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ON BANDWIDTH, CUTWIDTH, AND QUOTIENT GRAPHS (*)

by Dominique BARTH (*), François PELLEGRINI (2),

André RASPAUD (2) and Jean ROMAN (2)

Communicated by R. CORI

Abstract. - The bandwidth and the cutwidth are fondamental parameters related to many problems
modeled in terms of graphs. In this paper, we present a gênerai method for finding upper bounds
of the bandwidth of a graph from the ones the quotient graph and induced subgraphs issued from
any of Us partitions, as well as an equivalent resuit for cutwidth. Moreover, gênerai lower bounds
are obtained by using vertex- and edge-bisection notions.

These results are applied, in a second time', to several interconnection networks. By choosing
convenient vertex partitions and judicious internai numberings of the vertices of the partition
blocks, we prove in this paper original bounds for the binary de Bruijn and Butterfly graphs, and
summarize results for the Shuffle-Exchange, FTT, and CCC graphs.

Résumé. - Les largeurs de bande et de coupe sont deux paramètres fondamentaux qui interviennent
dans la formulation de nombreux problèmes modélisés en termes de graphes.

Dans cet article, nous présentons une méthode permettant de majorer la largeur de bande d'un
graphe en fonction de celle du graphe quotient et des sous-graphes induits par n'importe laquelle
de ses partitions, ainsi qu 'un résultat équivalent pour la largeur de coupe. De plus, nous proposons
des minorations générales de ces paramètres à partir des bissections sommet et arête du graphe.

Ces résultats sont appliqués à plusieurs réseaux d'interconnexion. En choisissant des partitions
adaptées et des numérotations judicieuses des sommets des parties de ces partitions, nous prouvons
des majorations originales pour les graphes de de Bruijn binaire et Butterfly, et récapitulons nos
résultats pour les graphes Shuffle-Exchange, FFT, et CCC.

1. INTRODUCTION

In all the paper, G is a graph with n vertices, the vertex and edge sets
of which are denoted V (G) and E (G) respectively. An ordering y> of G
is a one-to-one mapping of V (G) in the set {0, 1,..., (n — 1)}, and $ (G)
is the set of ail orderings tp of G.
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488 D. BARTH et ai

The ordering of graphs is equivalent to their embedding into the path graph
of same order, which allows us to define the dilation dil ((f) and congestion
eg (tp) of an ordering tp as the ones of the corresponding embedding:

{v',v"}eE(G)

eg H H f ^ (\{{v', v"} € E (G)/<p {v') <<p(v)<<p

The bandwidth of G is then defined as

and the cutwidth of G is

Cw(G)d:!f min (eg (y.)).

The bandwidth and the cutwidth are two formai parameters of graphs which
appear in the formulation of many problems modeled in terms of graphs.
For instance, bandwidth has been used in code correction [14], gaussian
élimination for sparse matrices [6, 12], and V.L.S.I. layout [18, 30], and
cutwidth in V.L.S.L design [9, 20, 25, 29].

General bounds have been proven for bandwidth in [6, 7], but since it has
been shown in [10, 11, 12] that the problem of finding the bandwith and the
cutwidth of any given graph is NP-complete, the main way to compute them
is by the means of heuristics, as in [12, 13, 28].

In several occasions [7, 12], the method used to compute bandwidth
involves a two-stage process, where vertices are clustered before being
numbered within these clusters. Formalizing this approach by the means of
quotient graphs, we present in this paper a method for finding upper bounds
of the bandwidth and cutwidth of a graph, based on the bandwidth and
cutwidth of its quotient graph and induced subgraphs with respect to the
blocks of partitions of V (G), All the necessary définitions and notations
are given in Section 2.

This method leads to gênerai upper bounds, stated in Theorems 1 and 5.
When the structures of the graphs are convenient, the vertex orderings
induced by the partitions can be finely tuned to improve the upper bounds;
in that sense, our results can be seen as a framework for finding good
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ON BANDWIDTH, CUTWIDTH, AND QUOTIENT GRAPHS 489

orderings rather than plain theorems. Lower bounds are also proven in
Propositions 3 and 7, using the vertex- and edge-bisections of G. Section 3
contains all these results.

In Section 4, we use these results to prove original bounds for the binary
de Bruijn and Butterfly graphs. Equivalent results for the Shuffle-Exchange,
FFT, and CCC graphs are also summarized.

