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ON CONTINUOUS FUNCTIONS
COMPUTED BY FINITE AUTOMATA (1)

by D. DERENCOURT (2), J. KARHUMÀKI (3), M. LATTEUX (2) and A. TERLUTTE (2)

Abstract. - Weighted Finite Automata (WFA) can be used to define fonctions from [0, 1] into R.
We give hère a method to construct more and more complex WFA Computing continuons functions.
We give also an example of a continuons function having no derivative at any point, that can be
compnted with a 4-state WFA.

1. INTRODUCTION

Finite automata constitute a fondamental and simple method to describe an
input-output behaviour, in other words, to compute fonctions. Computations
of such fonctions are, in any sensé, finitarily defined and easy to implement.
Typically fonctions computed are so-called word fonctions, that is (partial)
fonctions from a set of words over some alphabet into itself or the binary
set {yes, no}.

A different, but still finitary, way to use finite automata to compute
fonctions was introduced in [CKarh]. In this approach, finite automata are
used to compute ordinary real fonctions from the unit interval [0, 1] into
the set of real numbers. This approach which was motivated by computer
graphie, cf. [CKari], or [CD] and [BM] as earlier papers on this topic, and
[B] as a related but different approach, is closely related to the theory of
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3 8 8 D. DERENCOURT et al

rational power series, cf. [BR] or [SS], the main différence being that the
computations are carried out on infinité words.

The automata used in this new approach are ordinary finite
nondeterministic automata equipped with the weight function, that is to
say, each transition is labelled besides an input symbol also by a real number
called its weight. Such automata were called in [CKarh] weighted finite
automata, WFA for short, and R-X-automata in [E].

A WFA A computes a real function fx- [0, 1] -> R as follows. First,
the input x € [0, 1] is identified with the binary infinité word bin (x) in
{0, 1}W, its binary représentation. Second, the weight associated to bin(x)
is computed by A. This is value of f A at point x. Of course, in order to be
well-defined, some convergence considérations are needed.

A particularly interesting class of weighted finite automata, namely that
of level automata, was also defined in [CKarh]. For these automata, f A is
always defined. The importance of this class was demonstrated in [CKarh]
and [DKLT]. We continue this research hère, concentrating on questions
when fonctions computed are continuous.

In Section 3, we establish a method to construct more and more complex
WFA (in fact, level automata) Computing continuous functions. This method
is based on describing a sufficient condition for a level automaton to define
a continuous function. As a matter of fact our construction produces exactly
the class of strongly continuous level automata, that is, level automata
Computing continuous functions for any initial distribution. Moreover we
prove in Theorem 2 that if a level automaton computes a continuous function
for a given initial distribution one can construct a strongly continuous
level automaton Computing the same function. This gives a straightforward
algorithm to décide the continuity of a function computed by a level
automaton (cf. [CKarh]).

In Section 4, we apply our above construction to define a 4 states level
automaton Computing a function which does not have a derivative at any
point. This clearly indicates that WFA are powerful to define complicated
functions, although as shown in [DKLT] they can compute only relatively
few smooth functions, that is functions having all the derivatives. We
want to emphasize that only the automaton Computing our complicated
function is simple, but also the computations to obtain the values (or their
approximations) of the function are not difficult - they are essentially as
complicated as to compute the values of a polynomial of degree 3 !

Informatique théorique et Application s/Theoreti cal Informaties and Applications



ON CONTINUOUS FUNCTIONS COMPUTED BY FINITE AUTOMATA 389

2. PRELIMINARIES

For a finite alphabet S let S* (resp. Sw) be the best set of finite (resp.
infinité) words over S. For the purposes of this paper we can assume that
E is binary, say E = {0, 1}.
We recall the définition of weighted finite automata from [CKarh].
A WFA (weighted finite automaton) is defined as a 5-tuple A =
(Q, E, W, I, T), where

- Q is a finite set of states,
- E is a finite alphabet,
-W : Q xE x Q -^ R is the weight function,
- I : Q —• R is the initial distribution,
- T : Q —> R is the final distribution.

