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EQUATIONS ON THE SEMIDIRECT PRODUCT OF A FINITE
SEMILATTICE BY A J-TRIVIAL MONOID OF HEIGHT k (*)

by F. BLANCHET-SADRI (*)

Communicated by J.-E. PIN

Abstract. - Let Jfc dénote the kth level ofSimon s hierarchy of J-trivial monoids. The Ist level
J i is the Wl-variety offinite semilattices. In this paper, we give a complete séquence of équations
for the product J i * Jfc generated by ail semidirect products of the farm M * N with M € J i
and iV G Jfc. Resulîs of Almeida imply that this séquence of équations is complete for the product
j j + 1 or J i • . . . * J \ (k + 1 fîmes) generated by ail semidirect products ofk + l finite semilattices
and that J i * Jfc is defined by a finite séquence of équations if and only if k = 1. The equality
J x • Jfc = j j + 1 implies that a conjecture ofPin concerning tree hiérarchies ofM.-varieties isfalse.

Résumé. - Soit Jfc le niveau k de la hiérarchie de Simon des monoïdes J-triviaux. Le premier
niveau J i est la ^A-variété des monoïdes idempotents et commutatifs ou demi-treillis. Dans cet
article, nous donnons une suite complète d'équations pour le produit J i * Jfc engendré par les
produits semidirects de la forme M * N avec M € J i et N € Jfc. Des résultats d'Almeida
entraînent que cette suite d'équations est aussi complète pour le produit J^ o« J i * . . . * J i
(k + 1 fois) engendré par les produits semidirects de k + 1 demi-treillis et que J i • Jfc est défini
par une suite finie d'équations si et seulement si k — 1. L'égalité Ji^Jfc—Jj^"1"1 entraîne qu'une
conjecture de Pin concernant des hiérarchies d'arbres de Nl-variétés est fausse.

1. INTRODUCTION

Let ik dénote the M-variety of ,7-trivial monoids of height k. The
first level J i is the M-variety of finite semilattices. In this paper, we
give an equational characterization of the product J i • Jfc generated by ail
semidirect products of the form M *N with M 6 J i and N G Jfc. A
resuit of Almeida [3] gives an equational characterization of the product
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158 F. BLANCHET-SADRI

J i • . . . • Ji(fc 4- 1 times) or J*+1 , which turns out to be our equational
characterization of J i * J&. The equality J i * J& = J^+1 implies that
a conjecture of Pin coneerning tree hiérarchies of M-varieties is false.
Almeida [3] implies that J i * J& is defined by & finite séquence of équations
if and only if k = 1. The methods used in this paper were developed by
Almeida [I], [2].

1,1 Preliminaries

The reader is referred to the books of Eilenberg [15], Lallement [19] or
Pin [20] for terminology not defined in this paper.

Let A be a finite set called an alphabet, whose éléments are called letters.
We will dénote by A* the free monoid over A. The éléments of A* are
the finite séquences of letters called words. The empty word (denoted by 1)
corresponds to the empty séquence.

Let L be a subset of A* (or a language over A) and ~ be an équivalence
relation on A*. We say that ~ saturâtes L if L is a union of classes modulo ~
or for every u, v G A*, u ~ v and u E L imply v E L,

The syntactic congruence of L is the congruence ~ L on A* defined by
u ~ LV if and only if for every x, y € A*, xuy E i if and only if xvy E L,
We can show that ~ L is the coarsest congruence saturating L. The syntactic
monoid of L is the quotient monoid M (L) = A* / ~ L .

Let 5 and T be semigroups. We say that S is a quotient of T if there exists
a surjective morphism .y? :T —> S and we say that S divides T (S -< T) if
S is a quotient of a submonoid of T. The division relation is transitive. The
syntactic monoid of a l^iguage. L is the smailest monoid recognizing L,
where smailest is taken in the sensé of the division relation.

A variety V is a class of semigroups closed under division and products.
By the well-known theorem of Birkhoff such a variety is defined by équations
that must hold for ail éléments of semigroups in V. Thus équations give
rise to varieties.

