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THE COMPLEXITY OF SYSTOLIC DISSEMINATION OF
INFORMATION IN INTERCONNECTION NETWORKS (1)

by I HROMKOVIC (2) (4), R. KLASING (2), W. UNGER (2), H. WAGENER (2) (5)

and D. PARDUBSKÂ (3) (6)

Abstract - A concept of systohe dissémination of information in interconnection networks is
presented, and the complexity of systohe gossip and broadeast in one-way (telegraph) and two-way
(téléphone) communication mode is investigated The following main results are estabhshed

(i) a gênerai relation between systohe broadeast and systohe gossip,
(u) optimal systohe gossip algonthms on paths in both communication modes, and

(m) optimal systohe gossip algonthms for complete k-ary trees in both communication modes

1. INTRODUCTION

One of the most intensively investigated areas of compilation theory is the
study and comparison of the computational power of distinct interconnection
networks as candidates for the use as parallel architectures for existing
parallel computers. There are several approaches enabling to compare the
efficiency and the "suitability" of different parallel architectures from distinct
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point of views. One extensively used approach deals with the possibility
to simulate one network by another without any essential increase of
computational complexity (parallel time, number of processors). Such an
effective simulation of a network A by a network B surely exists if the
network A can be embedded into B (more details and an overview about
this research direction can be found in [MS90]).

Another approach to measure the computational power of interconnection
networks is to investigate which class of Computing problems can be
computed by a given class of networks. Obviously, this question is reasonable
only by additional restrictions on the networks because each class of networks
of unbounded number of processors (like paths, grids, complete binary trees,
hypercubes, etc.) can recognize ail recursive sets. These additional restrictions
mostly restrict the time of computations (for example, to log2 n by complete
binary trees or to real time by paths) and/or the kind of computation assuring
a regular flow of data in the given network. A nice concept for the study of the
power of networks from this point of view has been introduced by Culik II
et al [CGS84], and investigated in [IK84, CC84, IPK85, CSW84, CGS83,
IKM85]. This concept considers classes of languages recognized only by sys-
tolic computations on the given parallel architecture (network) in the shortest
possible time for a given network. The notion "systolic computation" has been
introduced by Kung [Ku79], and it means that the computation consists only
of the répétition of simple computation and communication steps in a periodic
way. The reason to prefer systolic computations is based on the fact that each
processor of a network executing a systolic algorithm works very regularly
repeating only a short séquence of simple instructions during the whole com-
putation. Thus, the hardware and/or software realization of systolic algorithms
is essentially cheaper than the realization of parallel algorithms containing
many irregularities in the data flow or in the behaviour of the processors.

The last of the approaches mentioned here helping to search for the
best (most effective) structures of interconnection networks is the study of
the complexity of information dissémination in networks (for an overview
see [HHL88, HKMP93]). This approach is based on the observation that
the realization of the communication (data flow between the processes)
of several parallel algorithms on networks requires at least as much (or
sometimes even more) time as the computation time of the processors. This
means that the time spent with communication is an important parameter of
the quality of interconnection networks. To get a comparison of networks
from the communication point of view, the complexity of the realization
of some basic communication tasks like broadcast (one processor wants to
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teil something to all other processors), accumulation (one processor wants
to get some pièces of information from all other processors) or gossip (each
processor wants to teil something to each other) is investigated for different
networks.

The aim of this paper is to combine the ideas of the last two approaches
mentioned above to get a concept of systolic communication algorithms
enabling to study the communicational effectivity of networks when a very
regular behaviour of each processor of the network is required.

The first step in this direction was made by Liestman and Richards
[LR93b] who introduced a very regular form of communication based on
graph coloring. (This kind of communication has latter been called "perioclic
gossiping" by Labahn et al. [LHL93]). This "periodic" communication was
introduced in order to solve a special gossip problem introduced by Liestman
and Richards [LR93a] and caled "perpetual-gossiping", where each processor
may get a new pièce of information at any time from the outside of the
network and the never halting communication algorithm has to broadcast it
to all other processors as soon as possible.

The concept of Liestman and Richards [LR93b] includes some restrictions
which bound the possibility of systolic communication in a non-necessary
way (more about this in the next section). Another drawback is that
the complexity considered in [LR93b, LHL93] is the number of systolic
periods and not the number of communication rounds, i. e. only rough
approximations on the précise number of rounds executed are achieved in
[LR93b, LHL93], Here, we introducé a more gênerai concept of systolic
(periodic) dissémination of information in order to evaluate the quality
of interconnection networks from this point of view. Our main aim of
the investigation of systolic communication is not only to establish the
complexity of systolic réalisation of basic communication tasks in distinct
networks, but also to learn how much must be paid for the change from
arbitrary "irregular" communication to nice, regular systolic one.

This paper is organized as follows. Section 2 contains the formai
description of the concept of systolic communication and some basic
observations comparing gênerai communication algorithms with systolic
ones and systolic gossip with systolic broadcast. Section 3 is devoted to the
complexity of systolic gossip in paths. Optimal systolic gossip algorithms are
presented for the two-way mode of communication. The complexity for the
one-way mode is determined up to a small constant independent of the length
of the path and the length of the period. Section 4 is devoted to systolic
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gossip in trees. Optimal systolic gossip algorithms for complete fc-ary trees
are described in the one-way and the two-way communication mode. In the
Conclusion, the results achieved are discussed and some open problems are
formulated. More information about the contents of Sections 3 and 4 and
exact statements of the achieved results of this paper are given in Section 2
after the introduction of the concept of systolic communication.

2. THE CONCEPT OF SYSTOLIC COMMUNICATION

The aim of this section is to define the concept of systolic communication
algorithms and to give some fundamental observations about systolic
broadcast and gossip. Before doing this, we give a more précise description of
the communication problems investigated and of the communication modes
considered.

An (interconnection) network is viewed as a connected undirected graph
G = (V, E) where the nodes of V correspond to the processors and the edges
correspond to the communication links of the network. An infinité séquence
{Gi}iZi with Gi = (Vi, Ei)9 \Vi\ > \Vj\ for % > j , is called a class of
interconnection networks. Examples of classes of interconnection networks
are paths - {Pn}

<^>
=1 (Pn is the path of n nodes), cycles - {Cn}™=1

(Cn is the cycle of n nodes), complete balanced fc-ary trees - { î | t }^_ 1

(T^ is the complete balanced fc-ary tree of depth h), cube-connected cycles
- {CCCk}<^=zl (CCCj- is the cube-connected cycles network of dimension
k), and two-dimensional square grids - {G fr^}^_1 (Gr^ is the ra x m grid).

In what follows, we shall investigate the following three fundamental
communication problems in networks:

1. Broadcast problem for a network G and a node v of G.
Let G = (V, E) be a network and let v G V be a node of G. Let v know

a pièce of information I (v) which is unknown to ail nodes in V — {v}. The
problem is to find a communication strategy such that ail nodes in G learn
the pièce of information I(y).

2. Accumulation problem for a network G and a node v of G.

Let G = (y, E) be a network, and let v G V be a node of G. Let each
node u £ V know a pièce of information I (u) which is independent of all
other pièces of information distributed in other nodes (L e. I (u) cannot be
derived from |J {/(v)}). The set I(G) = {I(w) \w G V} is called

vçy~{u}

the cumulative message of G. The problem is to find a communication
strategy such that the node v learns the cumulative message of G.
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3. Gossip problem for a network G.

Let G = (V, E) be a network, and let, for ail v G V, I (v) be a pièce of
information residing in v. The problem is to find a communication strategy
such that each node from V learns / (G) .

Now, it remains to explain what the notion "communication strategy"
means. The communication strategy is meant to be a communication
algorithm from an allowed set of synchronized communication algorithms.
Each communication algorithm is a séquence of simple communication steps
called communication rounds (or simply rounds). To specify the set of
allowed communication algorithms one defines a so-called communication
mode which precisely defines what may happen in one communication step
(round). Hère, we consider the following two basic communications modes:

a, one-way mode (also called telegraph mode)

In this mode, in a single round, each node may be active only via one
of its adjacent edges either as a sender or as a receiver. This means that
if one edge («, v) is active as a communication link, then the information
is flowing only in one direction. Formally, let G = (V, E) be a network,
E = {(v —> u), (u —» v) | (u, v) G E}. A one-way communication algorithm
for G is a séquence of rounds Ai, A 2 , . . . , A*, where Ai Ç Ê for every
i G { 1 , . . . , k}9 and if (xi -> yi), (x2 -> 2/2) e Ai and (xi, y\) ^ (x2, 2/2)
for some i G { 1 , . . . , &}, then x\ ^ X2 A x\ ^ 2/2 V y\ ^ X2 A y\ ^ yt (î. e.
each Ai is a matching in the directed graph (V, Ê)). If (u -^ v) G A% for
some i G { l , . . . , f e } , then it is assumed that the whole current knowledge of
the node u is known to the node v after the exécution of the i-th round A».

b, two-way mode (also called téléphone mode)

In two-way mode, in a single round, each node may be active only
via one of its adjacent edges and if it is active then it simultaneously
sends a message and receives a message through the given, active edge.
Formally, let G be a network. A two-way communication algorithm for G is
a séquence of rounds i?i, i?2, • • • s Br, where each round Bj Ç E, and for
each i G { 1 , . . . , r } , V(zi, yx), (a?2, 2/2) € Bf. (xu yi) ^ (x2, m) implies
x\ ^ X2 A x\ ^ yi A yi ^ y2 A X2 ^ y\ (i. e. Bi is a matching in G). If
(?z, v) G B2 for some i, then it is assumed that the whole current knowledge
of u is submitted to v9 and the whole current knowledge of v is submitted
to u in the i-th round.