2. DEFINITIONS AND NOTATIONS

It is assumed that the reader is familiar with standard graph theoretic
notations; see [5] for référence. In particular, diam (G) is the diameter of
graph G, 5 (v) dénotes the degree of a vertex v, and 8 (G) = min ($(v))

v€V (G)

and A (G) = max (S (v)\ are the minimum and maximum degrees of
eV(G)

graph G, respectively.
In the following, a mod b dénotes the remainder of the euclidian division

of a by b, and © the exclusive-or operator on binary représentations of
integer numbers.

2.1. Partitions

Given a non-empty n-vertex set V (G) of a graph G, a partition II of
V (G) is a family of N non-empty mutually disjoint subsets called blocks,
the union of which is equal to V (G). We dénote V (G) the set of all the
partitions of V (G).

For ail vertices v in V (G), ir(v) dénotes the block of II containing v,
def

The size of the biggest block of a partition is max^ =' max (|TT|).

For ail blocks TT in H, LU (TF) is the cocycle of TT in G, ie. the edge set
{{vf, v/f} G E(G)/vf E 7T7 v

11 $ TT}. The size of the biggest cocycle in a
partition is max^ = max ([a; (TT)|). EJ (TT) and E E (H") respectively dénote
the sets of edges which have both ends in TT (Le. internai edges) and none of
their ends in TT (Le, external edges). These notations are extended to the whole
partition, with Ej (n) d= ( J {Ej (TT)) and EE (E) d= E (G) - Ej (n).

7T6ÏÏ

2.2. Quotient graphs

For ail blocks TT in II, G [TT] dénotes the subgraph of G induced by TT. The
quotient graph Q = G/n of a graph G with respect to a partition II of V (G)
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490 D. BARTH et al

is the graph such that V (Q) = II, and {TT', 7r"} belongs to E (Q) if and
only if there exist vf in TT' and v11 in TT" such that {?/, vf/} belongs to E (G).

2.3. Orderings

An ordering tp of a graph G is a one-to-one mapping of V"(G) in
{0, 1,..., (n — 1)}. The restriction of (p to a block TT of G, denoted
cpî , is the ordering of G [ir] such that for all vertices v1 and vn in TT,

y> defines an implicit orientation of the edges of G, which allows us to
define the lower and upper half-degrees of any vertex:

K (?) =f \{{v', v} €E{G)/<p {v') < <p{v)}\,

and

Let $ Q (G, II) be the set of all orderings <PQ of Q — G^n- F° r all blocks
TT of II ordered by (pc, we define the numbers

and

«+iV<j (TT) =f

They are the minimum number of edges which link any vertex of block TT
to vertices belonging to blocks of smaller and bigger numbers, respectively.

Let G be a graph, II a partition of V (G) into N blocks, and VQ an
ordering in <£>Q (G, II). An ordering <pQ of V (G) is compatible with Et and
ipQ if and only if vertices in blocks of increasing numbers have increasing
numbers, Le,:

VTT', TT" e n ,

7T J < <pQ v71" J/ ^ (V t? G TT , v t? G 7T , (po yv j < ^ ? Q (^ JJ,

Informatique théorique et Applications/Theoretical Informaties and Applications



ON BANDWIDTH, CUTWIDTH, AND QUOTIENT GRAPHS 491

which amounts to the following set of properties:

^PG (v)} — (Pipn (TT) Î •-) Pipo (?r)} the numbers in each block form

an interval;
N-i

M {p2;..., Pl} = {0,..., n — 1} the intervals are disjoint and

cover {0,..., n — 1};

Vi £ {1,..., N — 1}, Pi = P2_i + 1 partitions of increasing numbers

give intervais of increasing

extrema.

In particular, p0 = 0, Po = l^g1 (0)| - 1, pi = I^Q 1 (0)|, P I - l ^ 1 (0)| +
Ivpg1 (1)| - 1,.,., Piv-i = n — 1. We dénote <&G (G, II, <PQ) the set of all
these orderings. We call configuration of G any triplet (II, <PQ, <^G) such
that II belongs to V{G), <PQ belongs to <&Q(G, II), and (pQ belongs to

Since the partition II = y (G) with n blocks always allows orderings
G = ¥Q which achieve the bandwidth and the cutwidth of G, we have

Bd(G)=

configuration of G

Cw(G)= min
( n )

configuration of G

2.4. Bisections

The edge-bisection bise (G) of a graph G is the size of the edge-set
of minimum cardinality whose removal splits G into two subgraphs the
vertex-cardinalities of which differ by at most one.

