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EQUATIONS ON THE SEMIDIRECT PRODUCT OF A FINITE
SEMILATTICE BY A J-TRIVIAL MONOID OF HEIGHT & (*)

by F. BLANCHET-SADRI Q)
Communicated by J.-E. PIN

Abstract. —~ Let Ji. denote the kth level of Simon’s hierarchy of J-trivial monoids. The st level
J1 is the M-variety of finite semilattices. In this paper, we give a complete sequence of equations
for the product J1 x J}. generated by all semidirect products of the form M x N with M € Jy
and N € Ji. Results of Almeida imply that this sequence of equations is complete for the product
B LaRP o SIS N (k + 1 times) generated by all semidirect products of k + 1 finite semilattices
and that J1 x Yy, is defined by a finite sequence of equations if and only if k = 1. The equality
JixJe=J ’f+1 implies that a conjecture of Pin concerning tree hierarchies of M-varieties is false.

Résumé. — Soit Ji. le niveau k de la hiérarchie de Simon des monoides J-triviaux. Le premier
niveau J1 est la M-variété des monoides idempotents et commutatifs ou demi-treillis. Dans cet
article, nous donnons une suite compléte d’équations pour le produit J, x Ji engendré par les
produits semidirects de la forme M x N avec M € J; et N € Jy. Des résultats d’Almeida
entrainent que cette suite d’équations est aussi compléte pour le produit J 'f'“ ouldy x...xJ
(k + 1 fois) engendré par les produits semidirects de k + 1 demi-treillis et que Jy * Yy est défini
par une suite finie d’équations si et seulement si k = 1. L’égalité J, xJ;, = J ’1’+1 entraine qu’une
conjecture de Pin concernant des hiérarchies d’arbres de M-variétés est fausse.

1. INTRODUCTION

Let J; denote the M-variety of J-trivial monoids of height k. The
first level J; is the Mb-variety of finite semilattices. In this paper, we
give an equational characterization of the product J; x J; generated by all
semidirect products of the form M x N with M € J; and N € Ji. A
result of Almeida [3] gives an equational characterization of the product
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158 F. BLANCHET-SADRI

Jiy x...xJi(k+ 1 times) or J ’f“, which turns out to be our equational
characterization of J; x Ji. The equality J; « J; = J’f+1 implies that
a conjecture of Pin concerning tree hierarchies of M-varieties is false.
Almeida [3] implies that J; x Ji is defined by a finite sequence of equations
if and only if k¥ = 1. The methods used in this paper were developed by
Almeida [1], {2].

1.1 Preliminaries

The reader is referred to the books of Eilenberg [15], Lallement [19] or
Pin [20] for terminology not defined in this paper.

Let A be a finite set called an alphabet, whose elements are called letters.
We will denote by A* the free monoid over A. The elements of A* are
the finite sequences of letters called words. The empty word (denoted by 1)
corresponds to the empty sequence.

Let L be a subset of A* (or a language over A) and ~ be an equivalence
relation on A*. We say that ~ saturates L if L is a union of classes modulo ~
or for every u, v € A*, u ~ v and u € L imply v € L. _

The syntactic congruence of L is the congruence ~ ; on A* defined by
u ~ v if and only if for every =, y € A*, zuy € L if and only if zvy € L.
We can show that ~ f, is the coarsest congruence saturating L. The syntactic
monoid of L is the quotient monoid M (L) = A*/ ~ .

Let S and T be semigroups. We say that S is a quotient of T' if there exists
a surjective morphism ¢ : ' — S and we say that S divides T (S < T) if
S is a quotient of a submonoid of 7. The division relation is transitive. The
syntactic monoid of a language. L is the smallest monoid recognizing L,
where smallest is taken in the sense of the division relation.

A variety V is a class of semigroups closed under division and products.
By the well-known theorem of Birkhoff such a variety is defined by equations
that must hold for all elements of semigroups in V. Thus equations give
rise to varieties.