An S-variety is a class of finite semigroups closed under division and
finite products and an NL-variety is a class of finite monoids closed under
division and finite products. Equivalently, a class V of finite monoids is an
M-variety if V satisfies the following two conditions:

• if T E V and S < T, &en S E V;

• if 5, T E V, then S xT E V.

ïnfonnatique théorique et Applications/Theoretïcal Informaties and Applications



EQUATIONS ON SOME SEMIDIRECT PRODUCT 159

Eilenberg has shown the existence of a bijection between the M-varieties
and some classes of languages called the *-varieties of languages.

A class V is a *-variety of languages if
• for every alphabet A, A* V is a set of recognizable languages over A

closed under boolean opérations;
• if tp : A* —> B* is a free monoid morphism, then L £ B* V impEes

Lip~l = {u G A* \u(p G L} is in A* V;
• if L € A* V and a G A, then a"1 L - {u G A* j au G L} and

La'1 - {u G A* I ua G L} are in A* V.
i r V is an M-variety and A is an alphabet, we dénote by A* V the set of

recognizable languages over A whose syntactic moiioid is in V. Equivalenüy,
A* V is the set of languages of A* recognized by a monoid of V. If V is
a *-variety of languages, we dénote by V the M-variety generated by the
monoids of the form M (L) where L E A* V for some alphabet A,

A resuit of Simon enables us to describe the *-variety of languages
corresponding to the M-variety of J^-trivial monoids denoted by J.

A word ai . . . a,- G A* is a subword of a word u of A* if there exist
words uo, u\, . . . , Ui G A* such that u — u§ a\ u\... ai ui, For each integer
k > 0, we define an équivalence relation ^ & on A* by u~&v if and only
if u and v have the same subwords of length less than or equai to k, We can
verify that ~ ^ is a congruence on A* with fiaite index. Note that u ~ \v
if and only if u and v have the same letters, The set of letters that occur
in a work u will be denoted by ua,

A language L over A is called piecewise testable if it is a union of classes
modulo ~ ju for some integer fe, or equivalently if it is in the boolean algebra
generated by ail languages of the form A* a\ A* . . . ai A* where i > 0 and
ai, . . . , ai G A, Simon [24] has proved that a language is piecewise testable
if and only if its syntactic monoid is J'-trivial. For every alphabet A, we will
dénote by A* Jk the boolean algebra generated by ail languages of the form
A* ai A* . . . ai A* ,where 0 < % < k and ai, . . . , ai G A. One can show that
J7jb is a ^r-variety of languages and we will dénote by J& the corresponding
M-variety. The M-variety J is the union of the M-varieties J&.

1.2 Product of varieties of semigroups

Let S and T be semigroups. To simplify the notation we will represent
S additively (without necessarily supposing that S is commutative) and T
multiplicatively,

vol. 29, n° 3, 1995



160 F. BLANCHET-SADRI

An action of T on 5 is a function

TxS -> S

(t, 5) H^ tS

satisfying for every t, tf £ T and s, sf e S :

• t (* + s') = ts + *s';

Given an action of T on S, the semidirectproduct S*T is the semigroup
defined on 5 x T by the multiplication

(s, t)(s', t1) = (s + ts', iï).

The multiplication in S • T is associative. Thus 5 • T is a semigroup.

In this paper, we only consider semidirect products S*T given by actions
of T on S that are described by monoid homomorphisms cp : T1 —> End 5
from T1 into the monoid of endomorphisms of S\ In the terminology adopted
by Eilenberg [15], this means that we only consider left unitary actions, that
is actions of T on S that satisfy 1 s = s for every s G 5. Hère T1 dénotes
the semigroup T U {1} obtained from T by adjoining an identity if T does
not have one, and T1 — T otherwise.

If V and W are varieties of semigroups, the product V * W is the variety
generated by ail semigroups of the form S * T with 5 € V and T E f .
The product of two S-varieties (or M-varieties) is defined analogously. The
opération • defined on varieties is associative.