The vertex-bisection bis^ (G) of a graph G is the size of the vertex-set
of minimum cardinality whose removal splits G into two subgraphs of same
vertex-cardinality. In some parts of our computations, we will be more
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492 D. BARTH et al.

interested in the minimality of the size of a disconnecting vertex-set rather
than in the strict equality between the sizes of the two resulting subgraphs.
Therefore, we define the almost-vertex-bisection bis^ (G) of a graph G to
be the size of the vertex-set of minimum cardinality whose removal splits
G into two subgraphs the vertex-cardinalities of which differ by at most
one. Therefore,

bis (G) = i b i S

1Sv ^ ] [bis; (G) + 1 if n - bis^ (G) isodd.

3. GENERAL RESULTS

In this section, we prove upper and lower bound theorems, both for
bandwidth and cutwidth. The proofs of the upper bounds are based on
majorations performed when considering the ordering of the vertices of the
original graph with respect to the one of any of its quotient graphs. The proofs
of the lower bounds are based on the almost-vertex- and edge-bisections,
respectively.

THEOREM 1 : het G be a graph, Q the quotient graph obtained front a
partition II of V (G), ipQ an ordering of Q achieving the bandwidth of Q.
For all ipG £ &G (G, ü , <PQ), we have

Bd (G) < max (ea- (<pG), (Bd (Q) - 1) max^ + se (tpG))

def

_ , . - . . d e f

(v")

Proof: We know that, for all <pG in $ G (G, II, tpQ), Bd(G) < dü((pG).
In order to make parameters of Q appear within the expression of dil (<pG),
we rewrite this latter with respect to the blocks of the partition, splitting it
into two terms accounting respectively for the edges of G internai to the
blocks and for the other edges.

Informatique théorique et Applications/Theoretical Informaties and Applications



ON BANDWIDTH, CUTWIDTH, AND QUOTIENT GRAFHS 493

For all configurations (II, (ÇQ, (pG), àjl{(pG) rewrites into:

dil {ifa) ^ max ( max (\<pG (*/) - <pG {>")]),
{'"}eE{ii)

{v',v"}eEE(U)

Let us evaluate these two terms separately.
- Since <pG is an ordering compatible with cpg, the vertices in each block

are numbered in séquence, so

(\xpG (vf) - ipG (v")\)
n)

- When EE (II) is not empty, Bd (Q) > 1, and for ail {u', u"} in EE (II),
with g' = ̂ Q (TT (Ü7)) < Ĉ Q (TT (t;"))' = ̂ , we have f - qf < Bd{Q) atid

ipG{v") -<pG{v')

- (<PG Wf) ~ Vq" + 1) + (Pq»-1 -Pq'+l + 1) + ( ^ " VC? {*'))

q'<q<q"

< (Bd (Q) - 1) max, + (Pfl, - y G (w')) + (^G K ) " ^ " ) + i-

Therefore,

max ( j w (y') - içG (vf')\) < (Bd{Q) -

Combining these two results leads to the claimed resuit. Q
Although the majorations performed within the proof seem rough, this

theorem usually gives good results as most partitions are taken with blocks
having the same size. If it is not the case, a more spécifie study bas to
be carried on.

From the above theorem, we can deduce the following straightforward
corollary.

vol. 29, n° 6, 1995



4 9 4 D. BARTH et al

COROLLARY 2: If G is a graph and Q is the quotient graph obtained from
a partition II of V (G), then

Bd (G) < (Bd (Q) + 1) max, - 1.

Proof: Notice that ei (IPG) < max^ — 1 and ee {^>G) < 2max7r — 1. G

PROPOSITION 3: For all graphs G,

Bd(G) >bis'v(G).

Proof: Let cpo be an ordering of G which achieves the bandwidth of G,
Le. such that max (\(PG (y/) ~~ VG (v")l) = Bd (G). Let us define

and let Vd — {v G V (G)/b\ < <PQ (v) < 62}. By what précèdes, there is no
edge {V, v"} in E (G) such that (pc (vf) < h and (pG (vff) > b2, and Vd

disconnects G into two subgraphs G\ and G2 such that \V (G\)\ — |V (G2)|
or |V(Gi) | - |F (G 2 ) | - 1, so bi<(G) < |V [̂ - Bd(G).