An S-variety is a class of finite semigroups closed under division and
finite products and an M-variety is a class of finite monoids closed under
division and finite products. Equivalently, a class V of finite monoids is an
M-variety if 'V satisfies the following two conditions:

oif € Vand § < T, then S € V;

oif S, T € V, then SxT € V.

Informatique théorique et Applications/Theoretical Informatics and Applications



EQUATIONS ON SOME SEMIDIRECT PRODUCT 159

Eilenberg has shown the existence of a bijection between the M-varieties
and some classes of languages called the x-varieties of languages.

A class V is a %-variety of languages if

e for every alphabet A, A*V is a set of recognizable languages over A
closed under boolean operations;

eif o : A* — B* is a free monoid morphism, then L € B*V implies
Lo™! = {u € A*|up € L} is in A*V;

oif L € A*V and a € A, then ¢ 'L = {u € A*|au € L} and
La™! = {u € A*|ua € L} are in A* V.

If*V is an M-variety and A is an alphabet, we denote by A* V the set of
recognizable languages over A whose syntactic monoid is in V. Equivalently,
A*V is the set of languages of A* recognized by a monoid of V. If V is
a x-variety of languages, we denote by V the M-variety generated by the
monoids of the form M (L) where L € A*V for some alphabet A.

" A result of Simon enables us to describe the x-variety of languages
corresponding to the M-variety of J-trivial monoids denoted by J.

A word aj...a; € A* is a subword of a word u of A* if there exist
words ug, u1, ..., u; € A* such that u = ug a3 u1 .. . a; u;. For each integer
k > 0, we define an equivalence relation ~ ; on A* by u ~ % v if and only
if w and v have the same subwords of length less than or equal to k. We can
verify that ~  is a congruence on A* with finite index. Note that u ~ 1 v
if and only if v and v have the same letters. The set of letters that occur
in a work u will be denoted by uc.

A language L over A is called piecewise testable if it is a union of classes
modulo ~ ; for some integer k, or equivalently if it is in the boolean algebra
generated by all languages of the form A* a; A*...a; A* where ¢ > 0 and
a1, ..., a; € A. Simon [24] has proved that a language is piecewise testable
if and only if its syntactic monoid is J-trivial. For every alphabet A, we will
denote by A* J the boolean algebra generated by all languages of the form
A*ar A*...a; A* ,where 0 < i< kanday,...,a; €A. One can show that
Jx is a x-variety of languages and we will denote by Jj the corresponding
M-variety. The M-variety J is the union of the M-varieties Jy.

1.2 Product of varieties of semigroups
Let S and T be semigroups. To simplify the notation we will represent
S additively (without necessarily supposing that S is commutative) and T’

multiplicatively.
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160 F. BLANCHET-SADRI

An action of T on S is a function

TxS — S
(t, 8) — ts

satisfying for every ¢, # € T and s, s’ € S :
o t(s+5) =ts+1ts
o t(t's) = (tt')s.

Given an action of T on S, the semidirect product S xT is the semigroup
defined on S x T by the multiplication

(s, t) (s', t') = (s + t5, tt).

The multiplication in S x 7" is associative. Thus S T is a semigroup.

In this paper, we only consider semidirect products S =T given by actions
of T on S that are described by monoid homomorphisms ¢ : T* — End S
from T into the monoid of endomorphisms of S. In the terminology adopted
by Eilenberg [15], this means that we only consider left unitary actions, that
is actions of 7" on § that satisfy 1s = s for every s € S. Here T denotes
the semigroup 7' U {1} obtained from T by adjoining an identity if 7" does
not have one, and 71 = T otherwise.

If V and W are varieties of semigroups, the product V « W is the variety
generated by all semigroups of the form S x7T with S € V and T € W.
The product of two S-varieties (or M-varieties) is defined analogously. The
operation * defined on varieties is associative.

