cover constraint. The collection cover
constraint for a power type spécifies that all instances of its element type
should participate in at least one of its instances. The subtype cover constraint
spécifies that all instances of a given object type should be instances of at
least one of a given set of subtypes of that object type.
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Example 5.1: In example 4.3 take the total rôle constraint over r = {p, u}.
T h e n V = { A , C } a n d U^ = A , T h e s u m p + u : F + G - > A + C i s
the fonction {/i t-> ai, ƒ2 ^ a3 , /3 i-> a3,#i •-> CI,92 »-> ci,#3 »-> c2}.
Then © : A -f C —* A — {ai 1—> a\,a<i 1—• a2,a3 H-> a3,ci H-> ai,C2 *-*• ^2}-
The composition @ o (p + u) = {/x H^ ai, ƒ2 H-> a3, / 3 *-> a3 ,^i t-> ai ,
2̂ *-̂  a i ,^3 H-> a2} is an epimorphism in Set because it is a surjective

function. Therefore, the total rôle constraint over r = {p, u} is satisfied
in this model.

The total rôle constraint over {p} is not satisfied, but the total rôle
constraint over {q} is satisfied in this model. D

5.2. Uniqueness constraint

The uniqueness constraint is closely related to the concept of a key over
a relation. A uniqueness constraint is determined by a set of edges r Ç Q\.

In the most trivial case r consists of a single edge e. The intuitive
semantics is that each element of target(e) détermines at most one element
in source(e). For a model M in the category Set this implies that M(e) must
be an injective function. More generally, M(e) must be a monomorphism.

In the next and more interesting case r = {ei,e2} with

source(ei) = source(e2) = s.

In this case the intuitive semantics is that the combination of an element
from target(ei) with an element from target(e2) détermines at most one
element in source(ei). Start by constructing the product arrow

ei x e2 : s x s —• target (ei) x target(e2).

From the définition of the product it follows that there are two projection
arrows ni : s x s —> s and TT2 : s x s —> 5. Further, there is a unique arrow
((Id5)IcU)) : s —> s x 3, such that the following diagram commutes.

S X S
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The meaning of the uniqueness constraint is that (ei xe2)o ((Ids,Ids))
must be a monomorphism.

target(ei) x target(e2)

The case that r = {ei,e2} with source(ei) ^ source(e2) is simple,
because it is equivalent to the combination of two uniqueness constraints,
one over {ei} and the other over {e2}.

The full définition of the semantics of the uniqueness constraint is given
below.

DÉFINITION 5.2: Given a valid type model M and a uniqueness constraint
over T C Qx. Let p = l\teT M(t), S = {source(M(i))|t € r} . For
each t G r there is an arrow nt : 11565s ~^ source(M(£)). Front the
définition of the product it follows that these TT̂  détermine a unique arrow
A : u s e s s ~^ source(p). Then, M satisfies the uniqueness constraint r iff
p o A is a monomorphism.

*" source(p)

D
Fact types behave by default as multisets: the same tuple can be represented

multiple times. If this is undesirable, it can be avoided by adding a uniqueness
constraint over the rôles of the fact type.

Example 5.2: Take for instance, in example 4.3, the uniqueness constraint
over r = {p, q}. Intuitively speaking, this constraint should be satisfied since
every combination from A and B détermines at most onê  element of F. The
arrow A : F - F x F = {h H- {fuf1),f2 -> (ƒ2, ƒ2), h » (h, h)}-
The product pxq:FxF-^>AxB =

{{/i, / i ) •-> (ai, 61), (/i, ƒ2) ^ (ai,61), (/i, ƒ3) ^ (01,62),

(/2,/i)»-> (a3,6i), (ƒ2, ƒ2) *-+ (03,61), (ƒ2, ƒ3) >-* (a3,b2),
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The composition

( p x g ) o A = {/i(-4 (ai, 61), f2 1-» {as,h), fa »-> (^

is a monomorphism, because it is an injective function. Therefore, the
uniqueness constraint over r = {p, q} is satisfied.

The separate uniqueness constraints over {p} and {q} are not satisfied
because p and q are not monomorphisms. D

6. INSTANCE CATEGORIES

One of the most important advantages of using a category theory approach
to the semantics of conceptual data modeling techniques is that different
instance catégories can be used. The requirements that instance catégories
should satisfy are listed together with some illustrations.