Since the vertex-bisection is not known for many graphs, the most direct
way to compute lower bounds for bandwith is by means of Chung's theorem.

THEOREM 4: Chung [7]

T n - l
Bd(G) >

I diam (G)

The most interesting point of this bound is that it does not require a deep
knowledge of the studied graph, while the (almost-) vertex-bisection is often
hard to compute. As a matter of fact, the lower bounds of the bandwidth of
the two chosen examples are computed using Chung's theorem.

Let us now deal with the cutwidth.

THEOREM 5: IfG is a graph, Q the quotient graph obtained from a partition
n of V (G), and cpQ an ordering of Q achieving the cutwidth of Q, then

Cw (G) < few (Q) -

max(Cw(G[7r]) + |w(7r)| - |TT|

Informatique théorique et Applications/Theoretical Informaties and Applications
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Proof: We know that, for ail <pc in <$>Q (G, n , </?Q), C W (G) < cg (<PG)> I n

order to make parameters of Q appear within the expression of cg (<PG)>
 w e

rewrite this latter with respect to the blocks of the given partition, splitting
it into three terms accounting respectively for the edges of G external to a
given block, the edges which have exactly one end in this block, and the
edges internai to the block, as shown in Figure 1.

.s
\***- **•

Figure 1. - External (dashed), cocycle (dotted),
and internai (solid) edges with respect to block TT.

Let

f E (TT) = max(|{{t/, v"} e EE (K)/VG («') < VG (v) < ipG (t

fc (TT) = nwx(|{{t/, «"} e ^ ( T O M ; («') < w («) < V G (V")}|),

and

ƒ/ (TT) = m ^ ( | { { ^ , «"} G Ej (*)/VG {v') < ifc (v) < <pG (v")}\),

so that cg (IPG) ̂  m a x if E M + fc M + ƒ/ (7r))- Let us study these three

terms separately. Let TT in II and v in TT.

- Since f E (TT) accounts for the edges external to TT, the choice of v in
7T is not significant. Let us then consider the quotient graph Q = Gyn-
Let 7T~ and TT+ be the vertices of Q such that tpQ (TT~) = cpQ (?r) — 1 and
ipq (TT+) = y?q (?r) + 1, if they exist. The number of edges of Q whose end
numbers strictly bracket <PQ (TT), which we dénote &E; (TT), can be written
in two different ways:

^(TT) = \{{w', w"} eE{Q)lwQ (wf) <

vol. 29, n° 6, 1995



496 D BARTH et al

and

gE (TT) = \{{vf7 J
f} e E (Q)/<PQ (W) < yQ (TT) < <pQ (w")}\ - 6+Q (TT).

Since the first term of each right member of the above équations is, by
définition, bounded by eg UPQ), we have

9E fa) < eg {tpq) - min (5^ (TT), 6+Q (TT)),

and since ë~Q (TF) -f S^Q fa) = 8 fa)r the minimum of the partial degrees is

always greater than or equal to ,. so CE (TT) < cg(</?Q) - '

Since an edge of Q quotients at most max^ edges of G, f E (TT) <

-^- V
- The second term is straightforwardly bounded by |o;(7r)|. However,

from every vertex v* af w such that <pQ (vf) > (pc (v), there exist at least
ëjj (TT) edges of ĉ  (TT) incident to vertices vn with ^G (U ; /) > tpQ (tr),
which must not be accounted for. Similarly, for each vertex v/ of ?r such
that (po (?/} < (pQ (t>}> at least 6^ (ir) edges must not be accounted for.

Therefbre, fc (TT) < |a;(7r)| - |TT| • mm(6^Q (ir), 6+^Q (TT)).

- The third term is, by définition, equal to the congestion of G [TT} with
the restriction of <ÇQ to TF,. ie. cg((jpQ7r).

By combining these three upper bounds, we obtain

Cw (G) < max ( f eg (<pQ) -

\u (TT)I. - fvrl • min (6^Q (TT), 6+^Q (TT)))) .