There remain many problems to be solved on products of S-varieties
(or M-varieties). The most important of these is the following. Given two
decidable S-varieties (or M-varieties), is the product decidable? A particular
case of this problem is well known in the theory of semigroups. Karnofsky
and Rhodes [18] have established the decidability of the M-varieties A x G
and G x A. Here, A denotes the M-variety of aperiodic monoids and G
the M-variety of groups.

This paper deals in particular with products of the form J ’f It is known
that U J ’1” is the M-variety R of all finite R-trivial monoids (Stiffler [25])
k>0
and that J¥ is decidable (Pin [21]).
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1.3 Equations on products of varieties of semigroups

Let At be the free semigroup over a denumerable alphabet A and let u,
v € At. We say that a semigroup S satisfies the equation u = v or the
equation u = v holds in S (and we write S |= u = v) if for every morphism
¢ : AT — 8, up = v . This means that, it we substitute elements of S for
the letters in » and v, we reach equalities in S. For example, S is idempotent
if it satisfies the equation z = z? and S is commutative if it satisfies the
equation zy = yx. For a sequence £ of equations and an equation v = v,
&+ u=wv (and we say u = v is deducible from £) means that for every
semigroup S, if S = &, then S E u = v.

Let V (u, v) be the class of finite semigroups S satisfying the equatxon
u = v. It is easy to show that V (u, v) is an S-variety.

Let (ui, v;)i>0 be a sequence of pairs of words of A*. Consider the
following S-varieties:

W=V (u, v)
i>0

= U ﬂ V (u;, v;).

I>0 i>T

We say that W is defined by the equations u; = v; (¢ > 0). This
corresponds to the fact that a finite semigroup is in W if and only if it
satisfies the equations u; = v; for every i > 0. We say that W’ is ultimately
defined by the equations u; = v; (¢ > 0). This corresponds to the fact that
a finite semigroup is in W’ if and only if it satisfies the equations u; = v;
for every i sufficiently large.

The arguments above apply equally well to M-varieties. We only need to
replace AT by A* throughout.

Eilenberg and Schiitzenberger [16] have proved the following result. Every
nonempty M-variety is ultimately defined by a sequence of equations, or
every S-variety containing the trivial semigroup is ultimately defined by
a sequence of equations. If V is the S-variety ultimately defined by the
equations u; = v;, % > 0, then the same equations ultimately define the M-
variety consisting of all the monoids in V. Also every M-variety generated
by a single monoid is defined by a (finite or infinite) sequence of equations.

Equational characterizations of all the M-varieties J; are known [23], [5],
[6], [10], [11]. In particular,
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162 F. BLANCHET-SADRI

e the M-variety J; is defined by the equations z = z? and zy = yz, so
Ji is the M-variety of idempotent and commutative monoids;

e the M-variety Jo is defined by the equations zyzzx = zyzrzz and
(zy)® = (yz)*;

e the M-variety J3 is defined by the equations zzyzvrwy = zzyrvIwy,
ywrvryze = ywrvzyzzz and (zy)® = (yz)d.

DeriNITION 1.1: Let k > 1 and let A = {z1, x2, ...} be a denumerable
alphabet of variables including z (z = x1).

&y is the sequence of all equations (over A) of the form
Ui UTVL ..V = Ui ULTVL ...
where

{z} CwmaC...Cuia

{z} CviaC...Cvja

and where i+ j = k.

THEOREM 1.1 [10]: Let k > 1. The M-variety Jy, is defined by &y.

These results lead to the following question. Can the M-varieties Ji be
defined by a finite sequence of equations? This question has been answered
in [11]. The M-varieties J; can be defined by a finite sequence of equations
if and only if £ = 1, 2 or 3.

Equations are known for the product of the S-variety of semilattices,
groups, and R-trivial semigroups by the S-variety of locally trivial
semigroups [15]. These results have important applications to language
theory [14], [15].