A WFA can be represented by matrices: for each letter of a E, one defines
a Q x Q-matrix Wa over reals, in which Wa (p, q) — W (p, a, ç) for
all p, g G Q. Moreover, ƒ represented by a row-vector and T by a
column-vector. By convention, if not otherwise stated, we assume that
I = ( l , 0 , . . . , 0 ) and T = ((),. . . , 0,1).
The distribution of a word w = ici W2 . . . ^^ on an automaton v4 is noted

) and is defined by

PA(w) = I-Ww with

A WFA can be used to compute real functions on the interval [0, 1] as
follows. Let w G {0, 1}W bc w — w\W2 . . . wn . . . with W{ G {0, 1}. Then

oo

w is interpreted as the real w — ^2 Wi 2~\ and this correspondence comes

one-to-one if we assume that w 0 E* 01w. Now, the WFA A defines:

(1) fA: Sw - . R, iU (w) - Hm PA (™i ' ^2 .. - wn)

and

ƒ ! : [0, 1 ] - , R ,

where w = x and ti; ^ E* 01w.
These définitions assume the existence of the limit (1). In this paper

we avoid such considérations either by restricting our family of automata
such that the existence of the limit is guaranted or by working under the
assumption that the limit exists. A class of WFA guaranteing the existence

vol. 28, n° 3-4, 1994
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of the limit (1) was introduced in [CKarh]. These automata were called level
automata and were defined as WFA satisfying:

(1) The only loops in the underlying automaton of A are of the form
a

p -* p,
(2) 0 £ W (p, a, p) < 1 for all p G Q, a G E such that there exists g G Q9

q 7̂  p, and 6 G E such that W (p, 6, g) 7̂  0, and otherwise W (p, a, p) = 1,
(3) / e R^ and T e R£, where n = Card (Q),
(4) The underlying automaton of A is reduced, that is does not have

useless states.
Note that we slightly modify the définition given in [CKarh] since here

we allow négative weights on Connecting transitions.
The degree of a state in a level automaton A is defined as the maximum

of lengths of loop-free paths in A starting from that state, and the degree
of A is the greatest degree of its states.

Clearly one can assume that there is a single state of degree 0, and in the
sequel we shall consider only automata having a single state of degree 0.

Finally, a level automaton is called a line automaton iff for each
n G {0, 1 , . . . , Card (Q) — 1}, there exists exactly one state of degree n.

3. CONTINUITY CONSTRUCTION

In this section we study when a level automaton defines a continuous
function.

Clearly level automata with two states are line automata. Hence, at the
starting point for our considérations we recall that the continuity of the
function defined by such an automaton (shown in figure 1) is characterized
by the condition

(2) a + /? = l, or ( l - / 3 ) 7 = ( l - a ) « ,

where a and f3 are the weights of the loops in the state of degree 1,
cf. [CKarh]. Let now A be an arbitrary level automaton and let a and (3
be fixed non négative real numbers smaller than 1. Dénote by Q the state
set of A and by n the cardinality of Q. For each state q in Q let Aq be
the subautomaton of A which constitutes of those states of Q which are
accessible from q and of those transitions of A which connect these states.

We define a family A(a, (3) of automata, the éléments of which can be
viewed as extensions of A, as follows: Each Aext in A(a, 0) contains all

Informatique théorique et Applications/Theoretical Informaties and Applications
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Figure 1. - Line automaton of degree 1.

states and transitions of A, and in addition a new initial state r together
with the transitions

0,a 1,/?
r —> r , r —> v

r ^ q for i G {0, 1}, q e Q.

Hère W (i, <?)'s are arbitrary real numbers. It follows that each Aext in
A (a, )3) is completely specified by the 2n dimensional vector

(3) (W(0,q), W(l, q))eU2

As we said we consider r the only intial state of Aext, and by convention,
we assume that each Aext is reduced. Consequently, Aext is of degree n + 1
iff there exists an input letter j and a state q of A of degree n such that
W (j, q) T̂  0. Observe also that our construction is very gênerai: each level
automaton can be obtained in this way from the one state level automaton.

With the above terminology, we are going to show

THEOREM 1 : Let A, a and (3 befixed as above and assume that for each state
q, Aq defines a continuons function. Then Aext from A(a, /?) represented by
(3) defines a continuons function if and only if one of the following conditions
holds:

(i) a + (3 - 1 and Vç G Q, fAq (0") = fAq (lw) (In that case W's are
arbitrary).

(ii) (4) E XqW{0t q) + E MgW(l, q) - 0.
qeQ q£Q

for somefixed numbers Xq and fiq such that at least one ofthem is not equal to
zero. In that case {W (0, q), W (1, q)) belongs to afixed hyperplane ofU2 n.

vol. 28, n° 3-4, 1994
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Proof: Consider an arbitrary automaton Aext in A(a, ƒ?) représentée by
the vector (W(0, g), W ( l , q)). We first assume that fAext is continuous.
It is so at the point 1/2, and therefore necessarily

(5) /.*„, (on = /*..,
Now the left hand side of (5) can be written as

Clearly, a similar formula holds for the right hand side of (5). Hence
we get (4) with:

Note that the A '̂s and /x^'s can be all equal to zero. This happens if and
only if a + (3 = 1 and fAq (0w) = fAq (lw) (case (i)). Then, the vector
(W(0, g), W ( l , g)) can be chosen arbitrary.

