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COMPLEXITY OF E0L STRUCTURAL EQUIVALENCE *

by Kai SALOMAA (X), Derick WOOD (2) and SHENG YU (2)

Communicated by Jean BERSTEL

Abstract. - We show that the EOL structural équivalence problem is logspace hard for deterministic
exponential time. Also, we show that this question can be solved in linear space by a synchronized
alternating Turing machine, and thus establish an exponential space upper boundfor its complexity.
The équivalence offinite tree automata is shown to be logspace reducible to context-free structural
équivalence. The converse réduction is well known and thus context-free structural équivalence is
complete for deterministic exponential time.

Résumé. - Nous prouvons que l'équivalence structurelle des EOL-systèmes est difficile en espace
logarithmique et temps déterministe exponentiel. Nous montrons également que cette question peut
être résolue en espace linéaire par une machine de Turing alternante, ce qui établit une borne
supérieure exponentielle en place pour sa complexité. On prouve que l'équivalence d'automates
finies d'arbres est réductible en place logarithmique à l'équivalence structurelle des langages
algébriques. La réduction réciproque est bien connue, et ainsi l'équivalence structurelle des langages
algébrique est complète pour le temps exponentiel déterministe.

1. INTRODUCTION

Two context-free grammars are said to be structurally equivalent if
the corresponding sets of syntax trees are equal when we disregard the
nonterminals labeling the internai nodes of the trees. While it is well known
that language équivalence of context-free grammars is undecidable, it was
shown by McNaughton [10], and, Paull and Unger [14] that structural
équivalence can be decided effectively.

The notion of structural équivalence can be defined analogously for
context independent L grammars (EOL grammars). The structural équivalence
problem of EOL grammars was first considered by Ottmann and Wood
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[12, 13]. Two different decidability proofs for this problem are given in
[11, 16].

Contrasting the results for context-free (CF) and EOL grammars it was
shown recently [17] that the structural équivalence problem for ETOL (tabled
EOL) grammars is undecidable. Two stronger notions of équivalence, syntax
équivalence [17] and strong structural équivalence [7], have been shown to
be decidable also for ETOL grammars. Two grammars are syntax equivalent
if the sets of syntax trees of the grammars are equal. Strong structural
équivalence is a restricted form of structural équivalence where additionally
one requires that the corresponding syntax trees use the same séquence
of tables. For EOL grammars the notion of strong structural équivalence
naturally reduces to structural équivalence.

In view of the undecidability resuit for ETOL grammars it could be
expected that also EOL structural équivalence should be computationnaly
difficult. Here we establish that the CF and EOL structural équivalence
problems are in fact provably difficult: both are hard for deterministic
exponential time with respect to logarithmic space many-one réductions.

It is well known that context-free syntax trees can be recognized by finite
tree automatons. Conversely, the family of sets of syntax trees clearly does
not contain all recognizable tree languages. Context-free grammars define
as their syntax trees exactly the local (or locally testable) tree languages
[4]. Also, here we are considering the structures of syntax trees where
the internai nodes are unlabeled. However, by adding new nodes we can
construct a syntax tree whose structure codes a successful computation of
the tree automaton. In this way, for arbitrary given finite tree automata Ai,
i = 1, 2, we can (in logspace) construct CF grammars that are structurally
equivalent if and only if the tree automata Ai and A2 recognize the same
tree language. The équivalence of finite tree automata is logspace complete
for deterministic exponential time [18], and thus we have a completeness
resuit also for CF structural équivalence.

It is to be expected that EOL structural équivalence has at least the same
complexity as CF structural équivalence, and, in fact, it is not difficult
to see that EOL structural équivalence is logspace hard for deterministic
exponential time. However, the decidability proofs of [11, 16] yield only a
multiple exponential time upper bound. These results use as their starting
point invertible grammars structurally equivalent to the original grammars.
The construction of a structurally equivalent invertible grammar [13] already
causes an exponential blow-up in the number of nonterminals. Here we
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present a more efficient décision algorithm. We show that EOL structural
équivalence can be decided by a linear space bounded synchronized
alternating Turing machine. Our algorithm is inspired by the constructions
in [18]. The results of [2, 5, 23] then yield a deterministic exponential space
upper bound for the complexity of EOL structural équivalence. The same
upper bound is shown to hold also for the complexity of strong structural
équivalence of ETOL grammars.