Instance catégories should support the constructions that have been used
in the previous sections. This means that an instance category should have
the following properties:

• AU finite sums and products must exist.

• Sums must be disjoint.

• An initial object must exist.

Actually, the last requirement is redundant since the initial object is the
sum of zero objects. This set of requirements is very modest, which implies
that there is a large set of possible instance catégories.

As noted in section 5 the framework that is described in this paper could
be expanded by adding new types of constraints. Of course the constructions
that are needed by such constraints could further restrict the set of instance
catégories.

Some catégories, however, are too trivial to be interesting as instance
catégories, for example the category with only one object and one arrow.
The "standard" instance category that has been used for other formalizations
of conceptual data modeling techniques is the category FinSet. It seems
therefore reasonable to require that other instance catégories have at least the
same "expressive power". Intuitively, each model in FinSet should have a
counterpart in other instance catégories.

As an introduction to the formalization of this requirement it is useful to
define a homomorphism between type models.
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DÉFINITION 6.1: A type model homomorphism between type models
Mi : G —> C and M<i : Q —> D is a functor F : C —> D such that the
following diagram commutes:

D

The valid type models and their homomorphisms form a category.

This définition of a type model homomorphism has inspired the following

définition of a valid instance category.

DÉFINITION 6.2: A category C is a valid instance category iff a functor
F : FinSet —> C exists such that for all M\, M2 : G —> FinSet if to/<£?
ihat Mi=M2<^FoMi=Fo M2. •

6.1. Sample instance catégories

The following catégories are valid instance catégories: FinSet, Set,
PartSet, Rel, FuzzySet. A description of various category theory
constructs and proofs for these catégories can be found in appendix A.

Models in PartSet give a way to handle missing values. Suppose that
persons are identified by their names. Two different persons with identical
names get an additional number to distinguish them.

Person

String Integer

The arrow Nr is a partial function, because persons with a unique name
do not have a number. Suppose that we want to express that every person

Informatique théorique et Applications/Theoretical Informaties and Applications



A CATEGORY THEORY APPROACH TO CONCEPTUAL DATA MODELING 67

must be uniquely identified by a combination of name and number. This can
be achieved by putting a uniqueness constraint over {Name^Nr}.

Person - : >• Person x Person

Name x TVr

String x Integer

The arrow {(ldPerson,ldPerson}) is equal to {p h-> (p,p)\p G Person}.
The arrow Name x iV> is interesting, since it maps the tuple (p,p) for a
person p whose Nr is undefined to the tuple (JVame(p), _L), as described
in appendix A. The uniqueness constraint holds if

(Name x Nr) o ({Idperson,Iàpers<m))

is a monomorphism, Le. a total injective fonction. This implies that two
persons with the same name must have different numbers, which was indeed
the requirement we tried to express.

In several object-oriented databases [21], [34], objects can have multi-
valued (or set-valued) attributes. This means that the value of an attribute
can be a (possibly empty) set of attribute values. Models in the category
Rel can be used to model this behavior.

Models in FuzzySet can be used to model uncertainties. Every object
type A is equipped with a function a A that describes the probability that
an element is a member of that object type. The arrows in FuzzySet
are total fonctions, and for each arrow ƒ : A —> B it must hold that
&A{O) < aB(f(&))' Therefore, the probability that an individual is an
element of a given object type must always be > the probability that this
individual is an element of one of the subtypes of this object type. Intuitively,
this is sensible since if the individual is an element of an object type it must
certainly be an element of all supertypes of that type. If we look at the
simple example for a fact type that was shown in figure 2, we find that the
probability that a given person is enrolled in a given course must be less
than the probability that that person exists and also less than the probability
that the course exists. So models in FuzzySet allow the introduction of
uncertainty in conceptual data models in a natural way.
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In gênerai, there are many issues related to uncertainty in data models.
Information may not only be uncertain, but also missing, or vaguely known
(Le. only known to be in a certain set or interval of values). Missing
information may have numerous interprétations, e.g. not applicable, unknown,
nonexistent, or confidential. In [23] many of the issues related to imprécise
and uncertain information are treated. The use of our approach could lead
to the development of appropriate instance catégories as a formai foundation
for further study of these issues. Such instance catégories at least have to
incorporate features of the catégories FuzzySet and Par t Set.