Another possibility to describe a communication algorithm for G = (F, E)
is to say what happens on which edge of E in which time unit.
For every two-way communication algorithm A = Ai, A 2 , . . . , Am
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for G, edge (A) = {(e, Sf)\e£ E} S* = {j\ee A3) for any e G E}.
Analogously, for every one-way communication algorithm B — B\,..., Bm

for G, edge (S) = {{u -> t/, 5 ^ ) | (u, t/) G S, and S^v = {j | (u, v) G
Bj} for any u —> u such that (u, v) G £ } . We define edge (G) ^edge (Ö)
for two two-way (one-way) communication algorithms, C, D for G =
(V, E), if for every edge e G S, Sf Ç 5 f (if for every (u - • u) such that
(u, v) G -E, S%->v Ç Sj^v). Obviously, if C is a broadcast (accumulation,
gossip) algorithm for some G, and edge (G) ^ edge (D) for some
communication algorithm D for G, then D is a broadcast (accumulation,
gossip) algorithm for G, too.

Now, we are prepared to introducé systolic communication algorithms.

DÉFINITION 2.1 : Any one-way (two-way) communication algorithm
A = Ai, A2, A 3 , . . . , Am for some m G N is called k-systolic for some
positive integer h, if there exist some r G { 1 , . . . , m} and some j G
{ 1 , . . . , k} such that

A = ( A i , A 2 , . . . , A k ) T , A i , A 2 , . . . , A,-.

P = A i , . . . , Afc is called the period/cycle of A, k is called the length of

p. m
In what follows the complexity of communication algorithms is considered
as the number of rounds they consist of.

DÉFINITION 2.2: Let G — ( V, E) be a network. Let A = A\, A2 , . . . , Am

be a one-way (two-way) communication algorithm on G. The complexity of
A is c (A) — m (the number of rounds of A). Let v be a node of V. The
one-way complexity of the broadcast problem for G and v is

bv (G) = min {c (A) | A is a one-way communication

algorithm solving the broadcast problem for G and v}.

The one-way complexity, ofthe accumulation problem for G and v is

av (G) = min {c (A) | A is a one-way communication

algorithm solving the accumulation problem for G and v}.

We define

b (G) = max {bv (G) | v G V} as the broadcast complexity o f G,

Informatique théorique et Applications/Theoretical Informaties and Applications
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min b (G) — min {bv (G) | v E V} as the min-broadcast

complexity of G.

a (G) = nrnx {av (G) \ v E V} as the accumulation complexity of G,

and

min a (G) = min {av (G) \ v 6 V} as the min-accumulation

complexity of G.

The one-way gossip complexity of G is

r (G) = min {c (A) \ A is a one-way communication

algorithm solving the gossip problem for G},

and the two-way gossip complexity of G is

T2 (G) = min {c (A) \ A is a two-way communication

algorithm solving the gossip problem for G}. D

Note that we do not define the broadcast (accumulation) complexity for
two-way mode because each two-way broadcast (accumulation) algorithm for
a network G can be transformed into a one-way broadcast (accumulation)
algorithm consisting of the same number of rounds. Observe also that
av (G) = bv (G) [and consequently a{G)-b (G), min a (G) = min b (G)]
for any network G and any node v of G (cf. [HKMP93]).

Now, we give the notation for the complexity of systolic broadcast,
accumulation, and gossip.

DÉFINITION 2.3: Let G — (V, E) be a network, and let k be a positive
integer. Let v be a node of V. The k-systolic complexity of the broadcast
problem for G and v is

[k] — sbv (G) = min {c (A) | A is a one-way k-systolic communication

algorithm solving the broadcast problem for G and v}>

and the k-systolic complexity ofthe accumulation problem for G and v is

[k] — sav (G) = min {c (A) | A is a one-way k-systolic communication

algorithm solving the accumulation problem

for G andv}.
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We define

[k] - sb(G) = max{[jfe] - sbv (G)\ve V}

as the k-systolic broadcast complexity of G, and

[k] - min sb (G) = min {[fcj - sbv (G)\ve V}

as the k-systolic min-broadcast complexity of G.
The one-way k-systolic gossip complexity of G is

[k] — sr (G) — min {c (A) \ A is a one-way k-systolic communication

algorithm solving the gossip problem for G}y

and the two-way k-systolic gossip complexity of G is

[k] — SV2 (G) = min {c (A) \ A is a two-way k-systolic communication

algorithm solving the gossip problem for G}, D

Obviously, each communication algorithm is fc-systolic for some
sufficiently large fc. But we want to consider fc-systolic communication
algorithms for fixed k for some classes of networks. In this approach, k is a
constant independent of the sizes of the networks of the class. This means
that our A:-systolic algorithms are simply realized by the répétition of a cycle
of k simple instructions by any processor of the network.

The "periodic" gossip introduced in [LR93b] is a special case of systolic
gossip introduced above. The periodic communication is based on the
coloring of edges in G, which means that each edge can be used at most
once in one period (cycle). We are giving no restriction on the number
of occurrences of an edge in the rounds of a period, and Section 4 shows
that this can be helpful for designing quick communication algorithms.
Moreover, the periodic communication based on coloring works for two-way
communication mode only, /. e. the one-way mode was not considered in
[LR93b, LHL93]. Finally, the complexity of periodic gossip in [LR93b,
LHL93] is measured as the number of executed periods which gives only
a rough estimation on the number of rounds sufficient and necessary to
solve the given communication problem. In our systolic concept we prefer
to precisely measure the complexity of communication tasks as the number
of rounds executed. This approach enables also a précise comparison of the
systolic gossip and the gênerai gossip. For some networks G we can even
prove that r (G) = [k] — sr (G) for some suitable constant k, L e. that some
optimal gossip algorithm can be systolized.

Informatique théorique et Applications/Theoretical Informaties and Applications
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We observe that each fc-systolic algorithm uses (activâtes) at most k
adjacent edges of every node of the network during the whole work of
the algorithm. Thus, there is no reason to consider classes of networks like
hypercubes and complete graphs, because a fc-systolic algorithm can use
only a subgraph of these graphs with the degree bounded by k. For this
reason, we shall investigate systolic complexity of broadcast and gossip
for constant-degree bounded classes of networks only. Our aim is not only
to get some lower and upper bounds on the systolic broadcast and gossip
complexity of some concrete networks, but also to compare the gênerai
complexities of unrestricted communication algorithme, with the systolic
ones. In this way, we can learn which is the price for our systolization, L e.
how many additional rounds are needed to go from an optimal broadcast
(gossip) algorithm to an optimal systolic one.

Our first result shows that, in some sense, the broadcast complexity is the
same as the systolic broadcast complexity for any network.

LEMMA 2.4: For every class of networks {Gi}^Z-y and every positive integer
d such that Gi has the degree at most d for any i E N,

[d\ - sbv (G,-) = bv (Gi)

for any i 6 N and any node v of Gi,

Proof: Let B — 5 1 , 5 2 , . . . , Bm be a broadcast algorithm from v
in Gi = (V, E) for some positive integer i. W.l.o.g. we may assume
Bi D Bj — 0 for i ^ j . One can reconstruct B to get another broadcast
algorithm A = Ai, A2, . . . , Am for v and Gi with the following three
properties:

tn m

i g
*=i j-\

/ m \

(ii) T — I F, [ J A{ \ is a directed tree with the root v (all edges are

directed from the root to the leaves), and

(iii) for every node w G V, if w gets I (v) in time t and the degree
(indegree plus outdegree) of w in T is fc, then w submits / (v) in the rounds
t + 1, * + 2 , . . . , t + k - 1 to all its k - 1 descendants in T.

The construction of broadcast algorithm A' from 5 with the properties
(i) and (ii) is simple and can be found in Observation 1.2.5 of [HKMP93].
How to get the property (iii) (L e. to construct A from A7) is obvious.
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To define a d-systolic broadcast algorithm C = (Ci , C 2 , . . . ,
C i , C 2 , . . . , C,- for some r G N, j G { 0 , . . . , d - 1}, m = r • d + j ,
it is sufficient to specify Ci for 2 = l , . . . , d . For 1 ^ s ^ d, let
In(s) = {n\l < n < m, nmodcf = s - 1}. Then,

= (J f o r

Since edge (̂ 4) ^edge (C), it is obvious that C is a broadcast algorithm
for G and v. •

Clearly, the same considération as in the proof of Lemma 2.4 leads to
the following result.