Now, we assume that A^'s and /z^'s are thus fixed. We have to show that
the automaton Aext represented by a vector (W (0, q), W (1, q)) satisfying
(4) actually defines a continuous function. This is done by considering
separately three different cases:

Case 1 : Continuity at point 1/2. By the choice of A '̂s and ^ ' s , Aext
satisfies (5). Moreover, using the similar arguments as in [CKarh], this
implies the continuity at point 1/2. (Observe that we have to modify slightly
the considérations of [CKarh], since we allow in a le vel automaton négative
weights in Connecting transitions.)

Case 2 : Continuity at the point having a finite binary représentation,
that is two représentations w 01w and w 10w for some w G S^JNTow, the
continuity at this point is reduced to check the continuity of fAext ^ at the
point 1/2, where Aext (w) is the automaton Aext with the initial distribution
(1, 0 , . . . , 0) Ww. But fAext (w) is clearly continuous at the point 1/2, since,
by Case 1, fAext is so and each fAq is continuous (even in the whole
interval) by our assumptions.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Case 3 : Continuity at the point having only one infinité binary
représentation. Again, as in [CKarh], this is always true for level automata
of our type. D

Theorem 1 deserves several remarks. First, it illustrâtes very clearly, as
was already noted in [CKarh], that a level automaton defines very seldomly
a continuous function. This is made more concrete in the following example.

Example 1 : Consider the level automaton of figure 2.

Since 7 + (1 — 7) — 1, the automaton Ai defines a continuous function.
Since ƒ4 x (0W) = 0 / fj±x (lw), by Theorem 1, there exists a unique
hyperplane in U2, that is a line going through the origin, such that A
defines a continuous function iff (x, y) belongs to that line. That means that
the ratio x/y is unique. In particular, if y is fixed, say y — 1/2, then only
one value of x makes ƒ4 continuous. For 7 = 1/2, a — j3 — 1/4, this value
is 1/4, and A computes the function f (x) = x2,

The above leads to the following interesting observation. Assume that in
A both x and y making fj± continuous are different from 0. Then the most
natural décomposition of A into two subautomata is by taking A\ to be the
subautomaton excluding state 1 and A!2 to be the subautomaton excluding

1 X

only the t rans i t ion 2 - ^ 0 . Clear ly ,

f A = ?A[ + ÎA'2 •

And although f A is continuous, both f A* and fjj are not. In particular,
if we fix parameters of A such that it computes the parabola, we obtain a
décomposition of the parabola into the sum of two functions both of which
are noncontinuous. An interesting point hère is, as is easy to see, cf. also
[DKLT], that the automaton given hère for the parabola is the simplest
possible, and that the décomposition is the only natural one from the point
of view of automata theory.

Our second remark is that Theorem 1 provides a simple systematic method
to construct more and more complicated automata Computing continuous
functions. This method is already illustrated in Example 1, and we use it
again in Section 4.

Our third remark is that the conditions that the subautomata Aq define
continuous functions is not necessary, that is a level automaton or even a
line automaton can define a continuous function for the standard initial
distribution without being obtainable by a recursive application of the
construction of Theorem 1. This is seen as follows.

vol. 28, n° 3-4, 1994
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Figure 2. - A level automaton of degree 2.

Example 2 : Consider the line automaton A shown in Figure 3. Now, by
the criterion described in (2) the subautomaton Ai defines a noncontinuous
function. It is easy to see that for any w G E*, if Pj, (w) = (a, /?, 7, 6) then
f3 = 7. Thus we can delete the state 1, the transitions concerning this state
and replace W\ (2, 0) by W\ (2, 0) + W\ (1, 0). This new automaton A!
computes the same function than A and it can be obtained by the continuity
construction, One can verify that the computed function is x2.

Now we shall prove that the above transformation can always be done.

An automaton is said strongly continuous if it computes continuous
functions for any initial distribution.

THEOREM 2: Let A be a level automaton computing a continuous function
for an initial distribution LIfA is not strongly continuous, one can construct a
strongly continuous level automaton having less states than A and computing
the same function.