2. PRELIMINARIES

Hère we recall briefly some notation and définitions concerning trees and
tree automata. We assume that the reader is familiar with central notions
of formai language theory, see [24], and L-systems in particular, see [15].
More details about tree automata can be found in [4]. For unexplained
notions of complexity theory we refer the reader to [1]. Complexity issues
of L grammars are considered e.g. in [8, 9, 21, 22].

The set of finite words over an alphabet A is denoted A* and À is the
empty word. Also, A+ — A* — {À}. The length of w E A* is \w\. The
cardinality of a finite set A is denoted by #A and the power set of A is
V(A). NQ is the set of nonnegative integers.

Symbols £ and fi stand always for finite raked alphabets. The rank of
a E £ is denoted rank^ (a) and S m = {a E E|ranks (cr) — m}, m > 0.
The set of (S—)trees over a ranked alphabet £ is F%. If X is a set of
auxiliary symbols, the set F^ (X) consists of E-trees where some leaves are
labeled by éléments of X. Eléments of Fv (X) are called EX-trees. £-trees
can be seen in the natural way as labeled tree graphs where each node having
m sons is labeled by an element of rank m. When needed, we associate to
a EX-tree i a corresponding set of nodes dom (£) (the domain of t) and
view the tree t as a mapping dom(t) - > E U l . We assume that notions
such as the height, the root, a leaf and a subtree of a tree are well known.
The height of t E F s is denoted hg (t). For t E F s (X) and u E dom (t),
t(u) dénotes the label of the node u and the subtree at node u is t/u.
For Xi e X and t% E i7^ (X), i = 1 , . . . , m, t {x\ <— t\,..., xm ^~ tm)
dénotes the tree obtained from t by replacing ail leaves labeled by x% with
the tree U, i ~ 1 , . . . , m.

Let S and fi be ranked alphabets and let n e No be such that £^ = 0
for ail i > n. Assume that for each i E {0 , . . . , n} we are given a mapping
hi : £i —» FQ (Xi), Xi — {a;i, . . . , Xi}. The mappings h{9 i — 0 , . . . , n,
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détermine the tree homomorphism defined inductively by the condition: If
m > 0, a G E m , and t\,..., tm G Fs then

h (a (h...., tm)) = hm(a)(xi ^ h(ti),..., xm <- h (tm)).

A (nondeterministic) finite tree automaton FTA is a four-tuple .A =
(E, A, A', <5), where S is a ranked alphabet of input symbols, A is a
finite set of states, A' Ç A is the set of final states, and the state transition
relation 8 defines for every a G £ m , m > 0, a mapping cr̂  : Am —» P (A).
The state transition relation associâtes in the well known way to each tree
t ç F s the set of states t$ that A can reach at the root of t. The tree language
recognized by the automaton A is L (A) — {t G F^ : £$ H A' / 0}.

We assume that the reader is familiar with the notion of space
bounded (many-one) reducibility [1]. The deterministic exponential time
and exponential space complexity classes are denoted as follows [1]:

DEXT = U DTIME(2cn), EXPSPACE = (J

Our algorithm for the E0L structural équivalence problem uses
synchronized alternating Turing machines, SATM's. Below we give a short
description of this machine model. A more detailed formai définition of
SATM's can be found in [2, 5, 6, 19, 23], the définition of alternating Turing
machines appears, for instance, in [3] or [1] Vol. IL

An SATM is an alternating Turing machine M where some internai states
contain a second component from a finite set S of synchronizing symbols;
these are called synchronizing states. As usual for alternating machines,
the states of M are partitioned into existential and universal states. A
configuration is existential (universal) if the corresponding state of M is
existential (universal).

We dénote by comp (M) the set of computation trees of M where M
is viewed as an ordinary alternating machine. A tree T G comp (M) is
constructed by taking all descendants of universal configurations and exactly
one descendant of existential configurations. The synchronizing séquence of
a node n of T is the séquence of synchronizing symbols (G 5) occurring in
the configurations labeling the nodes on the path from the root of T to u.