LEMMA 2.5: Let dbe a positive integer. Let {G;}?^ be a class of networks,
where for every i G N, Gi has degree bounded by d. Then, for every i G N
and every node v of Gi

[d]-sav(Gl) = av(Gi). D

The next important question is which relation holds between gossip
complexity and systolic gossip complexity. The following sections show that,
as opposed to broadcast (accumulation), there are already essential différences
between the complexities of gênerai gossip and systolic gossip. Here we
shall still deal with the relation between gossip and broadcast. It is well-
known (see9 for instance [HKMP93]) that r (G) ^ min a (G) + min b (G) =
2 • min b (G) and r2 (G) ^ 2 • min 6 (G) - 1 for any graph G. Note that for
trees [BHMS90] and some cyclic graphs with "weak connectivity" [HJM93]
the equalities r (G) = 2 • min b (G) and r2 (G) = 2 • min (G) - 1 hold. The
idea of the proof of r (G) < min a (G)+min 6 (G) is very simple; One node
of G first accumulâtes I (G), and then it broadcast I (G) to all other nodes.
Unfortunately, we cannot use this scheme to get systolic gossip from systolic
broadcast and systolic accumulation, because we have to use every edge
of an optimal broadcast (accumulation) scheme in both directions in each
répétition of the cycle of a systolic gossip algorithm which already increases
the time for the broadcast phase twice. Thus, using this straightforward idea
we only obtain the following.

THEOREM 2.6: Let G be a communication network of degree bounded by
some positive integer k. Then

[2 k] - sr (G) ^ 4 • [k] - min b (G) + 2 k.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Proof: Let B = Bi, B2,..., Bm9 m = min b (G) = [k] - min sb (G),
be an optimal broadcast algorithm for G and some node v of G with the

/ m \

properties (i), (ii), (iii) as in Lemma 2.4. Let T# = IV, [J Bi j . Obviously,

A = Ai, A2,..., Am, where ^ = Bm^i+1 = {(x -> y) | (y -> x) G
5m_i-|_i} is an optimal accumulation algorithm for G and f. Moreover,

/ m \

7^ = f V5 M ^ j is the same scheme as Tg, only the edges are directed
V i=i /

in opposite directions. Building

Cs = M Bj for 5 E { 1 , . . . , k} (where In{s) as defined in Lemma 2.4),
j€/n(s)

D3= ( J Aj for s € { l , . . . , f c } ,
j€Jn(j)

one obtains optimal fc-systolic broadcast and accumulation algorithms
C = (Ci ,C 2 , . . . , (7 f c ) r , C i , C 2 , . . . , C j and D = ( D i , . . . , D ^ ,
Di, £>2, •. •, Dj resp. for some positive integer r, and j € {0 , . . . , k - 1}.
Now, we consider the 2 fc-systolic communication algorithm

The initial part of F, (£>i,..., Dk} C\,..., Q;) r D1,..., £>*., is a one-
way 2fc-systolic accumulation algorithm for G and the node f. The
rest, C i , . . . , Cfc (D\,..., £>&, C i , . . . , C^)r, is a one-way 2 fc-systolic
broadcast algorithm for G and the node v. Thus, F is a one-way 2fc-
systolic gossip algorithm with c(F) = 2fe • (2r + 1) = 4r • k + 2k ̂
4 • [A;] - min 56 (G) + 2 jfc. D

The next sections deal with the systolic gossip problem in concrete
networks. The next Section 3 is devoted to gossiping in paths Pn. For systolic
algorithms in two-way (téléphone) communication mode, the optimal gossip
algorithm for paths is in fact a 2-systolic communication algorithm. For
the one-way (telegraph) communication mode, upper and lower bounds on
[k] - sr (Pn) are proved which differ only in a small constant independent
of n and the length k of the period. More precisely, we show for any
n > 2, n *£ 4,

k
[k] - sr (Pn) = -—- • (n - 2) + cn^ k for some constant 0 < cTl) k ^ 3.
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As a conséquence, we obtain that for the one-way communication mode
one can systolically gossip f aster in Pn with a longer period k. More
precisely, for growing period h, the function r (Pn) of n can be approached
more and more but ne ver achieved (namely [k] — sr (Pn) w (1 + e*) • r (Pn)
and lim e^ = 0).

Section 4 is devoted to gossiping in complete fc-ary trees T% for k ^ 2.
Surprisingly we show for sufficiently large periods d (d independent of the
depth h of the tree and depending only on the degree k) that [d] — sr2 (T%) =
r2 ( T £ ) = 2 • min 6 ( ï£) - 1 and [d] - sr (7*) - r (3*) - 2 • min 6 ( ï£)
for any /i G N, L e. we can systolically gossip in complete trees in optimal
gossip time in both modes. We also show for the minimal possible period
length d = k + 1 of any two-way systolic communication algorithm for fc-ary
trees that [k + 1] - sr2 (T^) £ r2 ( ï j ) + 1.

3. SYSTOLIC GOSSIPING IN PATHS

In this section we consider systolic gossiping in the path Pn of n nodes.
For the two-way mode, we can find a systolic gossip algorithm for Pn

with an optimal period length that works as efficiently as the algorithm in
the gênerai gossip mode.

THEOREM 3.1:

(i) [2] - sr2 (Pn) = n ~ 1 = r2 (P„) for even n > 2,
(ii) [2] - sr2 (Pn) = n = r2 (Pn) forodd n > 3.
Proof: The lower bounds for the gênerai gossip mode are presented in

[HKMP93]. The upper bounds are variations of the algorithms described
in [HKMP93].

Algorithm A for Pn (where V (Pn) = { z i , . . . , xn}, E(Pn) =
{(rri, x2),..., (xn-\, xn)}) has the following systolic period:

M = {(^1, ^2), fa, X4), (ars,

x3), (a?4, ars), (a*

A simple analysis shows that Algorithm A takes n — 1 rounds if n is even
and n rounds if n is odd. •

Note that for an optimal gossip in Pn, the period lengths in Theorem 3.1
are the best possible. Any systolic algorithm for Pn must have at least
period length 2.
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Let us turn to the one-way mode of communication now. For the
complexity of systolic gossiping in the path Pn of n nodes, we obtain
upper and lower bounds which are tight up to a constant. An important
observation contrasting to the two-way case is that there is no constant
d such that [d\ — sr(Pn) = r(Pn) for every n 6 N. Instead, the next
theorem shows that one can essentially gossip faster in Pn with a longer
period fc. For growing fc, r(Pn) can be approached more and more but
never achieved.

THEOREM 3.2: For any n > 2, k > 4:

(i) (fc/(fc - 2)) • (n - 2) <; [fc] - sr (Pn) < (fc/(fc -2))-n-lfork even,
(ii) (fc/(fc - 2)) • (n - 2) ^ [k] - sr (Pn) ^ (fc/(fc _ 2)) • (n - 1) + 1 for

k odd.

Proof: Let us first describe the upper bounds.
(i), upper bound for even fc:
Let us first assume that n i s a multiple of fc - 2. Then the path Pn is

divided into subpaths Bi, B2,..., -Bn/(fc-2) of fc - 2 nodes as follows:

Bn= {(fc - 2) • (i - 1) + 1, (fc - 2) • (i - 1) + 2 , . . . , (fc - 2) • i}

for 1 <, i < n / ( fc -2) .

In each period, the systolic one-way gossip algorithm A does the following:
1. Gossip in Bi for all 1 ^ i < n/(k - 2).
2. Exchange the information between the endnodes of adjacent blocks.
As fc-2 is even, Step 1. takes fc-2 rounds by using the well-known gossip

algorithm described e. g. in [HKMP93] in each block Bi, 1 < i £ n/(fc - 2).
Step 2. can be achieved in 2 rounds. Thus, the period length of the systolic
algorithm is fc.

For a complete gossip, it is enough to ensure that the message Ii from the
left end of the path reaches the right end of the path, and that the message
h from the right end of the path reaches the left end. With each period
(of length fc), Ii moves one block to the right, and I2 moves one block to
the left. Hence, after n/(fc - 2) - 1 periods, L e. after fc • (n/(fc - 2) - 1)
rounds, 7i has moved to block Brnuk_2\\, and I2 has moved to block Bi.
Now, the gossip in the first fc-2 rounds of the next period suffices to get
Ii and 1% to the endpoints. Hence, the overall time is at most

fc
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If n is not a multiple of k — 2, we consider the gossip scheme A for a path Pn>
of nf :— (k — 2). \n/(k — 2)] nodes (where V (Pn') = {%i-> X2, • •., xn>}).
Consider the subpath Pn = {x/+i , . . . , xi+n} of n nodes where

/ ; = 1 (k - 2) • fn/(fe - 2)1 - n I
= 2

Then the scheme A restricted from Pni to Pn achieves gossiping on Pn in

« ( * •

rounds (starting from round l). To make A start with round 1 from the node
xu the old systolic period A i , . . . , A& has to be rotated by l - 1 positions
to A/, A / + i , . . . , Ajfc, A i , . . . , A/_i.