Proof: We shall reason by induction on k, the number of states of A.
If k = 1, A is clearly strongly continuous. Let Q = {#0, * • • : Qn} be the
set of states of A such that qo is the single state of degree 0 and for
Q = i = j = n> t n e degree of qi is not greater than the degree of qj. Let us
consider D = {P4 (w)/w G S*}. For the initial distribution d = PJL (W), A
computes a continuous function, namely f A (X/(2^W\) + w). The same holds
for any initial distribution in E = {Ai ai + --• + Xpap/\i G R, ai G D},
the linear space generated by D.

If E = Rn+1 , we are done.

Informatique théorique et Applications/Theoretical Informaties and Applications
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1,1/2

0,1/4

0,1/2

1,1/2

1.1/4

0 ,1

Figure 3. - Line automate A and A!.

Otherwise, there exists a column-vector jj, = (JHQ, ..., ^in) ^ 0, such that

for any d G E we have jj,d = 0.

Let io be the smallest integer such that mQ / 0. One can assume that

Mo = 1. Then for any d = ( d b , . . . , dn) G E, d%0 = - ( M » 0 + I
 dio+i + ' ' * +

ftn dn)'

If io = 0, we shall show that ƒA is the constant fonction 0. Indeed,
since for states of degree >0 the weights of the loops are smaller than 1,
Ve > 0, 3 n such that if \w\ > n, d = PA{W) — (do, d i , . . . , dn) then
| d i | , . . . , \dn\ < e. Hence \do\ < e({Mi -\ \- /xn), so that f A is the zero
function.

If iQ ^ 0, we shall delete the state qi0 and the transitions concerning qi0.
Then we have to modify the weights of some Connecting transitions in such
a way that this automaton A' computes the same function.

We set Qf = Q- {qi0} and we define the Qf x Q' matrix W!
a, for a = 0, 1,

by Wa (qi, qf) = Wa (ft, qj) - w Wa (qio, qj). It is easy to check that A' is
a n states level automaton computing f^ and we can finish our construction
by the induction hypothesis. D

vol. 28, n° 3-4, 1994
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4. AN EXAMPLE: NOWHERE DERTVABLE FUNCTION

In this section, we shall consider a level automaton A(t) shown in
Figure 4. First, we shall prove that for any value of t and x (t), A (t) defines
a continuous function. Then, for some particular values of t we look at the
set of point where A (t) has a derivative. In particular, if t — 2/3, we get
a level automaton Computing a continuous function having no derivatives at
any point of the interval [0, 1],

Claim 1: A(t) is strongly continuous.

Proof: Let g : £ - —• R be the function computed by the automaton
A(t) for an arbitrary distribution (a, /?, ƒ?', 7). Then, g — a fA(t)+0 fAl +
fi' ÎAlf + 7 where A\ (resp. A\>) is the subautomaton containing only states 1
and 0 (resp. 1' and 0). From [CKarh], A (t) is strongly continuous if and only
if g (10-) = g (01w). This condition holds true since fAl (10w) = fAl (01w),
ÎAlt (10w) - fAl, (01-) and fA{t) (10-) - fA{t) (01w). Indeed, Ai and Av

are strongly continuous and the equality fA(t) (10-) = fA(t) (01^) follows
from the symmetry of A(t). D

Although A (t) is strongly continuous for any value of t, the subautomaton
A! (resp. A!1) containing only states 2, 1 and 0 (resp. 2, 1' and 0) defines
a continuous function only for a particular value of x (t). The condition for
x(t) is determined by fA,ty (10-) = fA,ty (01-) that is by

or equivalently,

(6) ( l - 2 t ) a ; ( * ) = | t .

Example 3 : Let us consider A (t) for t = 3/4.

Now (6) yields x(t) = - 2 .

It is straightforward to compute that for any finite word w G S*

iU (3/4) (^ 0w ) does not exist,

and that

Informatique théorique et Applications/Theoretical Informaties and Applications
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Figure 4. - Level automaton A(t).

In order to prove these formulas we proceed as follows. First, we note
that for any initial distribution (y, 2 y, 2 y, z), .4(3/4) computes a constant
function. Now,

= (y,2y,2y,z)

for y — a (3/4)n and for some value of z. Consequently, if for «; G S*

^4(3/4) (tü) = (0,^,7» *)>

vol. 28, n° 3-4, 1994
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then

ƒ.4(3/4) (wOn 0") - . / U ^ ) {wCT 1»)

Now, it follows directly by induction that 7 < 2 a, so that the limit

l i m I/A(3/4) (™ono") - f Am) (™ow m
«-00 i^ óïrOw - w on ï" 1

- iÎTn (4/3) (2 g - 7 ) (3/4)" _
n ^ o ( 1 / 2 ) H • (1/2)» ~ °° '

proving that fA ,3 ,4 , (IÜOW) does not exist.