A synchronized computation tree of the STAM M is a tree T G comp (M)
satisfying the following condition: for arbitrary nodes u\ and U2 of T the
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synchronizing séquence of u\ is a prefix of the synchronizing séquence
of U2 or vice versa.

The language accepted by the STAM M consists of all input words w
such that there exists a finite synchronized computation tree of M where
the root is labeled by the initial configuration corresponding to w and leaf
is labeled by an accepting configuration. Intuitively, the synchronization
condition can be interpreted as follows: when one parallel branch of an
alternating computation enters a synchronizing state it must wait until ail
other branches either hait of enter a synchronizing state having the same
synchronizing symbol.

The class of languages accepted by 5 (n) space bounded synchronized
alternating machines is denoted S AS PAC E (s (n)). It is established in [5]
(see also [2, 23]) that for a space-constructible function s (n) > logn

SASPACE(s(n)) = (J DSP ACE ( c ^ ) . (1)

3. STRUCTURAL EQUIVALENCE

We recall the définition of the notion of structural équivalence of sequential
and parallel context-free type grammars [10, 13, 16]. We define the structure
trees as S-trees where the ranked alphabet S has exactly one symbol of
each rank m > 1. In the more usual définition the internai nodes have no
labels, but the définitions are clearly equivalent since a node of an unlabeled
tree implicitly contains the information about the number of immédiate
successors. Viewing structure trees as E-trees allows just a convenient
characterization for them using tree automata.

A context-free (CF) or an EOL grammar is defined as a four-tuple

G = (V, T, S, P), (2)

where y is a finite nonterminal alphabet, T is a finite set of terminal symbols,
S G V is the initial nonterminal, and P is a finite set of productions of the
form X -* w9 where X G V and u> e (V U T)*. (We do not allow rewriting
of terminais.) The dérivations of an EOL grammar are performed in parallel,
that is, at each step all symbols of a sentential form are rewritten, whereas
the CF dérivations are performed sequentially. We call a grammar G as
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in (2) a CF or EOL grammar depending on which type of dérivation relation
we have in mind. For X G V let

G[X] = (V,T,X,P). (3)

In the following, let G be as in (2). We dénote by F (G) the set of all trees
(tree graphs) where the nodes are labeled by éléments of F U T U {A}. Here
À is a new symbol that will be used to dénote the erasing productions in a
syntax tree. In the following we define the sequential (respectively, parallel)
dérivation r e l a t i o n e l e F(G)xF(G) (respectively, ->^Ç F(G)xF(G)).

Let T9T
f G F (G) and z G {5, p}. Then T ~^Z

G T if and only if T' is
obtained from T as follows.

(i) z = s: Let u be a leaf of T labeled by a nonterminal X G V. Let
X —> ai . . . an, n > 0, a i , . . . , an G V U T, be a production of P. If
n > 1, then in T' the node n has n successors labeled, respectively, by
the symbols a i , . . . , an. If n — 0, i.e., the right side of the production is
the empty word, then in T' one attaches for the node u a single successor
labeled by the symbol À.

(ii) z — p: Assume that all leaves of T are labeled by éléments of V U {À}.
(If some leaf is labeled by a terminal, the dérivation cannot be continued).
Then corresponding to each leaf u labeled by a nonterminal X one chooses
a production with left side X and attaches new successors for the node u
as in (i) above.

The set of z-syntax trees, z G {s, p} of the grammar G is defined by

where Sf is the tree with a single node labeled by the initial nonterminal
S. A syntax tree T G S^ (G) is said to be terminal if all leaves of T are
labeled by éléments of T U {Â}. The set of terminal ^-syntax trees of G
is denoted TS[z] (G).

The terminal z-syntax trees correspond exactly to the dérivations of
terminal words, where depending on the value of z we view G as a CF or
EOL grammar. The language generated by G consists of the yields of the
terminal z-syntaw trees. The yield of a tree is obtained by catenating the
symbols labeling the leaves from left to right and replacing the symbol A
with the empty word. The structure of a terminal syntax tree T is, intuitively,
the leaf-labeled tree that is obtained from T by removing the nonterminals
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labeling the internai nodes. In the formai définition we want to define the
structures of syntax trees as E-trees for a suitably chosen ranken alphabet E.