(ii), upper bound for odd fc:
Let us first assume that n — 1 is a multiple of k - 2. Then the path Pn is

divided into subpaths 2?i, 5 2 , . . . , 5(rc-i)/(fc_2) of A; — 1 nodes as follows:

Si := {(fc - 2) • (i - 1) + 1, (k - 2) • (i - 1) + 2 , . . . , (k - 2) • i + 1}

for

Note that two adjacent blocks overlap by one node. In each period, the
systolic one-way gossip algorithm perforais a complete gossip in each block
Bi for all 1 ^ i ^ (n - l)/(fc - 2). For doing this, the well-known gossip
algorithm described e. g. in [HKMP93] is used in each block. As the number
of nodes, k — 1, is even in each block, the gossip takes k — l rounds. The only
problem is how communication conflicts between two adjacent blocks can
be avoided. For this purpose, note that the gossip algorithm from [HKMP93]
for gossiping in a path P m = {x\,..., xm} of m nodes only uses the edges
(rei, X2) and (a?m_i, xm) in the first and the last round. Hence, if we start
the gossip in blocks Bi, i odd, in the first round of each systolic period,
and in blocks Bi, i even, in the second round of the period, blocks Bi, i
odd, only use their leftmost and rightmost edge in rounds 1 and k — 1 of the
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period, and blocks Bi, i even, only use their leftmost and rightmost edge in
rounds 2 and k of each period. This way, no conflict will occur.

For the analysis of the complexity of the algorithm, let us consider again
the mesages I\ and I2 from the left and the right end of the path. With each
period (of length k), I\ moves one block to the right, and I2 moves one
block to the left. Hence, after (n - l)/(fc - 2) periods, i. e. after

fc-2
rounds, h has reached the right end of the path and 1% the left end.

If n — 1 is not a multiple of k — 2, we consider the gossip scheme
A for a path Pn< of n' := (fc - 2) • \(n - l)/(fc - 2 )1 + 1 nodes (where
V(Pn') — {sci, #2,. • •, #«'})• Consider the subpath Pn = {xj+i , . . . , z/+n}
of n nodes where

I (k — 9\ . \(r) — WHk — 9Y\ — (n — 1 ï I Vie — 9 1 ^ — 1
I V / I V / / V / I V / I V I I
L z J I z I z

Then the scheme A restricted from Pn> to P n achieves gossiping on Pn in

7 r ^ - 1 ! /1 (fc — 2) - r(ri — 1)/(A; — 2)1 — (n, — 1) I \

' • N " ! l l 5 J+\l

rounds (starting from round /). To make A start with round 1 from the node
xu the old systolic period A i , . . . , A^ has to be rotated by l — 1 positions
to Ai, A |+i , . . . , A*, A i , . . . , A/_i.

This complètes the proof of the upper bounds of Theorem 3.2. To dérive
the lower bounds, we start by introducing the concept of viewing a gossip
algorithm as a set of time-paths. This concept has been successfuUy used in
[HJM93] to get an optimal gossip algorithm for cycles.

DÉFINITION 3.3: Let G = (V, E) be a graph, and let X = x\,..., xm

be a simple path (L e. X{ ^ XJ for i 7̂  j) in G. Let A = A i , . . . , As

be a communication algorithm in one-way mode. Let T = £ 1 , . . . , tm-\ be
an increasing séquence of positive integers such that {xi -^ x%+\) E At%

for i = l , . . . , m — 1. We say that X [ t i , . . . , tm-{\ is a time-path of
A because it provides the information flow from x\ to xm in A. If
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ti+i — U — 1 = ki ^ 0 for some i G { 1 , . . . , m — 2} then we say that
X[£ i , . . . , tm-i] has a ki-delay at the node Xi+\. The global delay of

m-2

X [ t i , . . . , t r o _ i ] is d ( X [ t i , . . . , t m _ i ] ) = h - 1 + J^fci- 77* gfo&rf

<?ƒ X [ti,..., tm_i] w m - l +
Obviously, the necessary and sufficient condition for a communication

algorithm to be a gossip algorithm in a graph G is the existence of time-
paths between ail pairs of nodes in G. So, one can view the gossip algorithm
for a graph G as a set of time-paths between any ordered pair of nodes.

The complexity (the number of rounds) of a communication algorithm
can be measured as

max {global time o f X [T] | X [T] is a time-path of A}.

To see a gossip algorithm as a set of time-paths is mainly helpful for proving
lower bounds. A conflict of two time-paths (the meeting of two time-paths
going in "opposite directions" at the same node and at the same time of
the systolic period) causes some delays in these time-paths (because of
the restriction given by the communication modes). Too many unavoidable
conflicts mean too many delays, and so one can get much better lower bounds
for gossiping in some graphs G than the trivial diameter lower bound. A
combinatorial analysis providing lower bounds by analyzing the number
of conflicts and delays requires a précise définition and use of these two
notions. Thus, we define these notions for the one-way communication mode
and the path Pn as follows. Note that the next définition essentially differs
from the définition of conflicts in [HJM93] because that définition allows at
most one conflict between two time-paths going in opposite directions on
the same physical path of the network. The essential point hère is that the
time-paths from one end-point to another are realized in a systolic manner
and that this systolic réalisation causes conflicts and delays in nodes where
the crucial information pièces flowing between the two end-points do not
meet in a physical time.

DÉFINITION 3.4: Let Pn = ( { s i , x 2 , . . . , ^ n } , {(x

be a path of n nodes. Let A = (Ai, A2, . . . , A&)r Ai, A2, . . . , As be a
k-systolic one-way gossip algorithm for Pn for some ky r G N, 0 ^ 5 < k.
Let X — x\, X2 y..., xn and Y = xn , xn~i,..., x\. An X-direction o f A is
X [A] = (Su S2,..., Sn_i), where St = {1 < j ^ k \ (xt -> z î + 1 ) G A,}
for i = 1 , . . . , n - 1. A Y-direction of A is Y [A] = (Qi, Q2, • • •, Qn-i),
where Qi = {1 <[ j < k \ (x»+i —• Xi) E Aj} for i — 1 , . . . , n - 1.
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For any p G { 1 , . . . , n — 1} and q G { 1 , . . . , k}, let

nextg (xp —> xp+i) = min {a, b + k | a, 6 G Sp

and q < a *£ h, l ^ & ^ ç } ,

and
nextg (xp+i —> Xp) = min {a, 6 4- k | a, 6 G Qp

and q < a ̂  k> 1 ̂ b ^ q}.

Let i be a positive integer, 1 ̂  i ^ k. We say that the directions of A X [A]
and Y [A] have an i-collision in a node xm for some m G {2 , . . . , n — 1} if
one of the following four conditions holds:

(i) % G Sm_i,

nextî (xm+i -> xm) < nexti (xm -* xm+i) < next; (xm —• a;m_i),

(ii) i G Qm,

next2- (xm - i —> xm) < nexti (xm -* x m - i ) <

(iii) i G 5m_i,

nexti (xm + i —> xm) < next^ (xm - • a:m_i) < next»

(iv) i E Qm,

Qm-1 Qm

Figure 1. - An ?-collision in a node xm.

If one ofthe cases (i) or (ii) happens, then we say that the i-collision in xm

causes at least a 1-delay on X [A] and at least a 1-delay on Y [A], If (iii)
happens, then we say that the i-collision in xm causes at least a 2-delay
on X [A]. If (iv) happens, then we say that the i-collision causes at least a
2-delay on Y [A]. For every i G { 1 , . . . , k}, every i-collision in xm is called
a collision in xm.

Let X [T] and Y [T'] be two time-paths ofAfor some T = t\, t2,..., tn-\
and Tf = t71? t ' 2 , . . . , 4 _ a = r n _ i , . . . , n . Let i G { l , . . . , f c } and
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m G { 1 , . . . , n — 1}. We say that the time-path X [T] meets the X-direction
X [A] in the node xm in the i-th periodical moment if

{tm~\ = kj + d, where 1 ^ d ^ i)

and

((t-m = fei + di, where i < d\ £ k)

or (tm = k (j + 1) + cfe> where 1 ^ d2 < i))-

[T'] meeto y [A] m f/ze no<i£ xm in the i-th periodical moment if

(rm = fcj + d, where 1 ^ d < i)

((rm_i) = fej + di, where i < d\ £ A;)

or (rTO_i = fc (j + 1) + cfej where 1 ^ ^2 < i))-

Finally, we say that there is a (systolic) conflict between X [T] and Y [T;]
in a node xm if there exists i E { 1 , . . . , k} such that X [A] and Y [A] have
an i-collision in the node xm and

(ï)X[T] meets X[A] in the node xm in the ((i + 1) mod k + ï)-th
periodical moment, and

( i i )y[T'] meets Y [A] in the node xm in the ((% + l)mod k + l)-th
periodical moment D

We see that the conflict between the time-paths X [T] and Y [Tf] in a node
xm means that there exist i G { 1 , . . . , &}, p, q G N such that

(i) the pièce of information / (xi ) flowing to xn according to X [T] is
visiting xm (still not in #m+i) after the exécution of pk + i + 1 rounds,

(ii) the pièce of information I(xn) flowing to xi according to Y [Tf] is
visiting xm after the exécution of qk + i + 1 rounds,

(iii) there is an i-collision between X [A] and Y [A] in the node xm.

Despite of the f act that I {x\) and I (xn) possibly do not meet in xm in
the same time (p may differ from g), the systolic realization defined by the
directions X [A] and Y [A] causes that the delay on X [A] (Y [A]) caused
by the i-collision in xm is also a delay on the time-path X [T] (y [T7]).