Similarly,

7,

2n

i s ) , 2 « m ( i - ( ^ i ] + 7 ( ^ l , y

= (y, 2y, 2y, 2) + (O, /?', 7', 0)

for some value z and for y = a (3/4) 2 r \

and

The function computed by A (3/4) for the initial distribution (0, /3', 7', 0)
is bounded by 4 |/?; + V| ^ 4 (4 a + /? + 7) (3/16)n. Consequently, if, for
w eT,*, fU(3/4) (w) = (a, /3, 7, 5) then for any v/ e Ew we have

1/^(3/4) (w (01)" (Olf) - JU ( 3 / 4 ) (u; (01)B n/) |

Since for w' G 1SW U 00 Ew,

Informatique théorique et Applications/Theoretical Informaties and Applications
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we see that

The graph of the function fA(3/4) wit*1 x = - 2 is shown in Figure 5.

J V

J V,

Figure 5. - £ = 3/4; aï (t) = - 2 .

Example 4: For t = 1/4 (6) yields a; (*) — 2/3 and one can draw similar
conclusions as in Example 3. Indeed, the graph of fA(i/4) shown in Figure 6
is in a certain sensé dual of that of f A (3/4) >

Example 5: For t = 2/3 (6) yields x(t) = - 8 / 3 .

The graph of the function f A (2/3) is shown in Figure 7.
After examples 4 and 3 it is a bit surprising.lt looks even more complicated

than those of the function f A (3/4) and iU(i/4)> and indeed this is the case.
Namely, what we are going to show is that although, by construction f A (2/s)
is continuous on the whole interval [0, 1], it does not have a derivative at
any point of this interval. In order to do that let us fixed a point in [0, 1],

vol. 28, n° 3-4, 1994
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'S

'rv

r

Figure 6. - t = 1/4; x (t) = 2/3.

and assume that it has a binary représentation w. Dénote by wn the prefix
of w of the length n. We consider the following infinité words

tüo (n) = ™n 0"\

lü! (n) = wn 10u;,

tü2 (n) = w

Then, clearly,

(7) \w-Wi(n)\ ^ — for ï = 0, 1, 2, 3.
2i

Consider the distribution given by wn on ^4(2/3), say

^4(2/3) (%) = K , /3n, 7n, *n).

This allows to compute the values /v4(2/3) (^* (n))> Indeed,

3- f - - -

= - 4 a n + -pn
o

-

Informatique théorique et Applications/Theoretical Informaties and Applications
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Figure 7. - t = 2/3; x (t) = -8/3.

and similarly,

f A (2/3) (wi (")) = - y a i ï + A + 7 n + ^ ,

47 3 „ 5

16

) y an + /3n +
4

/A(2/3) (^3 H ) = - 4 a n + - 7 „ + «n.

Hère the value of an is easy to détermine:

independantly of w;.

Now, we consider the two différences, namely

4
/.A(2/3) (^o (n)) - /A(2/3) (^3 (n)) = - (/3n - 7„),

and

/A(2/3) (^1 (n)) - (n))=--an + -{(1n-ln).

vol. 28, n° 3-4, 1994
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It follows that for each n e N the absolute value of at least one of
these différences is at least (1/18) an . Therefore for each n ther exist
in e {0, 1, 2, 3} such that

liU(2/3) (™) - iU(2/3) (Win (n))l = ^ an<

Since in assumes values on a finite set, (8) is actually true for a fixed io
and for infinity many values of n. That is there exists an infinité subset I
of N and a value io such that

1 / 2 \ n

liU(2/3)(™) ~ ^ ( 2 / 3 ) k W ) l ^ gg ( g ) for nel.

Combining this with (7) we obtain

[JU (2/3) (W) "" JU(2/3) (W»O (n))l ^ 1
36 V3/ fOr n

Since 7 is infinité this proves that fA (2/3) does not possess a derivative
(or even a finite one-sided derivative) at the point presented by w.

We conclude this section with a few remarks. Examples 3-5 provide
another évidence of the fact that a small change in the weights of an
automaton changes the behaviour of the function it computes drastically.
Secondly, we believe that Example 5 has interest of its own. It yields a very
simple automata theoretic description to a very wildly behaving continuous
function. Indeed the automaton contains only 4 states. This also implies that
to compute the values (or their approximations with a given précision) is not
more complicated than to compute the values of a polynomial of degree 3.
Indeed, as was shown in [DKLT] equally many state automaton is required
to compute the values of a cubic polynomial.
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