Let MQ = max{|w| : X —> w G P}. Choose

£ G = { c i , . . . , c M o } U T U { A } , (4)

where E[f - T U {À} and rankte (a) — i, i = 1 , . . . , Mc. The mapping

strG : TS[z] (G) -> F E G

relabels each internai node u G dom(t), T G T5[z] (G), with CJ, where i is
the number of immédiate successors of the node u. Also, we dénote

STS[z] (G) = {stiG (T):Te TS[z] (G)}, z e {s, p}.

Context-free or EOL grammars Gi and G2 are said to be structurally
equivalent if

STS{z]{Gl)^STS[z]{G2), (5)

with, respectively, z = s or z — p. When considering the computational
complexity of the question whether given grammars G\, i — 1, 2, satisfy
(5), the size of a grammar Gi, size (Gi), is considered to be the length of
an encoding of the grammar Gi over a fixed (binary) alphabet, see e.g. [8].

4. RESULTS

We show that the context-free structural équivalence problem is logspace
complete for DEXT by reducing the équivalence of FTA's to it For EOL
grammars, we show that structural équivalence is hard in DEXT with
respect to logspace réductions and that structural équivalence can be decided
by a synchronized alternating Turing machine [5, 19] in linear space, which
implies that the problem is in EXPSPACE.

LEMMA 4.1: Given A% = (E, Au A'o 8t) e FTAy i = 1, 2, we can
construct using logarithmic workspace CF grammars Gi, i — 1, 2, such that

L(Ai) = L(A2) iff STS[S] ( d ) = STS[S] (G2). (6)

Proof: Let i G {1,2} be fixed. Roughly speaking, the grammar
Gt générâtes as its syntax threes the successful computations of the
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automaton Ai. The grammar attaches additional nodes to the syntax tree
in order to guarantee that for t G TS^ (Gj), s t r^ (£) détermines uniquely
the underlying input tree (G F%) of the corresponding computation of Aj.

Dénote E = {a : a G E} and let $ be a new symbol not belonging to E.
We define a ranked alphabet Q by setting îîo = 2, îîi = {$} U (So x At),
and fïm+i = S m x Aj, m > 1. The symbols of fi are used as terminals
and nonterminals of the grammar Gi and the production of the grammar are
defined so that the terminal syntax trees can be seen as well-formed fi-trees.
This allow us to formulate the correspondence between TS^ (Gi) and the
set of computations of Ai by way of a tree homomorphism.

We define Gi = (Q — ÎÎQÎ ^OÏ $} P%) where Pi consists of the following
productions:

(i) $ -> (CF, a) for er G S, a G A'-.

(ii) (a, a) —> a (01, a i ) . . . (am , am), if m > 1, a G S m , a i , . . . , am G
S, a, a i , . . . , am G Ai, and a G a$z ( a i , . . . , am).

(iii) (cr, a) —» a if a G So, a G cr̂ ..

It is clear that TS^j (Gj) Ç Fn Le., syntax trees of (?i can be interpreted
as fi-trees. We use the nonterminal $ to begin the dérivations since a
grammar is allowed to have only one initial nonterminal. We define the tree
homomorphism h : FQ —* Fj] by the following conditions:

•M$) = 1̂-
• For (a, a) G îîm+i» m > 0, a G S m , a e Ai : hm+\ ((a, a)) =

a ( £ 2 , . . . , x m + i ) .

• For a; G QQ, ho (a;) can be defined arbitrarily.

Intuitively, the tree homomorphism h just deletes that state information and
the leftmost subtree of each node.

Claim 1. Let a G Ai and t — a (£i , . . . , £m) G FE» ̂  > 0. There exists
r G TS[5] (Gj [(a, a)]) H / i" 1 (£) iffa G £^. For the notation see (3).