There remain many problems to be solved on products of S-varieties
(or M-varieties). The most important of these is the following. Given two
decidable S-varieties (or M-varieties), is the product decidable? A particular
case of this problem is well known in the theory of semigroups. Karnofsky
and Rhodes [18] have established the decidability of the M-varieties A ^ G
and G • A. Hère, A dénotes the M-variety of aperiodic monoids and G
the M-variety of groups.

This paper deals in particular with products of the form jÇ. It is known
that U Jf is the M-variety R of ail finite Ti-trivial monoids (Stiffler [25])

and that J^ is decidable (Pin [21]).

Informatique théorique et Applications/Theoretical Informaties and Applications
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1.3 Equations on products of varieties of semigroups

Let A+ be the free semigroup over a denumerable alphabet A and let u,
v € A+. We say that a semigroup S satisfies the équation u = v or the
équation u = v holds in S (and we write S \= u = v) if for every morphism
(p : A+ —> 5, u(p — vif. This means that, it we substitute éléments of 5 for
the letters in u and v, we reach equalities in 5. For example, S is idempotent
if it satisfies the équation x — x2 and S is commutative if it satisfies the
équation xy — yx. For a séquence £ of équations and an équation u = v,
£ h u = v (and we say u = v is deducible from £) means that for every
semigroup S, if S f= £, then S \= u = v.

Let V (u, v) be the class of finite semigroups S satisfying the équation
u = v. It is easy to show that V (u, v) is an S-variety.

Let (UJ, Vi)i>o be a séquence of pairs of words of A + . Consider the
following S-varieties:

*>o

J>0 »>J

We say that W is defined by the équations ui = v,- (i > 0). This
corresponds to the fact that a finite semigroup is in W if and only if it
satisfies the équations m — vi for every i > 0. We say that W ' is ultimaîely
defined by the équations Ui = v{ (i > 0). This corresponds to the fact that
a finite semigroup is in W' if and only if it satisfies the équations Ui = v%
for every i sufficiently large.

The arguments above apply equally well to M-varieties. We only need to
replace A+ by A* throughout.

Eilenberg and Schützenberger [16] have proved the following resuit. Every
nonempty M-variety is ultimately defined by a séquence of équations, or
every S-variety containing the trivial semigroup is ultimately defined by
a séquence of équations. If V is the S-variety ultimately defined by the
équations u% = v», i > 0, then the same équations ultimately define the M-
variety consisting of all the monoids in V. Also every M-variety generated
by a single monoid is defined by a (finite or infinité) séquence of équations.

Equational characterizations of all the M-varieties J& are known [23], [5],
[6], [10], [11]. In particular,
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162 F. BLANCHET-SADRI

• the M-variety J i is defined by the équations x — x2 and xy = yx, so
J i is the M-variety of idempotent and commutative monoids;

• the M-variety J2 is defined by the équations xyzx = xyxzx and
(xy)2 = (yx)2;

• the M-variety J3 is defined by the équations xzyxvxwy = xzxyxvxwy,
ywxvxyzx = ywxvxyxzx and (xy)s — (yx)3.

DÉFINITION 1.1: Let k > 1 and let A = {a?i, x%, . . .} be a denumerable
alphabet of variables including x(x = x\).

£fc is the séquence of ail équations {over A) of the form

Ui . . . U\ V\ . . . Vj = Ui . . . U\ XV\ . . . Vj

where

{x} Ç u\ a Ç . . . C u% a

{%} Q vi a Ç . , . C VJ a

and where i + j = k.

THEOREM 1.1 [10]: Let k > 1. The M-variety J& is defined by £]~.

These results lead to the following question. Can the M-varieties J& be
defined by afinite séquence of équations? This question has been answered
in [11]. The M-varieties J& can be defined by a.finite séquence of équations
if and only if k — 1, 2 or 3.

Equations are known for the product of the S-variety of semilattices,
groups, and 7£-trivial semigroups by the S-variety of locally trivial
semigroups [15]. These results have important applications to language
theory [14], [15].

