
INFORMATIQUE THÉORIQUE ET APPLICATIONS

HELMUT PRODINGER
Comments on the analysis of parameters in
a Random Graph Model
Informatique théorique et applications, tome 29, no 3 (1995),
p. 245-253
<http://www.numdam.org/item?id=ITA_1995__29_3_245_0>

© AFCET, 1995, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1995__29_3_245_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Informatique théorique et Applications/Theoretical Informaties and Applications

(vol. 29, n° 3, 1995, p. 245 à 253)

COMMENTS ON THE ANALYSIS
OF PARAMETERS IN A RANDOM GRAPH MODEL (*)

b y H e l m u t P R O D I N G E R (l)

Communicated by J.-E. PIN

Abstract. - Using generating functions and classical identities due to Euler and Gauss we can
extend and simplify some of the results in the paper "Performance Considérations on a Rondom
Graph Model for Parallel Processing", RAÏRO Theoretical Informaties and Applications 27 (1993),
367-388 by Afrati and Stafylopatis.

Résumé. - Grâce aux fonctions génératrices et à des identités classiques dues à Euler et
Gauss, il nous est possible d'étendre et de simplifier quelques uns des résultats de l'article
« Performance Considérations on a Rondom Graph Model for Parallel Processing », RAIRO
Theoretical Informaties and Applications 27 (1993), 367-388 par Afrati et Stafylopatis.

1. INTRODUCTION

In the paper [1] a random (acyclic) graph model is considered. The nodes
are {1, . . . , n}; each new node k will have a directed edge to each of the
earlier ones {1, . . . , k — 1} with a fixed probability p and will be accordingly
put into a certain level. The parameter of interest is the number of levels,
and in particular its average value. This model being too complicated, the
authors introducé two simplified models, serving as "lower bound" and
"upper bound". We don't want to describe them hère but rather give some
comments about how to analyze them.

This note was written while the author was visiting the Algo project of INRIA, Rocquencourt
and encountered an especially warm hospitality there. Interesting and valuable discussions with
Philippe Flajolet are gratefully acknowledged.
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In both instances the authors ask for explicit solutions of their recursions.
We answer both questions in the affirmative. Also, we find surprising
alternative représentations of the appearing constants, due to theorems of
Euler and Gauss, from the theory of partitions. Apart from the concrete
results we feel that the presented analysis might be interesting in itself and
useful for related questions.

For the necessary background we naturally refer to the paper [1] and only
state the recursions that we are considering in the next two sections. We
reverse the order and start we the easier "lower bound".

To simplify the authors' notation, we use q := 1 — p, where p is a
probability, throughout this note. It is amazing that this "ç", denoting a
probability and the formai variable "ç"> used in so-called g-series [2] fit
together so well!

Let us sketch the methods. The recursions will be solved by setting
up ordinary generating functions. This gives immediately an expression
for the generating function in the easy case, whereas in the difficult case
the generating function must be extracted by itérations. In both instances
we arrive at something like 1/(1 — zf1 multiplied by a function which is
analytic in a larger area than \z\ < 1. Thus the asymptotic behaviour of
the coefficients of interest is given by n times a constant, which is just
the value of the extra factor at z = 1. It is then possible to rewrite these
constants as infinité products instead of infinité sums. The advantage of these
représentations is that their behaviour for <? —• 1 is quite easy to obtain, as
opposed to the sum représentations.

For all these mathematical methods we refer without further comments
to the brilliant survey [4].

Finally we want to give a flavour of the quantitative results that are
obtained in the next two sections. Typically, we might expect a • n levels
for large n, where the constant a is depending on the probability p and of
the model, ai referring to the lower bound model and a2 referring to the

upper bound model. For instance, in the symmetrie case p = q — - we find

a i = 0.56546... and a2 = 0.60914....

The behaviour of these constants for p —> 0 (or q —» 1) is of special
interest, as it describes the behaviour of what is known as sparse graphs, It

turns out that ai ~ , whereas o>2 ~ \ —. More précise information is
e - 2 V 7T

available, sharpening the results of [1], So the two models show a different
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behaviour; one constant depending linearly, the other being like a square
root of the (small) parameter p.

2. THE "UPPER BOUND"

The recursion of the upper bound model is (équation (13) of [1])

n - l

( l -«*) n > 2; P ( l , l ) = l. (1)
k=l |

With these quantities one is interested in the "mean length"

By additionally defining P (0, 1) = 0 we can extend the range of the
summation in (1) from 1 to n.