In so-called historical or temporal databases the history of the création
ànd deletion of object instances is maintained (see e.g. [26], [29]). Historical
databases do not forget information and allow previous states of the database
to be restored, for example if performed changes turn out to be incorrect
or undesirable. Conceptual data modeling techniques exist that support an
explicit notion of time and consequently facilitate the implementation of an
application in terms of a historical database management System. Examples of
such techniques are described in [4] and [31]. The framework can provide a
natural semantics for these techniques by the choice of an appropriate instance
category. Such an instance category could be the category TimeSet, where
each object is a sef with a function assigning a time interval to each element
of that set. The set of time points T is a totally ordered set and has a
maximal element now. A time interval is an element ( t i , ^ ) from T x T
such that t\ < Î2. The morphisms in this category are functions between
the sets of the associated objects such that for each element in the range of
that function the time interval is included in the time interval of the origin
of that element. This is a necessary requirement and, among others, reflects
that composed objects can not outlive their various parts. For example, the
fact that a certain person P\ is enrolled in a certain course C\ cannot be
known before either P\ or C\ have come into existence, or after either P\
or C\ are no longer "alive".

7. CONCLUSIONS AND FURTHER RESEARCH

The approach that is described in this paper is a very gênerai one that
allows us to define the semantics of conceptual data models in a wide range of
instance catégories. The range of possible instance catégories is much wider
than those used in other semantics since it is also possible to use catégories
that are not topoi or cartesian closed. Further, since only simple category
theory constructions have been used, our semantics is easily accessible.
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This wide range of instance catégories allows experimenting with
extensions such as the handling of missing values (e.g. by using PartSet)
or uncertainties (e.g. by using FuzzySet).

The range of valid type models is broader than in most other conceptual
data models. There are very few restrictions on the type graphs. Therefore,
it is possible to let fact types be subtypes of other types, or to make fact
types act as power types. In fact all object types are treated very uniformly.
This uniformity also helps in reducing the number of different concepts. For
example, as was described in section 5.1 the collection cover constraint and
the subtype cover constraint can be treated as special cases of the total rôle
constraint. This is not possible with other conceptual data models,

The model that is described hère is very similar to object-oriented data
models. The subtypes in our approach are analogous to subclasses. Attributes
can be modeled using rôles. Attribute inheritance could be incorporated
explicitly in the type model by adding an attribute that is defined in a given
type to ail its subtypes. The value of this subtype attribute arrow in the type
model is the composition of the original attribute arrow with the subtype
arrow from the subtype to the supertype. The resulting model is similar
to that of [32].

As a last advantage we should mention that the use of category theory
has been very helpful in discovering the essence of concepts in conceptual
data modeling.

7.1. Further research

In [32], [8] the standard relational database opérations are defined using
category theory constructs. These authors used topoi as instance catégories.
Even though the current framework uses simpler catégories, it still appears
possible to define most standard relational database opérations.

Although the uniqueness and total rôle constraints are by far the most
important constraints used in conceptual data models, there are several
others that would also be worth including. Examples are the exclusion,
equality, and subset constraint.

PSM also contains séquence types that are similar to arrays (or lists) of
objects. Although it has been omitted from this paper, it is possible to add
these in a simple way to the type model. A more intriguing question is if
it is possible to add arbitrary algebraic types, perhaps in a similar way to
the "sketches" given in [10].
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The current framework could also be extended to describe database updates
and schema évolution.
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A. APPENDIX: SAMPLE INSTANCE CATEGORIES

This appendix contains some proofs about the properties of several instance
catégories that have been used in the rest of the paper. In many publications
Set or FinSet are used as prototypical examples of concrete catégories; it
is therefore somewhat surprising that it is difficult to find literature about
related catégories such as Rel, Part Set and FuzzySet.

A.l. The category Rel

The objects in the category Rel are sets, and the arrows R : A —> B are
binary relations such that domR Ç A and ranR Ç B.

Note that this category is different from a similar named category used by
some other authors (e.g. [3]) in which the objects themselves are relations.

DÉFINITION A.l:

1. domR = {a\{a,b) G R}

2. raniZ = {b\{a,b) G R}

3. IDA = {{a,a)\ae A}

4. i2 = {{b,a)\(ayb) G R}

5. The relational image of a set S under R is defined by

R{\S\) = {be r*nR\3s€S[(s, b) G R}}.