The claim follows from the fact that the grammar Gi simulâtes the
computation of Ai in the top-down direction, the proof uses tree induction
on t and we leave it for the reader. By Claim 1 and the choice of the
rules (i) we have

L(Ai) = h(TS[3](Gi)). (7)

Note that the tree homomorphism h deletes the root node labeled by $ from
the syntax trees.
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Without loss of generality, we can assume that T>Gl = Tp2. (The notation
is from (4).) We dénote this set by Tp and define the tree homomorphism
g : F^F^G by setting

9m (er) = Cm+i (â, x\,..., rcm), a G £ m , m > 0. (8)

Let h be the restriction of h to the domain TSrsi (Gi) (Ç ifo) and let #^)
be the restriction of p to L(vAz). It is clear that

s t r ^ o / T =ö(i). (9)

From the définition (8) it is easy to see that g is injective. Thus by (7)
and (9), g^\ is a bijection L{Ai) -^ STS^ (Gi). Since g is an injective
extension of both gn\ and g/2y it follows that (6) holds. Clearly, the grammar
Gi, 1 < i < 2, can be constructed from ^ using logarithmic space. D

THEOREM 4.1 : The structural équivalence problem for context-free
grammars is logspace complete in DEXT

Proof: The équivalence of finite tree automata is logspace hard for DEXT
[18]. This implies by Lemma 4.1 that CF structural équivalence is logspace
hard for DEXT. The set of structures of terminal syntax trees of a CF
grammar can be recognized by a finite tree automaton [20, 4]. It is easy to
see that the automaton can be constructed in linear time. Thus CF structural
équivalence is in DEXT by [18]. D

In the following lemma we show that the CF structural équivalence
problem can be reduced in logspace to EOL streutural équivalence.

LEMMA 4.2: Given CF grammars G» = (u,, Tj, 5j, Pj), i = 1, 2, we can
construct in logspace EOL grammars Gf

i} ï = 1,2, such that

STS[S] (Gi) = STS[S] (G2) iff STSw (G[) = STS^ (G'2). (10)

Proof: Choose

G\ = (Vi U { $ } , Ti U { & } , S%, P i ) , l<i<2,

where $, & are new symbols and

Pi = Px U {A -> A% : A e Vi} U {$ -> $, $ -> &},
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In the following, let i G {1, 2} be fixed. Let t G STS^ (G"-) and let
u G dom(t) be such that t(u) = &. Let v be the closet predecessor of u
having more than one sons. Then

t/v = ei (ti, t2),

where £2 is a unary tree having the leaf u. The tree obtained from t by
pruning the unary branch ending at u (Vbranch) is defined as

W^^u)(t) =t(v<-t1).

intuitively, prun^#u^ (t) is the structure of the syntax tree that is obtained
from t by canceling the production A —»• A$ at node v (and continuing
the dérivation as in the left successor of v). By the &-pruned tree of
t, prun^ (£), we mean the tree obtained from t by pruning every u-
branch where u G dom(t) is labeled by &. Clearly for t G STS^p] (G-),
prun^ (t) G ST5[5] (Gi), i = 1,2. Conversely, for an arbitrary tree
r G STS[s] (Gi)9 there exists r' G 5T5 [p ] (Gj) such that prun& ( / ) = r.
The underlying syntax tree of r (Le., any tree in str^1 (r)) can be made to
be a parallel syntax tree of G\ by continuing all "too short" branches with
rewrite steps of the form A —» A$. The resulting parallel syntax tree yields
as its structure r' where prun& (r{) — r. Thus we have

STS[S] (Gi) = prun& (STS[p] (Gj)). (11)

We say that a tree t' is obtained from t G STS^ (Gi) by grafting a
&-branch at node n G dom(t), if

1/ = t(u<-c2 (t/u, c\ (&))), A; > 1.