Pin [22] has shown that the M-variety J; xJ1 is defined by the equations
zur = zux’® and zuyvry = zuyvyz. A result of Irastorza [17] shows that
the M-varieties J; % (Z;) are not defined by finite sequences of equations.
Here, (Z) denotes the M-variety generated by the cyclic group Z. of order
k which is defined by the equations z*¥ = 1 and zy = yz. Almeida [3]
has shown that J’f is defined by a finite sequence of equations if and only
if K = 1 or 2. Ash [4] has shown that J; *x G = Inv is defined by the
equation z% y“ = y¥ z“. The M-variety of groups G is defined by the
equation z* = 1, and Inv denotes the M-variety generated by the inverse
semigroups.

Informatique théorique et Applications/Theoretical Informatics and Applications



EQUATIONS ON SOME SEMIDIRECT PRODUCT 163
2. ON A COMPLETE SEQUENCE OF EQUATIONS FOR J; x J

In this section, in order to simplify the notation, we will denote also by
J; the S-variety generated by Ji. It will be convenient to denote by Jg the
S-variety defined by the equation x = y. In this section, we work essentially
with semigroups.

Our results follow from an approach to the semidirect product that was
introduced in Almeida [1].

The free object on the set X in the variety generated by an S-variety
(or M-variety) V will be denoted by Fx V. We will also write F; V
as an abbreviation for F{, .3 V. For every ¢ > 1 and k > 1, the
free object F;(Jx) can be viewed as a set of representatives of classes
modulo ~ . of words over {z1,..., z;}. This set is finite. For ¢ > 1
and k > 1, let pi g : {z1,..., 7}t — F;(J1 »Jy) be the canonical
projection that maps the letter z; onto the generator z; of Fj (J; % Jz), and
let ¢;  : {z1, ..., 3}t — F;(Jx) be the canonical projection that maps
the letter z; onto the generator z; of F; (Ji). If w € {z1, ..., z;}7, then
ug; r can be viewed as a representtive of the class modulo ~ 4 of w.

Dermnirion 2.1: Let k > 1 and u € {z1, ..., zi}T.
uQ; i is the set of all pairs of the form

(ul Qi k> .’L‘) € (Fi (Jk))l X {3;1: LR g;i}
where uw = u' zu” for some W/, v’ € {x1, ..., z:}*.
In the case of k = 0, (F; (Jo))! = {1} and so wa; g = {1} X ua.
The following lemmas will help us give an equational characterization

of J; x J;. Lemma 2.1 provides an algorithm to decide when an equation
holds in Jl * Jk.

LemMa 2.1: Let k > O and u, v € {z1, ..., xi}*. Then

Jl *Jk ]=u='u
if and only ifuai’k = vy k-

Proof: For k = 0, we have that J; = u = v if and only if wa = va.
Since F; (Jy) is finite for every ¢ > 1 and & > 1, a representation of free
objects for a semidirect product of S-varieties obtained in [1] implies that
F;{Jy « J}) is also finite for every ¢ > 1 and ¥ > 1. Moreover, there
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164 F. BLANCHET-SADRI

is an embedding of F;(J1 x Ji) into Fy (J1) x F; (J;) that maps z; into
((1, z;), z;). Here Y = (F; (Jx))! x {z1, ..., =i} and the action in the
semidirect product of the free objects is given by z; (s, z;/) = (z; s, zj)
for s € (F; (Jx))!. The word z;, ...z, is mapped into

(A, z5,) + (x5, zj,) + .o+ (5, - 25y, 25,), Zjy .. T5,)

Suppose that J1 x J; = u = v, or that up; , = vp; . This is equivalent
to the two conditions ua; x = vo;, and J; | v = v. Observe that
Jir = v = v if and only if ug;, x = vg; k. The result follows since
uQ; = v implies ug; p = vg; k. O

Let k > 1. Let u, v € {21, ..., z;}* be such that ue; = voy . Let
r € ua and consider the first occurrence of z in .