Pin [22] has shown that the M-variety J i * J i is defined by the équations
xux — xux2 and xuyvxy — xuyvyx. A resuit of Irastorza [17] shows that
the M-varieties J i ir (Z&) are not defined by finite séquences of équations.
Here, (Z^) dénotes the M-variety generated by the cyclic group Zj~ of order
k which is defined by the équations xk — 1 and xy — yx. Almeida [3]
has shown that j f is defined by a finite séquence of équations if and only
if fc = 1 or 2. Ash [4] has shown that J i * G = Inv is defined by the
équation xw yu — y^ x00. The M-variety of groups G is defined by the
équation x"* — 1, and Inv dénotes the M-variety generated by the inverse
semigroups.

Informatique théorique et Applications/Theoretical Informaties and Applications
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2. ON A COMPLETE SEQUENCE OF EQUATIONS FOR 3t * Jk

In this section, in order to simplify the notation, we will dénote also by
J& the S-variety generaled by J&. It will be convenient to dénote by Jo the
S-variety defined by the équation $ — y. In this section, we werk essentially
with semigroups.

Our results follow from an approach to the semidiiect pmducî that was
introduced in Âlmeida [1],

The free object on the set X in the variety generaled by an S-variety
(or M-variety) V will be denoted by Fx V . We wÜl also write Fi V
as an abbreviation for F{x±i;^}V. For every % > 1 and k > 1, the
free object F{ (J&) can be vie wed as a set of représentatives of classes
modulo ~ fc of words over {xi, ; . . , Xi}. This set is finite. For i > 1
and k > 1, let pi^ : {x\, . . . , x f } + —> Fi (J.i * J&) be the
projection that maps the letter xj onto the generator ^* of Fi (3\
tet ĝ fc : {a?i, . . *, ^ } + —> Fj (Jjt) be the canonical projection that maps
the letter Xj onto the generator XJ of Fi (J^) . If u € {xi , . , . , ^ } + , then
ïag^ jfc can be viewed as a representtive of the class modulo ^ ^ of tt.

DÉFINITION 2.1: Le? fc > 1 and u E

t 75 the set of ail pairs of the farm

where u = uf xvl{ for some v!, u/r € {a?i, ...., &i}**

In the case of fc = 0, (F« (Jo))1 = {1} and so-ua^o = {1} x

The following lemmas will help us give an equational characterization
of J i * Jfc. Lemma 2.1 provides an algorithm to décide when an équation
holds in J i • J&.

LEMMA-2.1: Let k > 0 and u, v £ {a?i, . . . , %i}+* Then

J i •Jjfc |= u - ti

if and only if

Proaf: For A = 0. we have that J i )= « = v if and only if na ==
Since Fi (3^) is finite for every i > 1 and fc > 1, a représentation of free
objects for a semidirect product of S-varieties obtained in [1] implies that
Fi(3\ * 3k) is also finïte for every i > 1 and fc > 1. Moreover, there

vol 29, n° X 1995



164 F. BLANCHET-SADRI

is an embedding of Fi (i\ • J&) into Fy (Jj) • Fi (J^) that maps Xj into
((1, XJ), XJ). Hère Y = (Fi (Jfc))1 x {xi, . . . , x j and the action in the
semidirect product of the free objects is given by Xj (s, Xj') — (XJ 5, Xjf)
for 5 G (F{ (Jfc))1- The word x7l .. .Xjr is mapped into

( ( 1 , xjl) + (xjl, xJ2) + . . . + (xjl...Xjr_17 xjr), xix...xir).

Suppose that J i • J& |= u — v, or that up^k = ^,fc- This is equivalent
to the two conditions ü a ^ — ^ a ^ and Jk \= u = v. Observe that
Jk \= u = v if and only if uqi^k = ^,fc- The resuit follows since
ua^k = vaiik implies ugijA. = vq^k- •

Let fc > 1. Let u, t> G {xi, . . . , X J } + be such that tia^.^ = vaik- Let
a: G u a and consider the first occurrence of x in u.