Dénote ^ = STS^ (G(-). The set iïj consists of exactly all trees that are
obtained from the trees prun& (Hi) by grafting new &-branches in such a
way that the distance from the root to every leaf not labeled by À is the
same. Thus clearly,

prun& {Hi) = prun& (H2) implies H\ — üf2•

The above and (11) imply that (10) holds. D

The décision algorithms for EOL structural équivalence given by [11, 16]
are extremely inefficiënt. Both algorithms need as their starting point
invertible grammars structurally equivalent to the input grammars, and
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the construction of the invertible grammars already causes an exponential
increase in the number of nonterminal symbols. Thus, for instance, the
algorithm directly following (Lemmas 3.3 and 3.4 of) [16] gives only a
triple-exponential time bound. The décision algorithm of [11] yields also
a multi-exponential time bound, the complexity of the décision method is
discussed on p. 143 of [11]. Furthermore, [11, 16] assume that the grammars
are propagating. However, the removal of this restriction causes only at most
a linear increase in the size of the grammar, see [11], p. 136.

Here employing synchronized alternating Turing machines we obtain a
(single) exponential space upper bound for EOL structural équivalence.
However, this result does not yet coincide with the lower bound given
by Lemma 4.2.

LEMMA 4.3: EOL structural équivalence is in S AS PAC E (n),

Proof: Let G{ = {Vu T%, Si, Pi), i = 1, 2, be EOL grammars. We show
that a synchronized alternating Turing machine M can décide using space
linear on max{size(Gi), size(G2)} whether

STSM (G1) - STS[p] (G2) + 0. (12)

The intuitive idea of the algorithm can be described as follows. The
SATM M constructs nondeterministically a syntax tree t\ G TS^ (G\) and
simultaneously vérifies that for all terminal syntaxt trees £2 of Ö2 we have
s t r ^ (̂ 1) 7̂  stiQ2 (£2)* The computation branches universally following the
structure of t\, this makes it possible to use only linear space. Using the
synchronization condition, M can verify that t\ corresponds to a parallel
dérivation.

In the following by an instantaneous description, ID, we mean a tuple

(4, {*! , . . . , flra}),

where A e V\ and S i , . . . , Bm G V2, 0 < m < #V2. The opération of
the STAM M is described by the following procedure. The machine stores
the contents of the variable Z on its work tape. The machine has two
synchronizing symbols SYNC\ and SYNC2.

PROCEDURE. (Opération of M.)

BEGIN Set Z .:= (Su {S2}).
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(I) Assume that Z = (A, {Bi , . . . , Bm}), m > 0. Choose nondeterminis-
tically a production

A-> Ai. . .A f c G Pi.

(II) (a) If Ai .., Afc G VJ+ then produce the synchronizing symbol SYNC\ •
(That is, M goes to an internai state having the synchronizing symbol
SYNd)

(b) If Ai . . . Ak <E T+ and for all j E { 1 , . . . , m} : (B, -> Ai . . . Ak) g
P2 then produce the synchronizing symbol SYNC% and halt in an
accepting state.

(c) If k = 0 and for all j E {1, . . . . , m} : (B, -» A) £ P2 then halt in
an accepting state, (and do not produce a synchronizing symbol).

(III) (Here we can assume that k > 1, Ai G Vi, i = 1 , . . . , fc.) Construct the
sets Ci Ç V2, 1 < i < fe, as follows. First set d := 0, i = 1 , . . . , k.
(a) For jf = 1 , . . . , m do the following. Let

pr : B j - È Ï . . . ^ , r = l , . . . , 5 , (13)

be all the production of P2 with left-hand side Bj and right-hand
side a non-terminal word of length k. For every r — 1 , . . . , 5,
choose i G { 1 , . . . , k} and set

(b) The computation branches universally to k parallel processes. In
the üh branch set Z :— (Ag, C{) and go to (I).

END
This complètes the description of the machine M. Note that above k is

not a constant and in (Illb) the branching into k parallel computations has
to be performed in several steps. If in (Ilb), (Ile) there exists a production
of P2 of the required type, then the computation halts and rejects.
Claim 2. M has an accepting synchronized computation tree T starting from
an ID (A, { B i , . . . , Bm}) if and only if