Overall, it can be stated that the sum of the delays on X [T] and Y [T1]
caused by any conflict is at least 2.
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Now, we are prepared to prove the lower bounds of Theorem 3.2.
L e t V(Pn) = {x1}...,xn}9 E{Pn) = { ( x i , x 2 ) , . . . , ( a r „ _ i , xn)}9 a n d

consider the paths X — x i , . . . , xn and Y = x n , . . . , x\, Each gossip
algorithm 4̂ for Pn must contain two time-paths X [T] and Y [Tf] for some
T = *!, . . . , tn_i andT' = * i , . . . , i^-i-

The aim will be to bound the number of conflicts between X [T] and
Y [Tf] from below. The fact that each conflict causes a delay of at lest 2
on X [T] and Y [Tf] will then give rise to a lower bound on the number
of rounds of A,

To make the lower bound proof more transparent, we first show a lower
bound which is weaker than the one stated in Theorem 3.2, but which is
less technical to prove.

LEMMA 3.5: For any n > 2:

(i) [k] - sr (Pn) £ ((* + 2)/k) >(n-ï)-lfork even,

(ii) [k] - sr (Pn) ̂  ((fc + 1)1 {k - 1)) • (n - 1) - 1 /or fc odd,

The proof of Lemma 3.5: The core of the proof is to show that there are at
least [(n - 1)/|_&/2J1 — 1 conflicts in the inner nodes of P n . This is done
by first establishing that the distance between two neighbouring conflicts
is not too "large". (Two conflicts c\ in node x% and C2 in XJ, i < j , are
called neighbouring if there is no conflict in XJ+I, . . . , Xj-i between X [T]
and Y[T'}.)

CLAIM 1: The distance between two neighbouring conflicts c\ in X{ and
C2 in XJ, i < j , is at most \k/2\.

The proof of Claim 1: Consider the time-paths

X [T] = X [tlt *2 , . . . , *n-i] and Y [T>] = Y fó, ^ 2 , . . . , 4 _ a ] .

For any l G { l , . . . , n - l } , let diff (l) := (t/ - t{) mod fe measure the
time-difference in the systolic period between the communication xi —•> x/4.1
and a?i+i —> X|, and let

reldiff (i, l) := (t/ - t{) - (t* - t • » (U - t[) mod fe)

dénote the time-difference relative to the time-difference in (x^, # Ï + I ) . As
there is a conflict c\ in x ,̂ we have

reldiff(i, i) > 1.
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Following the définition of the time-paths X [T] and Y [T'], we have
*i < *2 < • - - < *n-i and «i > t̂  > . . . > 4 - 1 - Hence,

reldiff (t, i + 1) > 3,

reldiff (i, i + 2) > 5,

reldifF (i, % + 5) > 2 5 + 1, for 5 ^ 1.

As soon as reldifF (i, i + s) ^ k (L e. reldiff (i, i + s — 1) < A;, and
reldiff (i, i + s) ^ fc), there is a conflict in a^+s. It follows that there
is a conflict in at least one of the nodes rcj+i, #i+2, • - - j %i+s if 2 5 + 1 ^ fc
or 5 ^ L^/2j respectively. This complètes the proof of Claim 1. D

The proof of Claim 1 shows that the largest distance between two
neighbouring conflicts c\ in x% and c<i in XJ9 i < j , can only be achieved if
reldiff (i, i + s) is as small as possible for any s, L e.

reldiff (i, i) = 1,

reldiff (i, i + 1) = 3,

reldiff (i, i + 5) = 2 5 + 1, for s > 1.

For the corresponding time-paths X [T] and Y [T'], this means that

- t-+s) mod fe = 2 s + 1, for s ^ 1,

and for the directions X [A] = (5i,« S 2 , . . . , S n- i ) and
(Qi, Q2,.. •, Qn-i) it follows that for r — Mod (ij),

M o d ( r - l ) €g.-, r € 5 i

Mod (r - 2) e Qi+i, Mod (r + 1) e S m

Mod (r - 3) e Qi+2, Mod (r + 2) € S i + 2
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(where Mod (m) := (m — 1) modfc + 1 for any m € N). This optimal pattern
of length [k/2\ on the X- and F-direction between the two neighbouring
conflicts ei and c% will be referred to as pattern P<Jpt.

The proof of Lemma 3.5 continuée: According to Claim 1, there is a
conflict in each [k/2\ steps. Hence, the number / of conflicts in the inner
nodes of Pn is at least \(n — l)/(_fc/2j] — 1. As each conflict causes an
overall delay of at least 2 on X [T] and Y [T% one of the time-paths incurs
a delay of at least L Therefore, the message on this time-path needs at least
(n — 1) + l rounds. Applying l > \(n — 1)/|_&/2_|] — 1 leads to a lower
bound on the number of rounds of at least

k + 2 , N ^ ._ . .
—-— • (n — 1) — 1 ïi k is

X
(n - 1) - 1 if k isodd.

This complètes the proof of Lemma 3.5. D

The proof of Theorem 32 continuée: A technically more involved
considération than the one of Lemma 3.5 provides the précise lower bound
of Theorem 3.2.

LEMMA 3.6: For any n, k > 3:

The proof of Theorem 3.6:The core of the proof is to show an improved
lower bound on the number of conflicts in the inner nodes of Pn. To obtain
this improved bound, it is not enough to bound the distance between two
neighbouring conflicts from above. Instead, we will argue about the distance
between s successive conflicts. The improvement in the argument dérives
from the fact that the average distance between two neighbouring conflicts
is less than the maximum distance. Technically, we prove the following fact.

CLAIM 2: Let ei, C2,..., cs be s successive conflicts. Then the distance
between c\ and cs is at most (5 - 1) • (k/2 — 1) + 1.

If Claim 2 is true, one can easily complete the proof of Lemma 3.6 in the
following way. Using Claim 2, we see that the number s of conflicts in the
inner nodes of Pn must satisfy

((s -f 2) - 1) - (k/2 - l ) + l > n - l
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(if this inequality is not true, then the inner nodes contain at least s + 1
conflicts). This implies

As each conflict causes an overall delay of at least 2 on X [T] and Y [T%
one of these time-paths has a delay of at least s. Therefore, the number of
executed rounds of any &-systolic gossip algorithm on Pn is at least

( n l ) + 5 ( n 2 ) .

Thus, to complete the proofs of Theorem 3.2 and Lemma 3.6 it is sufficient
to prove Claim 2. Claim 2 will be proved separately for even k and odd k.
The proof itself will be an induction on the number 5 of conflicts. For the
inductive step, an additional property about the structure of the conflicts is
needed. Hence, Claim 2 is reformulated in an appropriate way.

For this purpose, let us first specify some further notation. For two
conflicts c\ in x% and C2 in Xj, i < j , let dist(ci,c5) dénote the
distance between c\ and c% on the path, i. e, the number of edges between
X{ and xj. Consider the time-paths X [T] = X [ti, £2, • • •, *n-i] and
Y [Tf] — Y [t[, tf

2,..., ^ _ i ] . Let c be a conflict in some inner node Xi
of Pn. Then r diff (c) := (U - tj) mod k and / diff (c) := (^_x - t»_i) mod k.
r diff (c) [l diff (c)] measures the time-difference in the systolic period
between the communication Xi —> Xi+i and #i+i —> XJ [xi-i —> Xi and
a?i —»• a?j-i]. For the conflict situations described in (i)-(iv) of Définition 3.4,
we have the following time-differences:

(i)Zdiff(c) ^ 3, rdiff(c) > 1,

(ii)Zdiff(c) > 1, rdiff(c) > 3,

(iii) Miff(c) > 2, rdiff(c) ^ 2,

(iv) Zdiff(c) ^ 2, rdiff(c) > 2.

Note that the pattern P<J t achieving optimal length [fc/2j between two
neighbouring conflicts ei and C2 fulfills rdiff (ei) = 1 and

f l

t 2
if fc is even,

2 if k is odd.

Now, we are able to reformulate Claim 2 as follows.
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CLAIM 2a: Let k EN, k even. Let ei, C2,..., cs be s successive conflicts,
s ^ 2. Then the following statements hold:

(1) dist(ci,c,)<(s-l)-(ft/2-l) + l,

(2) dist (ei, cs) ^ (s - 1) • (fc/2 - 1) + 1

=>(rdiff(ci) = lA/diff(c s) = 1).

CLAIM 2b: Let k G N, k odd. Let c\, C2,..., cs be s successive conflicts,
5 > 2. Then the following statements hold:

(1) If s is odd:

(la) dist (ei, c5) ^ ((s - l)/2) • (ft - 2) + 1,

(lb) dist (ei, c5) - ((5 - l)/2) • (ft - 2) + 1

=> (rdiff(ci) = 1 A/diff(c5) = 1).
(2) If s is even:

dist (ei, cs) < (^^j • (ft - 2) + Lft/2J.

Clearly, Claim 2 follows immediately from Claims 2a and 2b. So, the only
thing left to show for the proof of Lemma 3.6 is the validity of Claims 2a
and 2b.

The proof of Claim 2a: (Induction on 5)
The induction base for s = 2 is clear from the remark about P^pt above.

Assume that (1) and (2) hold for s € N, s > 2. We try to extend X [A]
and Y [A] from cs to c5+i.