Case 1. If x is the last letter occurring for the first time in u, then there
is a factorization u = u\ XU2 with ui, «2 E {ari, . . . , a^}*, x £ Uia and
U2 a Ç (m a:) a. In such a case, since ua,-fc = v&i^k, there is also a
factorization u = ui XV2 with vi, v% G {xi, . . . , Xi}* and x £ v\a.

Case 2. If x is not the last letter occurring for the first time in u, then there
is a factorization u = u\ xu^yu^ with u\, U2, u$ G {xi, . . . , x2-}*, x ^ u\ a,
^2 CK> ^ (v>i x) a and y 0 (wi XW2) «• In such a case, since U Û ^ = vai%k,
there is also a factorization v = vi XV2 yv$ with ^1,^2,^3 E {xi, . . . , a:?}*,
x ^ v 1 a and 2/

LEMMA 2.2: /n Case 1 and Case 2, u<i ai9k-i = 2̂ CK*,A:—1-

Proof: Let 1̂2 = uf
2zuf2 with 2 G {ari, . . . , XJ}. Consider the pair

2 9t,fc-i) ^) in ^2Q!«,fc-i. The pair ((wiW2)^fc, J?) is in « a ^ . Since
: = va^jk, there is a factorization v — vf zvf/ with (ni xv!2) qi}k —

vf qi^k' It follows that the ^ ^-class of u\ xuf
2 is equal to the ^ ^-class

of vf and hence x € v' a and, in Case 2, y £ vf a. Therefore, the chosen
occurrence of z in v = v1 zvn must be in V2. There is then a factorization
v2 = v2 zv2 such that v' — vi x ^ . Hence (u2 q^ ̂ _ i , z) = (ug ft, k-i y z) an(i
the pair (u2 qi,k-ii z) is in t>2 a^fe-i- Then inclusion u<i a^^_i Ç ^2 ^,fc-i
follows ; The reverse inclusion is similar. D

DÉFINITION 2.2: Let k > 1 and let A — {x\, X2, X3, . . .} be a denumerable
alphabet of variables including x and y(u — x\ and y = X2).

Cfc is the séquence of ail équations (over A) of the form

Uk • • • U\ X — Uk . . . U\ X2

Informatique théorique et Applications/Theoretical Informaties and Applications
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where
{x} Ç u\ a Ç , , . Ç Uk a

Vk is the séquence of ail équations (over A) of the farm

uk ... u\ xy = Uk . . . u\ yx

where
{^Î y} Ç v>i a Ç ... Ç Uk a.

We define Co as the séquence consisting of the équation x = x2 and X>o
the séquence consisting of xy = yx.

Let Jk dénote the variety of ail semigroups that satisfy all the équations
in 6k- The variety Jk is locally finite, or every finitely generated semigroup
in Jk is finite. For a class C of semigroups, we dénote by CF the class of
ail finite semigroups of C. The equality Jk = (Jk)F holds. By [1], if k > 1,
then the equality (J\ • Jk)F = J i • J& holds and J\ • Jk is locally finite.
Hence J\ • Jk is generated by J i * J& and so Fi (Ji r̂ 3k) is the free object
on {#i, . . . , Xi} in the variety J\ • J&.

THEOREM 2.1: Let k> 0. The variety J\ • J^ Ï5 defined by Ck U £>&.

Proof: We first want to show that Ji * Jk =̂ Ĉ  UP fc. Let u, u G
{#1, . . . , # t } + be such that u — v is an équation in T>k (the case
of équations in Ck is similar). By Lemma 2.1, it suffices to show that
ua^k — v®-i,k- Let u — Uk .. .u\xy and f = u& .. .u\yx be such that
{#) y} ^ ui a Ç- ... C Uk ot. Note that

since the words Uk ..'. «i and uk .. .u\y are ~ ^-équivalent. Note also that

.wia:)gi)fc) y) = ((w& .. .wi)gi,jk, y)