D

PROPOSITION A.l: The following properties are truefor relations P, Q, R:

1. If R is a bijectïve relation R o R — IDrarijft

2. domiî Ç A ^ R — R o I D A

3. rani? Ç A => R = ID.4 o R

4. R o (P U Q) = (R o P) U (R o Q)
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A. 1.1. Monomorphisms and epimorphisms

DÉFINITION A.2: A relation R : A —» B is injective iff R! Ç R exists such
thaï R! o R = ID A . •

LEMMA A.l: A relation R : A —> B in Rel fs a monomorphism iff it is
an injective relation,

Proof: Suppose R is an injective relation. Let P, Q : C —» A be relations
such that it! o P = floQ, then

RoP = RoQ => RfoRo P = goRoQ =>U)AoP = IDAOQ => P = Q

Hence R is a monomorphism.
Suppose that i? is a monomorphism. For a G A let Pa = {c} x (A — {a}).

Let Q = {c} x A. Since Ptt 7̂  Q, and R is a monomorphism RoPa / J?oQ.
As i2 o Pa C i? o Q an element 6a must exist such that

<cA> eRoQA{c,ba) iRoPa.

Obviously, (a,ba) E i2. Furthermore, a1 e A- {a} can not exist such that
{a1\ba) G R because then (c,6a) e RoQ. Let # = {{6a,a)|a G A}. Then
R' Ç R and Rf o R = ID A . Therefore, i? is an injective relation. •

DÉFINITION A.3: A relation R : A ̂  B is surjective iff R! Ç. R exists such
thatRoR! = IDB •

LEMMA A.2: A relation R : A —>'B in Rel w an epimorphism iff it is a
surjective relation.

Proof: The category Rel is its own dual category. Every arrow is mapped
onto its converse by the dual functor. The dual of a monomorphism is an
epimorphism and vice versa. Likewise, the dual of an injective relation is
a surjective relation. Therefore, this lemma follows from lemma A.l by
duality. D

A. 1.2. Limits and colimits

LEMMA A.3: The dual of a colimit in a category C of a diagram D is the
limit in the dual category of C of the dual of D.

Proof: This follows immediately from the définitions of (co)limits and
dual. D
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LEMMA A.4: The coproduct A + B in the category Rel is equal to the
disjoint sum of A and B.

Proof: Let ƒ : A —> C and g : B —> C. Then for ail ƒ and g the following
arrow can be constructed:

{{f;g)) : A + B -> C = {(IA(a),c)\(a,c) e f}U {(IB(b),c)\(b,c) e 9}

It is immédiate from the construction that the following diagram commutes:

That this arrow is unique can be seen as follows. Suppose that there is an
arrow h : A + B —> C such that h o 1A = ƒ and h o IB = g.

Let Af — ran/A a nd le t B1 — r an l^ . Then

= f=((f;g))oIA

oïA = ({f]g)) oIAoïA

By using similar reasoning it can be shown that

hoWB'='((f;g))oWB>

Using the observation that 1DA+B — ÏDA> U

h = h o IDA+B

= /io(ID.4' U

= ho IDA' Uho IDB'

= ((f;g))oIDA,U((f;g))IDB.

= ((f;g))o(IBA,UlDB,)

= ((f;g))oIDA+B

Therefore, it can be concluded that {{f;g)} is unique. D
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LEMMA A.5: Complementable monomorphisms in Rel are injective
relations that are functions.

Proof: Complementable monomorphisms are isomorphic to sum injection
arrows that are functions. Isomorphisms in Rel must be both injective and
surjective relations, in other words they must be bijective total functions.
Since the composition of functional relations gives another functional relation
complementable monomorphisms must be functions. D

The complement of a relation

f :A-+B is f :B-A-^B = {<&, b)\b e B - f(\A\)}.

LEMMA A.6: The product A x B in R e l is equal to the (disjoint) sum and
the product sélection arrows are partial functions that are the inverses ofthe
sum injection arrows.

Proof: The product is the limit over a discrete diagram. The dual of such
a diagram is the diagram itself. From lemmas A.3 and A.4 it follows that
the object A x B must be equal to A + B, and that the product projection
arrows must be the converse of the sum injection arrows. D

LEMMA A.7: The category Rel does not have all limits.