Since the recursion has the flavour of a convolution, it is extremely natural
to use generating fonctions: Set

P(n,l)zn, (3)

then (1) translates into

J 2 ° k k (4)
k>0

Set

(5)

then we find

~ l (6)
k>0

and thus

vol. 29, n° 3, 1995
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We find the sought quantity P (n, 1) as the coefficient of zn in this (explicit!)
function ƒ (z)y which we dénote, as usual, by [zn] f (z). Furthermore,

0»

Since ^ (z) is analytic at z — 1, we see from (8) by singularity analysis [3]
that

n »/,/ n\
L2 (n) — -T7TT + 1 )J\ + exponentially small terms. (9)

^(1) ip(l)
The quantity %jj (1) can be evaluated by a formula of Gauss [2, (2.2.13)]:

n > 0

In [1] the behaviour of

p •
1"g2m+1 ai)

is considered for q —> 1. With the product représentation this is very simple.
We substitute q — e~x, take the logarithm and call the resulting function

5 0*0 =

We compute its Mellin transform,

g* (s) = - r (S) C (s + 1) ( -1 + C («) (1 - 21-5)),

and find, by virtue of the inversion formula,

(13)

(14)

Now we shift the intégral to the left and collect the residues of the integrand
to get the desired asymptotic expansion of g (x) for x —> 0. Then we can
go back to exp (g (x)) and replace the variable x by - log q. All this can
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be done by MAPLE:

1

O.2

This is of course a quantitative refinement of the statement that goes
to infinity.

THEOREM U: [Upper bound] The mean length L2 (n) is the coefficient
of zn in

it is asymptotically equivalent to

1 -
l-q2m *

The behaviour of the "inverse of the efficiency" for q —• 1 is given by

3. THE "LOWER BOUND"

This time the recursion for the lower bound model looks like

n - l
qk) + q2P (n, 1) = £ P (n - 1, k) (1 - qk) + q2P(n-l, 1)

for n > 3, (16)
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P(n, j) = P(n - 1, j -

for 2 < j < n - 2, (17)

with P(n, n - 1) = ç ^ 1 ) ^ - 1 and P(n, n) = qW for n > 1. Note
n

that (16) can be replaced by the condition ^ P P (n, j) = 1 for ail n.
i=i

We introducé for each j & generating function hj (z) by

By a routine computation (16) and (17) are translated into

z E
fc>2

and

hj (z) = pqi-1 zhj-x (z) + zqj+1 hj (z) + q1+W zj (1 - zq>)

for j>2. (20)

We are interested in the function h\ (z) since it "contains" the interesting
coefficients. Let us recall that the desired "mean length"

n n—1

q2ITW - q2 + £ P (fc, 1) - g2 J ] P (fc, 1) (21)
fc=l fc=l

can be obtained as

(n) = q2 + [zn] —!— h (z) - q2 [z^1] —!— hx (z). (22)
1 — z l — z

From (20) we see

hj (z) — aj hj-i (z) + bj

~ ZQ
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We can iterate this and thus express each hj (z) by h\ (z):

3 r

hj (z) = Aj ^2 T~ + Aj hi (2), where Ak — a2 a$ . . . afc. (24)
k=2 k

We can now insert this into (19) and solve the linear équation for h\ (z).
The obtained solution is admittedly not very nice, but it is explicit. Define

3

dj = Aj y j bk/Aj~, then we find in this way
k=2

hl {z) = \ 2—^7^ WT • ( 2 5 )

1 - pz - q2 z - * 2 ^ ( 1 - qk) Ak

Let us now engage on asymptotics. In [1] it was implicitly proved that

/ y ( 2 ) „ J Ü ^ l a s ^ ^ l , (26)
1 — z

where

and
( 1 - Q 3 ) . . . I

(27)

We could refine this by setting

hi \z) ~ Î + a u)ï v2ö)
1 — z

insert it into (20), compare coefficients and thus express the numbers a (j)
by the 7r(j)'s. We omit this since the formulae are not too nice.

But we can conclude, again by singularity analysis that

P (n, 1) = TT (1) + exponentially small terms (29)

and

L\ (n) =n • (1 - ç2) 7T (1) -f g2 + 7T (1)

+ (1 - ç2) a (1) + exp. small terms. (30)
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Let us now analyse the constant (1 — Ç2)TT(1) which is also called ai in [1].
By some simple computations we find that

l-q)...(l-q3) p

This time we can use a formula of Euler [2, (2.2.26)]:

From this représentation the behaviour of a\/p (needed in [1]) for q —> 1 is
very easy to obtain. We consider its reciprocal, which is

l - g , (33)

forget about the extra - 1 - g, take the logarithm, expand it as a Taylor
series, interchange the order of summation and expand. With the help of
MAPLE we get

< 3 4 )

but we could easily get as many terms as we please.

THEOREM L: [Lower bound] The mean length L\ (n) is given by

LT(n) = q2 + [zn] j ^ ~ h (z) - q2 [z^1] - J - fc (z),

where the function h\{z) is given by

hl ( z ) = ï 2 ^7, ^ T
1 - pz - q2 z - z 2 ^ (1 - qK) Ak

k>2

Here,

4=/-]p/n(i-
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and

k= kh^ 1zqj+1 "
It is asymptotically equivalent to

fc>o

The behaviour of the "inverse of the efficiency" for q —* 1 is given by

fc>0

e - 2 ( e -
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