The equality ua^k = ^^i,fc follows.
Conversely, we want to show that if IA, V E {ari, . . . , a;i}+ are such that

ua^k = va^k, then Ck Uî>^ I- w = v. So, assume that ua^k — va^k• Let
x G u a and consider the first occurrence of x in n and v. As in Lemma 2.2,
we dénote by u\ (respectively v\) the longest prefix of u (respectively v) in
which the letter x does not occur, and we dénote by U2 (reespectively V2)
the longest segment of n (respectively v) following the first occurrence of x
in u (respectively v) that does not involve any new letters. By Lemma 2.2,
the equality it2CKi,jfe-i = V2Oti,k-\ holds. By the inductive hypothesis on
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166 F. BLANCKET-SADRÏ

h,, we eoraefede that the équation u^ — v% is deducible from C^-i
By a restait of [3] (Proposition 23), since C^-i U Vk~\ f- ^2 — ̂ 2
^2 & Ç (ÎXI ̂ ) a, then C% U 2>& h «i XU2 = ^1 W2-

Let z € {xi, . . . , x{}. Let ^'(respectively vf) be the longest prefix of u
(respectively v) bef ore the first occurrence of z. We show that the équation
vf =• vr is dediicible from C& UV^. If z is the first lettet in u (and so
also the fksf letter in v), then the équation v! = vf becomes 1 = 1. We
assame that it is true for the first occurrence of z — x (as in Lemma 2.2),
or C& U T>k h ni = v\. Here ui XU2 ~ u\ xv2 = ^1 xv2 ïs deducible from
Cfe U V%. If x ÏS the last letter occurring for the first time in u (as in
Case 1 of Lemma 2.2), we obtain that the équation u — vv& deducible from
Cfc U V%. ötherwise, the induction step allows us to proceed until the first
occurrence of another letter^ say z — y (as in Case 2 of Lemma 2.2). After
every letter of u bas been found, we obtain the deducibility of the équation
n = V' fröm C^WDk. D

Since J]i * ik =• ( Ji ^ Jk)F ) any séquence of équations for J\ * J& is also
a séquence of équations far J i * J&.

2.1: Let k > 0. The S-variety J\ ik J^ is defined by Cj- üDfc.
Mote that if two words u and v form an équation u = v for J i ^ J&, then

^ ^ fê+ii^- Equations for other S-varieties generalizing the S-varieties Jju
have been teilt from properties of congruences generalizing the congruences
- * (see [71 [8J, [9], [12]).

Pin has given the equational characterization of J i ^ J i of Theorem 2.2
and Ataekia the characterization of J^ of Theorem 2.3.

2.2., (Pin [22]): The S-variety J i • J i is defined by Ci U Vi or
equïvalenÉy by the two équations xux = xux1 and xuyvxy = xuyvyx.

TKEOREM 23 (Almeida [3]): Let k > 0. The S-variety jf+ 1 is defined by

Froni the preceding results, we deduce the following corollary.

CöROLLARY 2.2: Let k > 0. The S-varieties J i • J/c and jf+1 are equal
and hence ihe S-variety J i ^ J^ is decidable.

A resuit of Almeida [3] implies the following.

2.3: The S-variety J i vt J*. is defined by a finite séquence of
équations if and only if k =• 1.

théorique et Applications/Theoreticaî Infonnatics and Applications



EQUATIONS ON SOME SEMIDIRECT PRODUCT 167

As mentioned at the beginning of this section, we have worked essentially
with semigroups in section 2. As explained in [3], since the S-variety
generated by the M-variety J& is monoidal, results such as Theorems 2.2
and 2.3, and Corollaries 2.1, 2.2 and 2.3 can be translated to results on the
M-varieties J i • J& and

3. ON A CONJECTURE OF PIN

Theorem 3.1 gives a new proof that a conjecture of Pin concernïng tree-
hierarchies of M-varieties is f aise (another proof was given in [13] using
different techniques). Let M\, . . . , Mk be finite monoids. The Schützenberger
product of Mi, . . . , Mfc, denoted by Ofc (Mi, . . . , Mk), is the submonoid
of upper triangular k x k matrices with the usual multiplication of matrices,
of the form x — (x{j)} 1 < i, j < fc, in which the (i, jt)-entry is a subset of
Mi x . . . x Mjç and ail of whose diagonal entries are singletons, that is

1. Xij = 0 if i > j ;
2. xu = {(1, . . . , 1, mi, 1, . . . , 1)} for some nu E Mi (hère, rrn is the

üh component in the A:-tuple);
3.