Proof: Let

and let

Suppose an equalizer e : E —» A of ƒ and g exists. The following arrow
equalizes ƒ and g9 h : H —> A — {(/ii,ai), (/&2,ai), (/i2,a2)}. If e is an
equalizer a unique arrow q : H —> E must exist such that e o q = h.
As {hi,a\) G /i, x G E exists such that {h\^x) E q A {x,a2) G e. Since
{hi,ü2) ^ h it follows that (x,a2) ^ e. Since (/i2,G2) £ h, y £ E exists
such that (/i2)î/) G g A (y,a2) G e. Since {x,aï) ^ e and {y,a2) G e, #
and y must be different. As (y, 61) G g o e, (y, 61) G ƒ o e, but this is only
possible if (y, ai) G e. It is possible to construct a new arrow q' by adding
or deleting the tuple {Ii2,x) from q. In this case eoqf = eoq — h but (/ 7̂  g,
thus the arrow q is not unique and e cannot be an equalizer of ƒ and g. D

Since Rel does not have all limits it is not a topos.
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LEMMA A.8: The category Rel does not have all colimits.

Proof: Follows immediately from lemmas A3 and A.7. •

LEMMA A.9: The empty set is both an initial and final object in Rel.

Proof: The only possible arrow to or from the empty set is an empty
relation. There is exactly one such relation with every other object
in Rel. D

LEMMA A. 10: Rel is a valid instance category.

Proof: A functor F : FinSet —» Rel must be constructed such that for
ail Mi, M2 : G -+ FinSet it holds that M\ = M2 <& F o M\ = F o M2.
As FinSet is a subcategory of Rel the inclusion functor obviously satisfies
this requirement. D

A.2. The category Part Set

The category Part Set has sets as objects and partial functions as arrows.

The notation f(x)[ means that ƒ is defined at x and similarly ƒ(#) î
means that ƒ is not defined at x.

A.2.1. Monomorphisms and epimorphisms

LEMMA A.ll: An arrow R : A —> B in PartSet is a monomorphism iff
it is an injective total function.

Proof: The proof is similar to that of lemma A.l. D

LEMMA A. 12: An arrow R : A —» B in PartSet is an epimorphism iff
it is a surjective total function.

Proof: The proof is analogous to the proof of proposition 2.9.2 in [10], D

A.2.2. Limits and colimits

LEMMA A. 13: The coproduct A + Bin the category PartSet is equal to
the disjoint sum (in Set) of A and B.

Proof: The proof is similar to that of lemma A.4. D

LEMMA A. 14: Coproducts in PartSet are disjoint

Proof: This is obvious because the coproduct is equal to the disjoint
sum. D
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LEMMA A. 15: AH monomorphisms in PartSet are complementable.

Proof: Let m : A —> B be a monomorphism. Let C = B — m{\A\), and
let n : C —> S = ID^ . Then the following diagram is both a pushout
and a pullback:

D

LEMMA A. 16: The product A x B in PartSet is equal to:

AxBuAx{±}u{X}xB

where _L is an element that does not occur in A or B, and x is the
standard cartesian product in Set. The product sélection arrows are defined
by: 7TA : A x B - • A = -{(a, 6) •-> a|(a,6> G A x B A a / ± } a tó
-KB : A x B ^ B = {(a,&) i-* 6|{a,6) G A x B A 6 ^_L}.

Proof: It is not difficult to show that TTA and TT# have the following
properties:

= a A 7TB(t) = 6].

= û A 7TJ3(t) T]

T A T T B ( * ) = 6] •

î A7Tj3(t) î ]

F u r t h e r , for a n y p a r t i a l fonctions f , g : h s u c h t ha t

h = f og : h(x) l& g(x) l Af(g(x)) l .

Let f : C —> A and # : C —> B be two arrows. If A x S is indeed a
product a unique arrow u must exist such that 7TA°U — f and TTBOU = g. For
eaçh c £ C these requirements détermine a unique value for u(c) as follows:

• f{c) i Ag{c) | : Then u(c) | , since TTA(U(C)) j , and u(.c) = (f{c),g(c))
is the unique value for which TT^(U(C)) = /(c) and TTB(U(C)) = p(c).
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• ƒ(c) i A g(c) î : Then u(c) j , since ITA(U(C)) J,, and u(c) = (ƒ(c), J_) is
the unique value for which TT^(W(C)) — f(c) and WB(U(C)) î.

• /(c) î A g(c) 1: Then u(c) | , since 7TB(U(C)} j , and n(c) = (_L,#(c)) is
the unique value for which irA(u(c)) î and 7TB(U(C)) = #(e).