(i) If dist (ci, Cs) ̂  (s - 1) • (Jfe/2 - 1), then

dist (ci, c5+i) < dist (ci, c3) + ft/2 ̂  ((s + 1) - 1) • (ft/2 - 1) + 1

according to Claim 1 in the proof of Lemma 3.5. Hence, (1) holds for s + 1.
It remains to show that (2) holds for s + 1. To obtain dist (ci, c5+i) =
((s + 1) - 1) • (fe/2 - 1) + 1, dist (ci, cs) = (s - 1) • (fe/2 - 1) must hold,
and the extension from cs to cs+i must be of length h/2. The only pattern
for achieving this is P<Jpt from the proof of Claim 1 in Lemma 3.5. For this
pattern, r diff (cs) = /diff (c5+i) = 1 holds. Hence, /diff (cs) ^ 3. Consider
the conflicts ci, C2,..., cs. As idiS (cs) > 3, the distance between ci and
cs can be increased by one by moving cs one node to the right on the path
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(and by extending X [A] and Y [A]). Then, the distance between c\ and cs is
(5 — 1) • (k/2 — 1) + 1, and the induction hypothesis yields rdiff (ei) = 1.
Hence, (2) holds for 5 + 1.

(ii) Ifdist(ci, cs) = ( s - l)-(fe/2 - l) + l,ihen rdiff (ei) = Idiff(cs) =
1 according to the induction hypothesis. Hence, the extension from cs to
cs+i must start with rdiff (c$) = 3. The same argumentation as in the proof
of Claim 1 in Lemma 3.5 shows that dist (cs, cs+\) = k/2 — 1 must hold,
and if dist (cSy cs+i) -k/2-1 then Idiïï (cs+i) = 1. Hence, (1) and (2)
hold for 5 + 1.

This complètes the proof of Claim 2a. D

The proof of Claim 2b (1): (Induction on s)

Let s = 3. Then

dist (ei, cs) = dist (ei, c3) ^ 2

follows from Claim 1 in the proof of Lemma 3.5. The only way to achieve
dist (ei, cs) = k-1 is to construct X [A] and Y [A] by using the pattern P*pt

from the proof of Claim 1 in Lemma 3.5 between c\ and C2, which leads to
rdiff (ei) = 1, /diff (c2) = 2. Hence, an optimal extension from C2 to c^
has to start with r diff (c2) = 2, has length \k/2\ and leads to ldiff (c3) = l
(by using the same arguments as in the proof of Claim 1 of Lemma 3.5).
This whole optimal pattern between c\ and C3 is referred to as pattern P^pt.

Assume that (la) and (lb) hold for 5 G N, 5 > 3 odd. We try to extend
X [A] and Y[A] from cs to cs+2-

(i) If dist (ei, c5) < ((5 - l)/2) • (fc - 2), then

dist (ei, cs+2) è dist (ei, ca) + (k - 1) < ( ( g + g ) ' 1 ) • (fc " 2) + 1.

Hence, (la) holds for 5 + 2.

It remains to show that (lb) holds for 5 + 2. To obtain dist (ei, cs+2) =
(((5 + 2) - l)/2).(k - 2)+l , dist (Cl, cs) = ((5 - l)/2)-(fc - 2) must hold,
and the extension from cs to cs+2 must be of length k - 1. The only pattern
for achieving this is P^pt. For this pattern, rdiff (c5) = /diff (cs+2) = 1
holds. Hence, /diff(c5) ^ 3. Consider the conflicts ei, C2,..., c5. As
/diff (cs) ^ 3, the distance between c\ and c5 can be increased by one
by moving cs one node to the right on the path (and by extending X [A] and
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Y [A]). Then, the distance between c\ and cs is ((5 - l)/2) • (k - 2) + 1 , and
the induction hypothesis yields r diff (c\) = 1. Hence, (lb) holds for 5 + 2.

(ii)If dist(ci,cfl) - ((* - l)/2) • (fc - 2) + 1, then rdiff(ci) -
Z difF (cs) = 1 according to the induction hypothesis. Hence, the extension
from cs to c5+2 must start with rdifF(c5) = 3. The same argumentation
as for Popt shows that dist(c5ï cs+2) ^ k — 2 must hold, and if
dist(cs, Cs+2) — k-2 then ZdifF(c5+2) = 1. Hence, (la) and (lb) hold
for 5 + 2. D

The proof of Claim 2b (2): According to Claim 2b (1), dist (ei, cs-i) ^
((5 - 2)/2) • (fc - 2) + 1. If dist (ei, cs-i) < {(s - 2)/2) • (fc - 2), then

dist (ei, c5) < dist (ei, c5-i) + dist (c5_i, cs)

(fc-2)+Lfc/2j

according to Claim 1 of Lemma 3.5. If

dist(ci,c s_i) = ((s - 2)/2) • (fc - 2) + 1,

then r difF (ei) = là.iS(cs-i) — 1 according to Claim 2b (1). Hence,
r difF (cs) t 3, dist (c5_i, cs) ^ \k/2\ - 1, and it follows that

dist (ei, cs) ^ dist (ei, c5_i) + dist (cs_i, cs)

< I ^ - ^ 1 . (k - 2) -

This complètes the proof of Claim 2b. •
This complètes the proof of Lemma 3.6 and Theorem 3.2, too. D
Thus, Theorem 3.2 provides upper and lower bounds on [k] — sr (Pn)

which diff er only in a small constant independent of n and k.

COROLLARY 3.7: For any n t 2, k t 4:
k

[k] - sr (Pn) = - — - • (n - 2) + cn^ for some constant 0 < cn^ ^ 3.

4. SYSTOLIC GOSSIP IN ifc-ARY TREES

In this section we investigate the systolic gossip complexity of complete,
balanced Ai-ary trees. The main resuit of this section is that there exist gossip
algorithm with constant period whose complexity matches the lower bound
for even non-systolic algorithms.
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Let us first state the lower bound for gossiping in complete, balanced fc-ary
trees. It is shown in [BHMS90] that the gossip complexity in two-way mode
T2 (T) for any tree T is exactly 2 • min b (T) — 1, and that for one-way mode
n (T) = 2 • min b (T) holds. For a complete, balanced &-ary tree Tj} of
height h it is not hard to see, that min b (TJ£) is given by k • h (for a proof
consult [FHMMM92, HKMP93]). This implies the following proposition.

PROPOSITION 4.1: For a complete, balanced k-ary tree TJ} of height h and
any period p

G ) \ p ] - s r ( T £ ) £ r ( 2 £ ) = 2 - k - h

To describe our algorithms we introducé the following notations. In a
systolic algorithm with period p each vertex has to repeat a communication
pattern of length p. For the two-way mode of communication we specify
such a pattern by a string of length p over the alphabet Ci, C2, . . . , C&,
P, TV. The semantics of this spécification is that any vertex v perforais a
communication with its i-th child (parent, resp.) in round j , iff the pattern
of v contains C% (P, resp.) at position j mod p, The letter N indicates
that no communication is performed. In one-way mode we use the alphabet
CJ, C j , . . . , c£, CjJ, P T , P1, N, where î (|, resp.) indicates that the flow
of information is directed towards the root (towards the leaves, resp.). A
gossip algorithm can now be given specifying a communication pattern for
each vertex. Note that the patterns of incident vertices have to be compatible
in the sensé that whenever the pattern of some vertex v being the i-th child
of its parent p(v) indicates a parent communication (P, PÎ or P^), the
pattern of p (v) has to contain the matching communication (Cj, Cj , or c / )
at the corresponding position.

Another point of view emphasizing on this compatibility constraint is to
specify a round of communication by a (directed) matching in the tree,
where vertices communicate in the given round, iff an edge from the
matching connects the vertices. Thus a séquence of p matchings can be
used alternatively to specify a systolic algorithms with period p.

Note that there exists no systolic algorithm of period ^ k, if h > 1,
because in this case there are vertices of degree k + 1. Any algorithm
with period < k would ignore some edge and no information between the
components of the tree connected by this edge can be exchanged. Now we
are able to state our first resuit, namely a nearly optimal gossiping scheme
with minimal period in two-way mode of communication.
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THEOREM 4.2: For k > 2 and h ^ 0

[k + 1] - ST2 ( ï £ ) < 2 - k - h

Proof: We give a gossiping scheme of period /c + 1 by specifying
the communication pattern of every vertex. All occurring patterns are
cyclic shifts of S = (P, Ci, C2, . . . , C&), provided we substitute the
parent communication for the root and the child communications for
all leaves by AT. In the following we will assume that these obvious
substitutions are applied where appropriate, without explicit mention. Let
Si = (C^ Ci+i , . . . , P , . . . , Ci-i) be the pattern obtained by cyclicaly
shifting the string 5 i positions to the left. Thus S — Sb — S&+1 holds.
The actual patterns for the gossiping scheme are now obtained recursively
as follows:

(i) the root uses pattern Skmod(fc+i)>
(ii) if v is the i-th child of p(v) and p(v) uses Sj, then v uses

Four simple observations are in order:
1. The patterns are chosen in such a way that the parent communication

of each vertex, being the i-th child of its parent, aligns with letter C% in
the pattern of its parents. Thus the given patterns obey the compatibility
constraints.

2. The subtree of the first child of the root performs the given gossiping
scheme for T^"1. And all vertices of the z-th substree perform the pattern of
the corresponding vertex of the first tree shifted (i — 1) positions to the right.