Since, in any block, the ordering of the vertices is continuous by définition,
and independant from the orderings of other blocks, it is possible, once taken
an ordering tpQ. which achieves the cutwidth of Q, to obtain a compatible
ordering (pc in §Q (G, II, <fg) such that the restriction of (pg to every block
TF in II gives orderings which achieve the cutwidth of G [TT]. Combining this
ordering with the above équation yields the claimed resuit. D

This theorem leads to the more simple form stated in the next corollary.
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CoROLLARY 6: If G is a connectée graph and Q is the quotient grapk
obtained from a partition II of V (G) with at least two blocks, then

Cw(G) < Cw(Q)A(G)max^

Proof: If G is connected and II is not restricted to a single block,
then S(Q) > 1. For ail blocks TT, CW(G[TT]) -h \v{x)\ is bounded by the
number of edges having at least an end in TT and thus by A (G) |TT], and

< A(G)max7r. D

PROPOSITION 7: For a// graphs G,

Cw(G) >bis e (G) .

Proof: Let (/?£ be an ordering of G which achieves the cutwidth of

G, and let Ed = | { v ' , v"} G \ \ }
By définition of the cutwidth, \E^\ < Cw (<?), and E^ disconnects G

into two subgraphs G\ and G2 such that ;|V(Gi)| — I-—-— and

1^ (G2)1 - ^ , so bise (G) < \Ed\ < Cw(G). D

4. APPLICATIONS

4.1. Binary de Bruijn graph

We exclusively study the case of unoriented binary de Bruijn graphs,
denoted UB (2, k). The vertices v of ÜB (2, k) are words of k letters taken
in the {0, 1} alphabet, and denoted v •= t?i ̂ 2 »-üfe. There exists an edge
between two distinct vertices v and vf if and only if the (k— 1) leftmost
letters of one of the two vertices are equal to the (k — 1) rightmost letters
of the other vertex, Le. if vf = 2̂ ̂ 3 - . Ufca: or ^' — x^i .... ̂ fc_2 ̂ /c-1» with
x e {0, 1}.

We define the complement of v as v — î p 2 - % where vi = 1 — iv;
by extension, the complement of an edge is the edge whose ends are the
compléments of the ends of this edge. In référence to language theory, we
may dénote xk a letter x repeated k times within a word. We dénote 7i (v)
the Hamming weight of v, Le. the number of "l"s in the word représentation
of v. If v is a vertex to which is associated a word on a binary alphabet, we
define as [v] the value of this word taken as a binary number représentation.
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000

001

010

100

• 0 1 1

• 1 0 1

• 1 1 0

111

Figure 2. - UB(2, 3) and its partition by Hamming weights.

PROPOSITION 8:

Bd(UB(2,t))< rfc-

Proof: In order to obtain a quotient graph which is a path, we quotient
UB (2, k) using the Hamming weight of its vertices, since the différence of
the Hamming weight of any two vertices linked by an edge is at most 1 by
définition. Therefore, we define the following configuration:

- n = {7ro,7Ti,..., 7T/J, where <Kq = {v G F(UB(2, k))/H(v) = g};

- (fo, defined as:

• <PG (0*) = 0,
• Vi/, v" G y (UB (2, jfc)),

((pG (v) > <pG (v")) (((pc (TT (vf)) > (pc (TT (V"))) or

((7r(vf) = 7r(vf/)) and ([vf] < [v"]))).

<PG, which is compatible with (pc, amounts, in each block, to numbering the
vertices v in decreasing order with respect to [v] ; it is therefore equivalent
to the ordering defined by Harper for the hypercube [15].

This ordering has several interesting properties:
- UB (2, k ) / n is isomorphic to the path graph P (k + 1).

k

- (V G 7Tq) O (v G -ïïk-q)'

Informatique théorique et Applications/Theoretical Informaties and Applications
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- tpG(v) = 2k - 1 - <pG(y).

Since UB (2, k) /n is isomorphic to the path graph P (k + 1), then
Bd(UB(2, fc)/n) = 1 and Bd(UB(2, *)) = max(ei(<pG), ee((pG)).
Moreover, for each edge {v1 ,vn} of EE (II) such that ipc (vf) <
ipG(v"), we have PtpQ (*(*)) = P<pQ{*{v»)) ~ U and thus ee (<pG) =

( l ( ^ ) ( ^ ) D
{u',u"}6S£ (n)

Let us consider all the edges {v1', v"} in £ (UB (2, A;)), assuming without
loss of generality that q1 = y?g (?r (v;)) < y?g (TT (t''7)) = Qn-

( k \
- If q" = q\ then \ipG {v1) - <pG (v")\ < |vr̂ .| - 1 < f f \ - 1, and then

( \(
Si {iPG) < I [kl - 1.