STSb] (Gi [A]) - U STS[p] (G2 [Bi]) + 0. (14)
%-\

Proof of Claim 2. We prove the "only if ' direction of the claim. Dénote
by Ti the tree obtained from the computation tree T by removing the second
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components (subset of V2) from the ID's labeling the nodes and attaching for
the leaves of T new successors corresponding to the terminating productions
of Pi that were used in (Ilb) and (lic) to end the computation of the respective
branch of T. Every step simulating a non terminating production of P\ in T\
forces M, according to (Ha), to produce the synchronizing symbol SYNC\
in the computation T. Erasing productions produce no synchronizing symbol
and other terminating productions cause M to produce the synchronizing
symbol SYNC2. Thus the synchronization condition guarantees that all
branches of T\ ending in terminal symbols have the same length l\ and
branches ending with the symbol À have length at most l\. It follows that
T\ corresponds to a parallel dérivation, Le., T\ G TS^ (G\ [A]).

Let A —> Ai . . . Ak be the production used at the root of Ti, Le., the
production chosen in (I) at the beginning of the computation of T. Dénote

1 (Ti ) = t and let the immédiate subtrees of t be t\,..., £&. We show that

t <£ U STSw (G2 [Bi]). (15)
ï = l

Let (A{, CÏ), i = 1 , . . . , k, be the ID's obtained in the computation tree
T after one cycle (I)-(III). Inductively, we assume that Claim 2 holds for
(Ai, C{), i — 1 , . . . , k. This is possible since the base case for single-node
computation trees follows from the acceptance conditions of M defined in
(Ilb), (lic). The sets C{, 1 < i < k, are constructed by (lila) and thus for
every production Bj —> 61 . . . &&, 1 < j < m, (ba G V2, a = 1 , . . . , k),
there exists i G { 1 , . . . , k} such that b% E Ci. By the inductive assumption,
ti $. STS[p] (G2 [bi])- Since the production Bj —̂  61 . . . && is arbitrary, it
follows that (15) holds.

Similarly, it can be shown that (14) implies the existence of an accepting
synchronized computation starting from the ID (A, { # 1 , . . . , Bm}). This
complètes the proof of Claim 2.

By Claim 2, M accepts a description of a pair (Gi, G2) exactly then
when (12) holds. We still consider the space requirements of the machine
M. Let pi be the maximal length of the right-hand sides of productions of
Pi. The machine M needs a maximal amount of space when in (lila) it has
to store ID's (Ai, C\)... (A&, C&) on the worktape, where k < p\. From

fe
the définition of (lila) it follows that \^(#CZ) is at most the number of

productions of P2. Thus the space needed for the ID's (At, Ci), i — 1 , . . . , k,
can be linearly bounded by max{size(Gi), size(C?2)}- •
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Combining the previous lemmas and (1) we have:

THEOREM 4.2: The EOL structural équivalence problem is logspace hard for
DEXT and it is in EXPSPACE.

Also the strong structural équivalence problem for ETOL grammars can
be decided by a synchronized alternating Turing machine in linear space.
For the définition of the notion of strong structural équivalence we refer
the reader to [7]. Let ETOL grammars G\ and G<i be given. Similarly as
in the proof of Lemma 4.3, a synchronized alternating Turing machine M
constructs nondeterministically an a-expanded terminal syntax tree of G\,
where a is a séquence of tables of Gi, and simultaneously vérifies that, for all
a-expanded terminal syntax trees £2 of G2, we have stic1 (t\) ^ str<32 (£2).
The only différence from the proof of Lemma 4.3 is that now M needs to
verify that the séquence of tables used in different branches of t\ (and of £2)
is a. This can be done by using different synchronizing symbols for each
table of the grammars. (instead of the symbol SYNCi, a computation step
of M simulating a nonterminating production of Gi belonging to a table
Ti produces a synchronizing symbol SYNC^l.) The machine M opérâtes
in linear space.

For EOL grammars strong structural équivalence reduces to structural
équivalence. Thus by the above observations and Theorem 4.2 we have:

THEOREM 4.3: The strong structural équivalence problem for ETOL
grammars is logspace hard f or DEXT and it is in EXPSPACE.

The structural équivalence problem for EOL grammars is a special case of
ETOL strong structural équivalence. Both the upper and the lower bounds
obtained above for their complexity are the same. It remains an open question
whether EOL structural équivalence and ETOL strong structural équivalence
have the same complexity.
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