3. In round k (h - 1) + i = i + 1 - h = h + i (mod (k + 1)) the root
performs a communication with its i-th child according to 5f/lmod(fc+i)-

4. The leftmost leaf has pattern Sb — S> and therefore starts with a parent
communication.

We now show by induction on h, that this communication scheme performs
simultaneously a fast accumulation and a fast accumulation and a fast
broadcasting with perfect to the root. From these results we then can conclude
our claim. First, we show that after k • h rounds the cumulative message
of Tfc is known to the root.

For h = 0 this statement is true. Assume that it holds for all trees
Tfc~\ h > 0. In Tfc we consider now the i-th child r* of the root. By
induction hypothesis and observation 2.) we can conclude that the cumulative
message of 7 '̂s subtree is known to r; after round k * {h — 1) + i — 1, for
1 ^ i 5i k. Observation 3.) now states that in the next round k*(h — 1)+i the
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cumulative message of the i-th subtree is given to the root. Thus after round
k • (h — 1) + k = k • h all messages have arrivée! in the root. At this point
it is also worthwhile to mention that not only the root holds the cumulative
message after k • h rounds, but also its fc-th child. This is a conséquence of
the two-way mode of communication. Before round k • h the root knows at
least all messages not contained in the k-th subtree and its fc-th child knows
the complementary information. Since the information in two-way mode is
exchange, both vertices learn the cumulative message in this last round.

Next we consider the broadcast capabilities of our scheme. By induction
on h it follows that any information known to the root of T^ before round t is
broadcasted to all vertices after round t+kh— 1, if in round t a communication
with its first child is performed, and after round t + kh, otherwise. For the
induction step we observe that all children of the root obtain the broadcast
information before round t + fc, if in round t the root communicates with
its first child, and before round t + k + 1, otherwise. Since for all vertices
each parent communication is directly followed by a communication with
the first child, we can inductively assume that the broadcast in the subtrees
is finished after round (t + k) + k (h — 1) — 1 — t + kh — 1, or round
(t + k + 1) + k(h - 1) - 1 = t + kh, respectively.

Concerning the gossip complexity of the communication scheme we now
can argue as follows. After kh rounds the cumulative message is known to
the root and its fc-th child. According to the communication pattern of the
root in round kh + i + 1 the i-th child is informed. The broadcasting of
the cumulative message in the i-th subtree is therefore finished after round
kh + i + 2 + k (h - 1) - 1, for 1 < % < k - 1, and in the fc-th subtree of
the root after round kh + 1 -\- k (h — 1) — 1. Thus the time critical subtree
is the (k — l)-st subtree. The broadcast in this tree and the entire gossip is
finished after round 2kh. D

The above algorithm is not time-optimal. When the root has received the
cumulative message for the first time - after kh rounds - this message is
delayed by one round because of the N in the communication pattern of
the root. To overcome this delay the root should perform a pattern like
(Ci, C2,. . •, Cfc, Ci, C2 , . . . , Cfc_j,...). But such a pattern does not fit
within k + 1 rounds, thus we have to increase the period to proof the
following Theorem.

This new time-optimal algorithm will consist of two parts. Most of
the node of T^ will perform exactly the same pattern as specified in
Theorem 4.2. To be précise, the period is 2 • (k -f 1) and the pattern is
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Ci, C 2 , . . . , Cfc, P, Ci, C 2 ) . . . , Cfc, P . The nodes of the three top levels
of the tree will follow some special patterns. Note that by using a at period
of 2 • (k + 1) the optimal algorithm for a T% is already systolic. We use
now the optimal algorithm for the communication within the top two levels.
Level three produces the correct interaction between the top part and level
four, where the algorithm for subtrees from Theorem 4.2 is implemented.
Before presenting the new algorithm in Theorem 4.3 we take a closer look
at the algorithm from Theorem 4.2. The subtree rooted at the first son of
the root is the only one which has to start the communication in the first
round. As a conséquence all other subtrees may start its communication one
round earlier. The subtree rooted at the (k - l)-th son of the root is the
only one which has to communicate in round 2 • k • h. Thus we have to
shift this subtree by one round. Due to our first observation is this possible
iff the (fc - l)-th son of the root is different to the first son of the root.
Thus the next Theorem 4.3 deals with the case k > 3 and the case k = 2
is solved in Theorem 4.4.

THEOREM 4.3: For k ^ 3 and h > 0

[2 • (fc + 1)] - sr2(TJ?) = 2 ' k ' h - l = r2 (2%) h o l d s .

Proof: Within this new algorithm are several patterns:

ST = (N, Ci, C2,..., Ck, Ci, C2,..., Cfc_i, N, N)
Ss = (P, i N ^ J V , P, N, Ci, C2,...,

k—l times

Ss' = (P, A ^ J V , P,Ci,C2,..., Ck, N)

k—l times

Let SI (Sf, S{, Si S?) be the pattern obtained from Sr (Ss, Ss\ S\ Su)
by cyclically shifting the string i positions to the left. The gossiping scheme
for Ti£ is defined in the following recursive way:

(i) the root uses pattern Sr
hmod{Hk+l))

(ii) the i-th child of the root (1 < i ^ k - 2) uses pattern

(iii) the k - 1-th child of the root uses pattern S^

(iv) the Ar-th child of the root uses pattern Sjh, i\moci(2-(fc4-i))
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(v) if v is the i-th child of p(v) and p(v) uses £ƒ, then v uses
S(j-i)mod(2ik+l))

(vi) if v is the i-th child of p{v) and p(v) uses £ƒ', then v uses

(vii) if v is the i-th child of p(v) and p(v) uses 5j or SjS then v uses

Several simple observations are in order:
1. The pattern are chosen such that the parent communication of each

vertex, being the i-th child of its parent, aligns with letter Ci in the pattern
of its parent. Thus the given patterns obey the compatibility constraints. This
is true because of the following:

• If the root uses pattern £J then the i-th son (1 < j < fc — 1) uses pattern
Sj-i o r $f-i and the last son uses pattern Sy+1. Note that Ss and Ss' have
the P communication at the same position.

• If a node uses pattern 5 | then the i-th son (1 < j £ fc) uses pattern 5j_j.

• If a node uses pattern 5 | ' then the i-th son (1 £ j ^ k) uses pattern
S j _ i + 1 . Note that the communications with the children in Ss' are shifted
one position to the left compared with Ss,

• If a node uses pattern Sj or SJ then the i-th son (1 < j ^ k) uses
pattern S^^.

It is easy to see the compabitiliby constraints are valid in all cases.
2. If a node v uses pattern Sf then the subtree rooted at v performs

the communication pattern from Theorem 4.2. This is true because ail
descendants will use the pattern Su.

3. The leftmost leaf has pattern SQ = S, and therefore starts with a parent
communication.

4. Let fi be the i-th son of the root. The subtree of ƒ& performs the given
gossiping scheme for T^~l from Theorem 4.2. Note that ƒ& uses pattern 5*.

5. Let ƒ11 be the first son of / i . The subtree of fu performs the given
gossiping scheme for T^~2 from Theorem 4.2. Note that fu uses pattern 5*.

6. The node fu sends the cumulative message to f\ without delay. Due
to Theorem 4.2 at time k-(h — 2) the cumulative message of the subtree
rooted at fu has arrived in fu. The node fu uses pattern St(fl^2)mod2-ik+1)
which has a parent communication at time A: • (h - 2) + 1.

7. Any node v at le vel two sends the cumulative message to its parent
p(v) without delay.
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8. Within the top three levels of T^ any cumulative message is passed to
the parent node without any delay. Thus the root receives the cumulative
message at time kh. A more detailed proof from fact 1 will produce also
this result.

9. The root sends the cumulative message one step prior to the algorithm
from Theorem 4.2.

10. A node fi (1 £ i ^ k — 2) delays the cumulative message by one step
before sending it to its sons. Thus all nodes within the subtree rooted at fi
receive the cumulative message within 2 • k • h - 1 steps. Note that within
this part of the tree the new algorithm behaves like the algorithm from
Theorem 4.2. But in that algorithm there is only one leaf which receives the
cumulative message at time 2 • k - h. This leaf is a descendent of fk-i-

11. All nodes within the subtree rooted at fk-i receive the cumulative
message within 2 • k • h - 1 steps. Note that by using pattern Ss' the sending
down of the cumulative message is not delayed.

12. All nodes within the subtree rooted at ƒ& receive the cumulative
message within 2 • k * h - k steps.

From all the above remarks we conclude the vailidity of this algorithm. •
Note that the above algorithm works not in the case k = 2. But using the

same technique from Theorem 4.3 we get the following theorem:

THEOREM 4.4: For binary trees of height h > 0

[9] - sr2 ( ï j ) = 4 • fc - 1 = r2 ( ï#) holds.

Proof: We just define the algorithm. Within this algorithm are several
patterns:

Sr = (N, Ci, C2, Ci, N, N, N, N, N)

Ss = (P, N, P, Ci, C2, N, N, Ci, C2)

S* = (N, N, P, N, d , C2, P, N, N, N)

Sr = (AT, N, P, Ci, C2, N, P, N, N, N)

Su = (N, Ci, C2, P, Ci, C2, N, Ci, C2)

Let SI (Sf, Sf, Sj', Sf, Sf) be the pattern obtained from Sr (Ss, S*, Sr,
Su, Sv) by cyclically shifting the string i positions to the left. The gossiping
scheme for T% is defined in the following recursive way:

(i) the root uses pattern Slmod9
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(ii) the i-th child of the root (1 < i < k) uses pattern Sfh

(iii) the k-th child of the root uses pattern Sy>
h_k^mod9

(iv) if v is the i-th child of p (v) and p (v) is the first son of the root and
p(v) uses S|, then v uses S^_- ) m o d 9 .