_ If g" = qf -\- 1, then i/' is obtained from v by deletion of a letter "O"
and insertion of a letter "1" .

• If v1 — 0 m and / = m l , let us consider vertex v1^ = 0^"^ lg = 0 m_L in
Tiy and its neighbor vf^ — m± 1 in irq». By définition, for ail m, [mjj < [m],
and ([Om] - [0mx]) < ([ml] - [m± 1]). Since (^G « ) - <PG(V')) =
([0m] - [0mj_]) and (<pG ( ^ ) - ^?G (V")) = ([ml] - [mx 1]), we have

(v')) < (<PG(V±) ~
i i

• If v1 — m0 and vn = l m , then v* = m 1 and vN — 0m, which amounts
to considering the first case since \tpG (vff) — ipG {y})\ = \tpG (vn) — ipc (^)l*

By the above, ee ((pG) =

By Theorem 1, taking the maximum of Si (<pG) and ee {^>G) yields the
claimed resuit. D

Remark:

k
<Bd(UB(2, k)).

Proof: This dérives straightforwardly from Theorem 4, with
|V(UB(2, k))\ = 2k and diam(UB(2, k)) = fc.

vol. 29, n° 6, 1995



500 D. BARTH et al

PROPOSITION 9:

I .^<Cw(UB(2,fe))<2 A-\ | + 2 .

Proof: To prove the upper bound of this proposition, we use a configuration
based on the same II and tfiQ as above. Since UB (2, k) /n is isomorphic
to P (k + 1), Cw (UB (2, k)/u) = 1 and 6 (UB (2, k)fu) = 1. Moreover,
1^(^)1 £ 2|7Tg|, as from each vertex in any ix exit at most 2 edges to
other TT'S.

The edges {vf
 r v

/f} internai to any block TT link vertices of same weight,
SO' if vr — v\ V'2 • -- Vk* then vH = v^vi ... Vk-i or vf/ — V2 ... Vk vi- Therefore,
the connected components of UB (2, k) [TT] are single vertices, single edges,
or cycles (named Etzion cycles) and, for ail ?r, Cw (UB (2, k) [TT]) = 2.

For k > 3 and for any block 7vq, it is possible to find a vertex not linked
to either a vertex of irq-i or TT^^I (Le. a vertex whose first and last letters
are identicaî) so, for ail ?r, min (6^ (TT), 8^ (ir)} — 0.

According to the above, Theorem 5 yields

/ r«(UB(2, k)m)
Cw (UB (2, k)) < ^Cw (UB (2, fc)/n) - ^ \ J/UJ

+ max(Cw (UB (2, k) [TT]) + \u (TT)|

< max (Cw (UB (2, k) M) + \u (TT)|)
TT e n

< 2 + 2

It is easy to see that Cw(UB (2, 1)) = 1 and Cw (UB (2, 2)) = 3, which
extends the upper bound to all k > 1.

For the lower bound, it is known from [19, p. 480] that bise (SE (k))
2k-l

> . Since SE (fe) is a spanning subgraph of UB (2, fc),
K

Cw (UB (2, jfe)) > bise (UB (2, k)) > bise (SE(fc)) > l - %-. D
2 k
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Remark: It is known that, for ail k > 1, ( [kl ) < 2fc J^-. Hence,

our upper bounds of the bandwidth and the cutwidth of the binary de Bruijn
/ 2k N

graphs are both in O —=

4.2. Butterfly graph

The vertices of BF (k) are pairs of integer numbers (l; m), where
0 < l < k and 0 < m < 2k, and each vertex (7; m) of BF (k) is linked to
vertices ((/ - 1) mod k; m), ((/ - 1) modfc; m 0 2fc), ((/ + 1) mod k; m),
and ((/ + 1) modfc; m © 2(^+1)modfc). Vertices (/; m) of same l value are
said to belong to the same level /.

PROPOSITION 10:

B d ( B F ( i f e ) ) < 9 - 2 '7c-2

Proof: The first part of the proof is devoted to the définition of a suitable
configuration. The cpc numbering that we obtain is then studied to achieve
a better upper bound.