Case 1. If z is the last letter occurring for the first time in u, then there
is a factorization u = wu; zup with w1, up € {z1, ..., z;}*, = € u; o and
uga C (urz)oa. In such a case, since ua; = va, g, there is also a
factorization v = vy zve with vy, v2 € {z1, ..., z;}* and z & v1 .

Case 2. If x is not the last letter occurring for the first time in u, then there
is a factorization u = uy Tugyus with uy, ug, u3z € {z1, ..., z;}*,z € u1 o,
uza, C (urz)a and y € (u1 zuz) o. In such a case, since w o, = v a;, ,
there is also a factorization v = v; zvp yv3 with v1, vg, v3 € {z1, ..., Z;}*,
z € uviaand y € (v1zv2) a.

Lemma 2.2: In Case 1 and Case 2, uz o p—1 = V2 Q4 k—1-

Proof: Let up = uhzufy with z € {z1, ..., z;}. Consider the pair
(u3 gi, k—1, 2) in ug 04 x—1. The pair ((u1 zuh) i k, 2) is in way k. Since
uoy k= Vo g, there is a factorization v = v’ 20" with (u1 zub) gi k. =
v’ g; k. It follows that the ~ p-class of uj zu) is equal to the ~ g-class
of v/ and hence z € v/ a and, in Case 2, y € v’ a. Therefore, the chosen
occurrence of z in v = v’ zv” must be in v. There is then a factorization
vy = vh zvy such that v’ = vy zvj. Hence (u) ¢; k-1, 2) = (V) ¢; k-1, 2) and
the pair (u} g; k1, 2) is in v2 a5 k—1. Then inclusion ug a; x—1 C V2 4, k—1
follows. The reverse inclusion is similar. O

DErFINITION 2.2: Let k > 1 and let A = {1, x3, z3, ...} be a denumerable
alphabet of variables including z and y (v = z1 and y = z3).

Cy. is the sequence of all equations (over A) of the form

Uk .. UL = Ug...U1Z°

Informatique théorique et Applications/Theoretical Informatics and Applications
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where
{z}CurtaC...Cuy

Dy is the sequence of all equations (over A) of the form
Uk .. - UITY = Uk ... UL YT

where
{z,y} CwmiaC...Cu,a.

We define Cy as the sequence consisting of the equation & = z? and Dy
the sequence consisting of zy = yx.

Let J denote the variety of all semigroups that satisfy all the equations
in &. The variety Jy is locally finite, or every finitely generated semigroup
in Jy is finite. For a class C of semigroups, we denote by C¥" the class of
all finite semigroups of C. The equality J; = (J)F holds. By [1], if & > 1,
then the equality (J; x J;)F' = J1 % J;, holds and J; * Ji. is locally finite.
Hence Ji % Ji is generated by J1 x Ji and so F; (J1 x Ji) is the free object
on {1, ..., z;} in the variety Jj % J.

THEOREM 2.1: Let k > 0. The variety J1 * Ji. is defined by Cy, U Dy.

Proof: We first want to show that J; x Jy = Cr, UDy. Let u, v €
{z1, ..., z;}* be such that u = v is an equation in Dy (the case
of equations in Cj is similar). By Lemma 2.1, it suffices to show that
ua;r = voy k. Let w = ug...u3xy and v = ug...u1 yz be such that
{z, y} Cura C ... C uxa. Note that

((ug .- w1) gk, ©) = ((uk - - w1 Y) Gi k> T)

since the words ug ... u; and ug ... u1 y are ~ x-equivalent. Note also that

(uk - w1 2) ik y) = ((u - v1) Gk ¥)
The equality ua; = voy i follows.