• /(c) î A#(c) î: As ^3teAxB[*A{t) î ATT^*) |} it must be the case that
u(c) l D

LEMMA A. 17: Lef f>g : A ^ B be two arrows in PartSet. Let
R = {{f(a),g(a))\a G d o m / H dom#}, and let R be the reflexive,
symmetrie, transitive closure of R. Let U be the set of équivalence classes
modulo R and let h : B —• U be the function that maps an element from B
to its équivalence class. Then h is a coequalizer of ƒ and g.

Proof: See the proof of proposition 8.4.2 in [10]. D

LEMMA A. 18: The equalizer in PartSet of two arrows fyg : A —> B is
E = {ae A\f(\{a}\) = g(\{a}\)} and e : E - A = IDE .

Proof: It is easy to check that ƒ o e — g o e.

Let h : C —•> A be such that ƒ o h — g o h. Since h equalizes ƒ and # we
have ranfr C £*. Hence, the arrow k : C —> E can be constructed as k = h.
Since ranfe Ç E, e o k = ÏDE o k = k = h.

Assume that there is an arrow kf : G -* E such that e o f c ' = h. Since e

is a total injective function it is a monomorphism. From h = eokf = eok

it can be concluded that k! — k, in other words k is unique. D

LEMMA A. 19: The empty set is both an initial and final object in PartSet.

Proof: The only possible arrow to or from the empty set is an empty
function. There is exactly one such function with every other object in
PartSet. D

LEMMA A.20: The category PartSet has allfinite limits and colimits.

Proof: From the lemmas A.19, A.16, and A.18 we know that PartSet
has a final object, all products and equalizers, therefore it has ail finite limits.
From the lemmas A.19, A. 13, and A. 17 we know that PartSet has an initial
object, all sums and coequalizers, therefore it has ail finite colimits. D

This also foliows from the équivalence between PartSet and the
category pSet of pointed sets. For the équivalence refer to [10] and for
the completeness refer to [3],
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LEMMA A.21: PartSet is a valid instance category.

Proof: For the proof a functor F : FinSet —*- PartSet must be
constructed such that for all Mi, M2 : G —> FinSet it holds that

Since FinSet is a subcategory of Par tSet the inclusion functor obviously
satisfies this requirement. D

A.3. The category FuzzySet

Let P be a complete Heyting algebra. The notations 0 and 1 will be used to
indicate the minimal and maximal element in P. The objects in the category
FuzzySet are sets S together with a function as : S —> P. The morphisms
ƒ : (5, as) —• (ï\ &T) are fonctions ƒ : S —> T such that as < ax ° ƒ.

A.3.1. Monomorphisms and epimorphisms

LEMMA A.22: Epimorphisms in FuzzySet are surjective fonctions, while
monomorphisms in FuzzySet are injective fonctions.

Proof: Similar to the proofs in Set. D

A.3.2. Limits and colimits

LEMMA A.23: The coproduct of two objects A and B is (C, ac) where C
is the disjoint union of A and B and ac(x) = aA{x) for éléments x that
have been injected from A and ac{%) — &B(X) for éléments x that have
been injected from B.

LEMMA A.24: The product of two objects A and B is (C, ac) where C is
the cartesian product of A and B and ac{{a, b}) = a^(a) U ag(b).

LEMMA A.25: The coequalizer of two arrows f,g : (A^A) —> {B^as)
is h : (B^as) —> (E^aç) where E together with h is the (Set,) coequa-
lizer of ƒ and g. Let Ie = {b G B\h(b) — e} then a E is defined by

LEMMA A.26: The equalizer of two arrows f,g : (A^A) —» (B^B) is
h : (E, a&) —• (A, a A) where E together with h is the (Set,) equalizer of f
and g. a E is defined by a E (G) = cr^(/i(e)).

LEMMA A.27: The initial object in FuzzySet is (0,(7^) where a$ is the
empty function.
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LEMMA A.28: The final object in FuzzySet is ({*}, <?{*}) where {*} is a
one element set, and Ö-{*}(*) = 1.

LEMMA A.29: FuzzySet is a valid instance category.

Proof: For the proof a functor F : FinSet —> FuzzySet must be
constructed such that for all M\9 M2 : G —» FinSet it holds that
Mi = M2 & F o Mi = F o M2. If we define F {S) = (S, À* e 5.1)
this requirement is obviously satisfied. D
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