A natural way to partition Butterfly graphs is to quotient them by levels,
as illustrated in Figure 3. We will thus define II, </?Q, and (fc as follows:

(0;0) (0;2) (0;3) (0;4) (0;5) (0;6) (0;7)

(2;0) (2;î) (2;2) (2;3) (2;4) (2;5) (2;6) (2;7)

Figure 3. - BF (3) and its partition by levels.
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~ II = , Tri, fe_i}, where 7rg = {(/; m) E V

1-1) if O < q <

= <?}
Je — 1

<q<k-l

if q — k —

- ipo (/; ra) — cpQ (717) • 2k + m.

By définition of II, it is clear that, for all g, |7rg| = 2fc, and that cpc is
compatible with (pc. Since no edge links vertices belonging to the same
block, e% ((PG) — 0* By définition, BF (k) ,u is isomorphic to the cycle graph
C(&), so Bd(BF(A;)yn) = 2. Moreover, the above définition of (pq is an
ordering which achieves this bandwidth on the cycle.

For all v = (/; ra) eV (BF (fc)), v is linked to vf = ((/ + 1) mod fc; m)
and to v" = ((Z + 1) mod jfe; m e 2^+ 1)m o d f c). Thus,

Ho wever, with the chosen cpg, all the edges which maximize ee ((PG
block 7T&_2 to block TT^-I, and (cpQ (nk-2) — WQ (^k-i)) is by construction
always equal to 1 (and not to 2, which is the bandwidth of Q). Therefore,
the maximum dilation of the external edges is in fact less than what would
be obtained by using Theorem 1. As a matter of fact,

Bd (BF (fc)) < max (2fe • \<pQ (TT^J) - <pQ (nk_2)\ + 2*"1,

< max(l -2fc +

< 9 • 2k~2. D

\ 2 • k~2 )

Remark:
ï*-2 <Bd(BF(fc))

Proof: As we know by [19] that diam(BF (fc)) = | ^ fc |, we have by

Theorem 4

Bd(BF(ifc)) >
k • 2fc - 1

II-
fc • 2 f c - 1

h*-
Informatique théorique et Applications/Theoretical Informaties and Applications



ON BANDWIDTH, CUTWIDTH, AND QUOTIENT GRAPHS

as the contents of the ceiling operator are never integer. D

PROPOSITION 11:

1 < Cw(BF(/c)) < 3-2*.

503

Proof: Let us begin with the upper bound. An interesting characteristic of
Butterfly graphs is that their construction is recursive. As a matter of fact,
let us define the BF graphs as BF graphs without their wrap-around edges
{Le. edges linking level k - 1 to level 0). It is easy to see that BF (k) can be
obtained by putting two copies of BF (k - 1) atop a level of 2k vertices and
linking them so that the added level becomes level k, as illustrated in figure 4.
This décomposition is straightforward for BF (fc), as illustrated in figure 5.

(0;0) (0;2) (0;3) ; : (0;4) (0;5) (0;6) (0;7)

(l;0) (1:1) (1;2) (I;3)

(2;0) (2;2) (2;3) (2;4) (2;5) (2;6) (2;7)

Figure 4. - BF (3) and its partition: two B F (2) and a level of vertices.

\ (2,-0) Cil) O2)

(0;0) (0;2) (0;3)

a. BF(3) and its partition: two
BF(2) and a level of vertices.

b, BF(2) is isomorphic to two C(4)

Figure 5. - Recursive structure of B F graphs.
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To prove the upper bound, we use this two-step recursive construction
of BF (A;). The first step, involving the décomposition of BF (k), leads to
the following II and <PQ:

- II = {TTO, Tri, 7T2}, where

7T0 = {(l; m)eV (BF (*;))// < k - 1, m < 2k~1}

Tri = {(l; m)eV (BF {k))/l = k - 1}

7T2 = {(/; m) e V (BF (*))// < jfe - 1, m > 2 E " 1 }

= «•
By définition, 7i"o and 7T2 are isomorphic to BF (k — 1) graphs, and the

quotient graph BF (k)/n is a path, so Cw (BF (fc)/n) = 1, 5 (BF (fe) m) = 1,
and BF (k) [TTI] is a set of independant vertices, so Cw(BF(A;) [TTI]) = 0.
This structure yields the following values:

Kol = (fc - 1) 2 f e - \ | w (TTO)| = 4 • 2 * - \ Cw (BF (k) [TT0]) = Cw (BF (k - 1)),

|7ri| = 2fe, |w(7ri) |=4-2*, Cw(BF(*)[7ri]) = 0,

|TT2 I = (ft - 1) 2fc"1, \u> (7T2) I = 4 • 2fc-1, Cw (BF (*) [TT2]) = Cw (BF (fc - 1)),