Conversely, we want to show that if u, v € {z1, ..., z;}T are such that
UQ; k =V k, then Cp UDg - u = v. So, assume that u a; p = v . Let
z € u a and consider the first occurrence of z in v and v. As in Lemma 2.2,
we denote by u; (respectively vy ) the longest prefix of u (respectively v) in
which the letter z does not occur, and we denote by uy (reespectively vz)
the longest segment of u (respectively v) following the first occurrence of x
in u (respectively v) that does not involve any new letters. By Lemma 2.2,
the equality u2 a; g1 = v2 a; x—1 holds. By the inductive hypothesis on
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166 F. BLANCHET-SADRI

k, we conclude that the equation up = vy is deducible from Cp_3 U Dy_1.
By a result of [3] (Proposition 2.3), since Cp_1 U Di_1 F ug = vy and
uza C (w1 z)a, then Cp U Dy b uy zus = ug 202

Let z € {z1, ..., z;}. Let u/(respectively v’} be the longest prefix of u
(respectively v) before the first occurrence of z. We show that the equation
o = v is deducible from C, U Dg. If z is the first letter in u (and so
also the first letter in v), then the equation v’ = v’ becomes 1 = 1. We
assume that it is true for the first occurrence of z = z (as in Lemma 2.2),
or Cp U Dy - wp = vi. Here uy zus = up zve = vy zvy is deducible from
Cr U Dy, If © is the last letter occurring for the first time in u (as in
Case 1 of Lemma 2.2), we obtain that the equation u = v is deducible from
Ci U Dyg. Otherwise, the induction step allows us to proceed until the first
occurrence of another letter, say z = y (as in Case 2 of Lemma 2.2). After
every letter of » has been found, we obtain the deducibility of the equation
w = v from Cxp UDy. O

Since J; % J; = (J1 x Jp)¥', any sequence of equations for Jy + J is also
a sequence of equations for Ji x Jx.

CoroLLARY 2.1: Let k > 0. The S-variety J1 % J}, is defined by Ci, U Dy.

Note that if two words u and v form an equation v = v for J; % J, then
u ~ p41v. Equations for other S-varieties generalizing the S-varieties Jg
have been built from properties of congruences generalizing the congruences
~ i (see [71, [8], [9], H12D).

Pin has given the equational characterization of J; = J; of Theorem 2.2
and Almeida the characterization of J¥ of Theorem 2.3.

Tueorem 2.2. (Pin [22]). The S-variety J1 x J1 is defined by C; U Dy or

equivalently by the two equations zux = Tux’ and TWYVTY = TUYVYT.

Turorem 2.3 (Almeida [3]): Let k > 0. The S-variety J’f""l is defined by
Cr U D

From the preceding results, we deduce the following corollary.

CoroLLaRY 2.2: Let k > 0. The S-varieties J1 * Ji and J’f"’l are equal
and hence the S-variety J1 x Jy, is decidable.

A result of Almeida [3] implies the following.

CoroLLary 2.3: The S-variety J1 x Jy, is defined by a finite sequence of
equations if and only if k = 1.
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As mentioned at the beginning of this section, we have worked essentially
with semigroups in section 2. As explained in [3], since the S-variety
generated by the M-variety J; is monoidal, results such as Theorems 2.2
and 2.3, and Corollaries 2.1, 2.2 and 2.3 can be translated to results on the
M-varieties J1 * J;, and J¥+1.

3. ON A CONJECTURE OF PIN

Theorem 3.1 gives a new proof that a conjecture of Pin concerning tree-
hierarchies of M-varieties is false (another proof was given in [13] using
different techniques). Let M, ..., M}, be finite monoids. The Schiitzenberger
product of My, ..., Mg, denoted by Oy (M, ..., My), is the submonoid
of upper triangular k x k matrices with the usual multiplication of matrices,
of the form z = (z;;), 1 <4, 7 < k, in which the (¢, j)-entry is a subset of
Mj x ... X My and all of whose diagonal entries are singletons, that is

Lz =D ifi> 3

2.z ={(1, ..., 1, mi 1, ..., 1)} for some m; € M; (here, m; is the
ith component in the k-tuple);
3.
zi; C{(m1, ..., mp) € My X ... X M |m1=...=
mi—1 =1=mjp1 =...=my}
(here, 1 is the identity of Mj, ..., My).