Xij Ç{(mi, . . . , mk) € Mi x x Mk \ m\ — .... =

m;_i = I = mj+i - . . . = mk}

(hère, 1 is the identity of Mi, ....
Condition (2) allows to identify xu with an element of Mi and

Condition (3) Xij. with a subset of Mi x ... x Mj. If

m = (m8-, . . . , mj) G Mj x . . . x Mj

and

m' = (m?, . . . , vn!jf) G Mv x . . . x Mj>,

then fhfn1 ~ (mi, . . . , m^_i, Tîiymjv, ^ / + i , •••, mV) ïf J = ^, and is
undefined otherwise. This multiplication is extended to sets in the usual
fashion; addition is given by set union.

We will dénote by T the set of trees on the alphabet {a, â}. Formally, T
is the set of words in {a, â}* congruent to 1 in the congruence generated
by the relation aa — 1. Intuitively, the words in T are obtained as follows:
we draw a tree and starting from the root we code a for going down and
a for going up. For example,
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is coded by aaaaaaaaaaaaaa. The number of leaves of a word t in {a, a}*,
denoted by / (t) is by définition the number of occurrences of the factor aa
in t. Each tree t factors uniquely into t = at\ âat2 â... atk a where k > 0
and where the V s are trees. Let t be a tree and let t = t\ at<i ât$ be a
factorization of t. We say that the occurrences of a and â defined by this
factorization are related if t<i is a tree. Let t and if be two trees. We say that
t is extracted from t' if t is obtained from t7 by removing in if a certain
number of related occurrences of a and â. We now give Pin's tree hierarchy
construction using Schützenberger's product.

To each tree t and to each séquence Vi , . . . , ^i(t) of M-varieties is
associated an M-variety Ot (Vi , . . . , Vi(t)) defined recursively by:

L Oi (V) = V for every M-variety V;

2. if t = at\ âaÎ2 â . . . at& â with k > 0 and t\, . . . , £& G T,

Ot (Vi, . . . , V/( t)) is the M-variety of monoids that divide some

Oib(Mi, . . . , Mk) with Mi G Ot^Vi , . . . , V / ( t l ) ) , . . . , Mk G 0tk

( V V )
When Vi = . . . = V/ u\ — V, we dénote simply by O* (V) the M-variety

Ot (Vi , . . . , V/( t)). More generally, if T is a language contained in T, we
dénote by OT (V) the smallest M-variety containing the M-varieties (}t (V)
with t G T.

Let I dénote the trivial M-variety. In [21], the following equalities are
shown: 0(aâ)k+1 (I) — Jfc a n d O(aa)* (X) = J- Also, it is shown there that if
V is an arbitrary M-variety, then 0(aâ)2 (V, I) = J i • V.

Among the many problems concerning these tree hiérarchies, is the
comparison between the M-yarieties inside a hierarchy. More precisely,
the problem consists in comparing the different M-varieties Ot (V) (or
even OT (V)). A partial resuit and a conjecture on this problem was given
in Pin [21]. It was shown that for every M-variety V, if t is extracted
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from t', then Ot (V) Ç <>t' (V), and it was conjecturée that if t, i/ G T',
Ot (I) Q Ot' (I) if and only if t is extracted fromi'. Hère, V dénotes the
set of trees in which each node is of arity different from 1.

THEOREM 3.1: The above conjecture is f aise.

Proof: To see this, let Jb > 1 and let t = afc+1 (âaâ)fc+1

and tf = a(aâ)k+lâaâ. The equalities Ot (I) = J i + 1 and Ot'(I) =
0(aa)a (Jfe) I) = J i * Jfc hold. But J i * Jfc = J^+ 1 by Corollary 2.2 (M-
variety version), and it is easy to verify that the tree t is not extracted from
the tree t'. D
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