«5 , ^ (^0 ) = 0, <5+^(7ro) = O,

Using Theorem 5, we obtain

Cw (BF (k)) < max (Cw (BF (k) [TT])
€ { }

+ M T T ) | - |TT| • min(5n)VQ (TT), 5+^Q (TT)))

<max(Cw(BF(A; - l ) ) + 2 fc+1,3-2 fc). (1)

In the second step, an analogous study on BF (k) based on the same
partition leads to:

Cw(BF(Jfc)) <max(Cw(BF{A;- l ) ) + 2fc
!2

fc)

<Cw(BF(A; - l ) ) + 2fc. (2)
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Since BF(2) is isomorphic to two C(4), Cw(BF(2)) = 2. By injecting
this value into (2), and studying the induced récurrence, we obtain

C w ( B F ( f c ) ) < 2 * + 1 - 6

which, injected itself into (1), yields the claimed resuit.
Let us now prove the lower bound. The Cube-Connected Cycles graph

of dimension k9 denoted CGC (A;), is the graph obtained by replacing the
vertices of a fe-dimensional hypercube by fe-node cycles [26]. In [27] has
been given a lower bound of the edge-bisection of a graph with respect to
the congestion of the embedding of the graph into the complete graph with
double edges. In particular, for the CCC graph, this approach yields

biSe(CCC(fc))> U

Since it has been proven in [8] that CCC (k) is a spanning subgraph of
BF{ife), Cw{CCC(Jfc)) < Cw(BF(Jfc)), and by Proposition 7

4.3. Summary

Cw(BF(fc))> -

Using the same techniques as above, our method has been successfully
applied to other classes of graphs [2], All these results are summarized in
the following table.

Remark: The upper bound that we have found for Cw(SE(fc)) is in
/ 2 \

O —p= . However, by combining the constant-congestion embedding of

SE (*:) into BF (A; +2 - log (fe)) described in [16, p. 237] with the embedding
that we use to compute the upper bound of Cw(BF), one can prove that

(2k\
Cw (SE (k)) is in O I -— j . Since the lower bound that we give is also of\k J

f2k\
this order of magnitude, then Cw(SE(fc)) is in © I — j .

\ k J

5. CONCLUSION

We have presented in thïs paper a method for determining upper bounds
of the bandwidth and the cutwidth of a graph from the bandwidth and the
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Graph

H(*)

UB(2,fc)

SE(Jfc)

FFT(fc)

BF(Jfc)

CCC(fc)

Bandwidth
lower upper

e((r!i)) M
2 f c - l

2 f c - l
2Jfc- l

2 f e - l

8 ok-2

(r!i)
a(r*i)

3 • 2*"1

9•2 f c-2

9•2 fc-2

Cutwidth
lower upper

[|2*+»J [3 ,4 ,21]

1 2*
5-T

i - ï f

li-2*+1J
1 . ofc+1
5 z

[è-2*+1J

2 ( r î i ) + 2

( r l i ) + a f

2fc+i _ 2

3-2*

2fc+i + !

t Cw(SE(fc)) is in fact in 6 (£) (see remark above).

cutwidth of the quotient graph and induced subgraphs issued from any of
its partitions; lower bounds of these parameters have also been given, based
on vertex- and edge-bisection notions.

The quotienting method is well suited for graphs which can be quotiented,
possibly recursively, into graphs the bandwidth or cutwidth of which are
known or for which accurate upper bounds are available. However, building
suitable quotient graphs is not easy, since it inherits the complexity of the
problem. Quotientings must be simple so that their parameters can be easily
computed, and must be judiciously chosen in order to capture in the quotient
graph the topological properties of the studied graphs.

When the graph structure is well-known, it is often worth fine-tuning
the ordering of the vertices induced by the quotienting, in order to directly
compute more accurate upper bounds. In that way, our results can be seen as
a methodological framework for finding good orderings rather than directly
applicable theorems.

Applications of the method to the binary de Bruijn and Butterfly graphs
have been exposed in the paper. Studies of other classes of interconnection
networks (Shuffle-Exchange, FFT, CCC), and generalizations of these results
to d-ary graphs have also been carried out in related articles [1, 2, 23, 24].
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