Condition (2) allows to identify z;; with an element of M; and
Condition (3) z;; with a subset of M; x ... x M;. If

m=(ms ..., my) € My x ... x M;
and
Tﬁ/:(m/i/, ey m‘ljt)’EMi’X..‘.xMj',
__I— . . L [ I , - ._0, .
then mm' = (my, ..., mj—1, mjmy, M4y, ..., my) if j =4, and is

undefined otherwise. This multiplication is extended to sets in the usual
fashion; addition is given by set union.

We will denote by 7 the set of trees on the alphabet {a, a}. Formally, 7
is the set of words in {a, @}* congruent to 1 in the congruence generated
by the relation ad = 1. Intuitively, the words in 7 are obtained as follows:
we draw a tree and starting from the root we code a for going down and
a for going up. For example,
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is coded by acaaadaaaaaaad. The number of leaves of a word ¢ in {a, @}*,
denoted by [ (t) is by definition the number of occurrences of the factor aa
in £. Each tree ¢ factors uniquely into ¢ = at; aate @...atr a where kK > 0
and where the ¢;’s are trees. Let ¢ be a tree and let ¢ = ¢; aty Gi3 be a
factorization of ¢. We say that the occurrences of a and @ defined by this
factorization are related if ¢ is a tree. Let ¢ and ¢ be two trees. We say that
t is extracted from t' if t is obtained from ¢ by removing in ¢ a certain
number of related occurrences of a and G. We now give Pin’s tree hierarchy
construction using Schiitzenberger’s product.

To each tree ¢ and to each sequence Vi, ..., Vi) of M-varieties is
associated an M-variety {; (V1, ..., V; (t)) defined recursively by:

1. 01 (V) = V for every M-variety V;

2.iff t = atiaatza...atga with & > 0 and t,..., & € 7T,
Ot (V1, ..., Vi) is the M-variety of monoids that divide some
Ok (Ml, ceey Mk) with M7 € O (Vl, ey Vl(tl))a ey M € Q4
(Vi) et (teo) 415 -0 Vi(t) 441 (t0))-

When Vi = ... = V) =V, we denote simply by ¢; (V) the M-variety
0t (V1, ..., Vi(1)). More generally, if T is a language contained in 7, we

denote by {7 (V) the smallest M-variety containing the M-varieties {; (V)
with ¢t € T. ' _

Let I denote the trivial M-variety. In [21], the following equalities are
shown: Q(gg)x+1 (I) = Ji and Q(gq)- (I) = J. Also, it is shown there that if
V is an arbitrary M-variety, then {(4g)2 (V, I) = J1 x V.

Among the many problems concerning these tree hierarchies, is the
comparison between the Mb-varieties inside a hierarchy. More precisely,
the problem consists in comparing the different M-varieties {; (V) (or
even {7 (V)). A partial result and a conjecture on this problem was given
in Pin [21]. It was shown that for every M-variety V, if t is extracted
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from ¢/, then ¢; (V) C Q¢ (V), and it was conjectured that if ¢, ¢ € T,
Ot (I) € Op (I) if and only if ¢ is extracted from t'. Here, T” denotes the
set of trees in which each node is of arity different from 1.

TraeoREM 3.1: The above conjecture is false.

Proof: To see this, let k > 1 and let ¢t = ot (aea)*t?
and t' = a(aa)**! @aa. The equalities O¢(I) = J**! and O (I)
O(aay2 (Jk, I) = J1 * I hold. But J1 » I = I¥*! by Corollary 2.2 (M-
variety version), and it is easy to verify that the tree ¢ is not extracted from
the tree ¢'. O
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