(v) if v is the i-th child of p (f) and p (v) is not the first son of the root
and p(v) uses 5 | , then f uses ^(l_^mod9*

(vi) if v is the i-th child of p (v) and p (v) uses Sj, then v uses S^_^ m o d 9.

(vii) if v is the z-th child of p (v) and p (v) uses 5j ' , then v uses
ou
D(j-i+l)mod9*

(viii) if v is the i-th child of p(v) and p(v) uses 5", then v uses

(ix) if v is the z-th child of p (v) and p (v) uses SJ, then v uses ^ _ 2 )
Using the arguments similar to the ones from Theorem 4.3 we conclude the
correctness and time bound of this algorithm. •

Next we turn to the one-way mode of communication. We will dérive a
systolic gossip algorithm, that requires 2 kh + 1 rounds and has a period
of (3 + [3/(fc - 1)1) (fc + 1). Thus for binary trees period of length 18, for
ternary trees a period of length 20, and for fc-ary trees with k ̂  4 a period
of length 4 (k + 1) suffices.

For i > 0, we will recursively dérive communication schemes A^ and A^
having the foliowing properties when applied to T%.

These communication schemes perform a parent communication at the
root. Such a communication is interpreted as an output from the root to the
environment (if P^ is specified), or as an input to the root of the tree from
the environment (if P^ is specified).

PI A | as well as A^ perform gossiping in 2 kh + 1 + i rounds.

P2 A\ guarantees accumulation of all messages in the root âfter kh + i
rounds, and outputs the cumulative message to the environment in round
kh-\-i + k + 2 = k(h + l) + i + 2. Moreover Aj broadcasts any message
received from the environment in round r using kh additional rounds, i. e.
the message is distributed after round r + kh.

P3 Al guarantees accumulation of all messages in the root after kh + i
rounds also, but outputs the cumulative message to the environment in
round kh + i + 1. Moreover Al broadcasts any message received from
the environment in round r using k (h + 1) + 1 additional rounds, i. e. the
message is distributed after round r + k(h + ï) + 1.
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Surely, given communication schemes A2 and A9 it is trivial to obtain
schemes for Al and A\ just by shifting cyclically all communication patterns
of A2, and A$ respectively, i positions to the right. Thus we concentrate
on deriving schemes A^ and ylj.

Up to cyclic shifts ft* 4- 1 different patterns of length (/t* + l)(fe + l)
are used, for some appropriate constant ft* to be chosen later. All vertices
of depth d = 0 (mod ft*) use (up to cyclic shifts) one of the following
[0 mod ft*] -patterns

All vertices of depth d = j (mod ft*), 1 < j £ ft* - 1 use (up to cyclic
shifts) the [j mod ft*]-pattern

Note that after an appropriate shift there patterns are compatible to each
other. Each pattern involves two communications with the same child, say
Q, More precisely, if C] occurs in a [(j - 1) mod ft*]-pattern at positions t,
then Cj occurs at position t+j (k + 1). The same distance, namely j (A; + 1)
occurs in the [j mod ft*]-pattern for the next level between p î and PK Note
especially that for both [0 mod ft*]-patterns the cyclic distance between P^
and P^ is exactly h*(k + l).

Consider now T%*. By fixing the pattern for the root and using the pattern
given above, we indeed fix the entire communication scheme, provided the
compatibility constraints are obeyed. (Note that in the leaves we have to use
one of the root patterns, but since all child communications are substituted
by N, both patterns becomes indistinguishable when cyclical shifts are
allowed). In gênerai the only choice in designing our communication scheme
after fixing the patterns is the choice of the pattern in vertices of depth
d = 0 (mod ft*).

For scheme AS we use in the root the pattern ( C j , . . . , C^, P Î ,

C j , . . . , C£, iV,.. . , N, Pl) shifted such that c\ is performed in round

fcft*. Similarly, for scheme Aj we use the pattern (CJ , . . . , C\, P*,

C[,..., C^ PT , JV,..., iV) again shifted such that (C^) is performed in
round fcft*. Actually, for T^* both choices lead to exactly the same scheme,
except for the parent communications of the root. It is instructive to have
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a closer look at the exécution of this scheme. For this purpose, it will be
convenient to have the notion of signatures of vertices.

DÉFINITION 4.5: Assume that each edge e in Tj} Connecting some arbitrary
inner vertex v with its j-th child is labelled with l (e) — j , for 1 ^ j ^ k. Let
e i , . . . , es be the edges lying on the unique path from vertex w to the root.
Then the signature of w is defined as

Assume that in round r the root perforais opération C\ for some sufficiently
large r. Since for any inner vertex v any information received from its j-th
child has to wait exactly k — j rounds in v before it is delivered to the next
level or until round r is elapsed, in case v is the root, any information given
from leaf / to its parent in round r — k (h* — 1) + sig (l) + 1 will arrive at
the root before or in round r. Note that the incurred overall delay time, L e.
the sum of delays incurred in the vertices on the path from l to the root, for
an information starting in leaf l is just kh* - sig (Z), since the delay in depth
d and the contribution of the edge between depth d and d + 1 on the root
path of l to sig (l) add up exactly to fc, for 0 ^ d < h.

An obvious conséquence is that accumulation in the root requires only kh*
rounds, if the root pattern is adjusted such that opération Cj is performed
in round kh*. This is because leaf / performs P^ in round sig (l) — h* ^ 1,
and therefore all informations reach the root before round kh*.

With respect to the broadcast capabilities of this scheme we observe that at
any vertex v, except possibly at the root, an information sent to the j-th child
incurs a delay of j - 1. For any message obtained from the environment, the
delay in the root is either j — 1 (when using A?) or (j — 1) + (k + 1) (when
using AC). Thus the total delay incurred by a message received by the root
and being forwarded to l is either sig (l) — h* or sig (/) — h* + (k + 1). Since
the forward path has length h* the message arrives in l at round r' + sig (l)
or r' + sig (l) + (fc + 1) respectively, where r' is the round in which the root
has received the input message. Since h* ^ sig (l) < kh* all leaves have
obtained the message after kh* additional rounds, in case A°, is used, and
after fe(/i* + l) + l additional rounds, if A® is used.

The gossip in T^* requires 2kh* + 1 rounds. Accumulation in the root
is finished after kh*, the next round is declared in the root as parent
communication and then the broadcast is started. Note that the broadcast
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requires kh* rounds by either communication scheme, since in both schemes
the root causes a delay of j — 1 for messages sent to the j-th child, if round
kh* + 1 is considered as first round of the broadcast. Indeed, we can make
a slightly more accurate statement. If each leaf / delivers its message for the
first time in round sig (l) — (ft* — 1), then / receives the cumulative message
in round sig (l) - (ft* - 1) + ft* (fe + 1).

Now it is easy to check that these schemes restricted to the first c levels of
Tj} achieve the accumulation-, broadcast- and gossip capabilities postulated
in PI, P2, and P3 for T£ with c ^ ft*.

The extension of these schemes for TJf of arbitrary height ft > ft* is
quite easy. Assume that we have constructed appropriate schemes for trees
of height h - ft*. We eut off the first ft* + 1 levels of T £ . This toptree of
height ft* is handled exactly as T£*, where the root pattern is adjusted such
that Cjï is performed in round kh.

Now consider the a subtree T\ or TJ? rooted at an arbitrary leaf l of the
toptree. If sig (Z) ^ ft* + k we use scheme ^ l g W - ( ^ - i ) f o r t h i s subtree,

otherwise we use AfK'K } y \

Note that according to P2 and P3 /, the root of ï ) , delivers the cumulative
message of 7} to its parent in round kh — k (ft* — 1) -hsig (l) + 1 , independent
of the pattern used for 7). This guarantees that accumulation in the root is
finished after round fcft, as well as the compatibility of the pattern used in
l with the pattern in its parent. Moreover the cumulative message of T^ is
given as output in round fcft -h 1 for AS, and in round &(ft + l) + 2 for
A?, as required.

To analyse the broadcast properties of the scheme, we consider scheme
v49 and note that any input message received by the root in round r arrives
in leaf l of the toptree in round r + sig(J) for Aj. Inductively we may
assume that the broadcast in 7} requires additional k(h — h*) rounds, if
sig (l) > ft* + fc. In this case all vertices of 7} have received the message
after round r + k (ft - ft*) + sig (l) < kh, since sig (l) < kh* holds for any
leaf of the toptree. If sig (l) < ft* + Jfe, then scheme A^g ( / ) - / l* is used for Th

requiring k (ft - ft*) + k + 1 additional rounds to broadcast in T/. In this case
the broadcast in ï ] is finished after round r + kh - (k - 1) ft* + 2 k + 2. Note
thatr+fcft-(A; - l)ft* + 2&+2 < r+kh+1 holds, iff ft* > 2+\3/(k - 1)]
holds. In case scheme Aj is used, obviously fe + 1 additional rounds, due
to delay s in the root, are required for the broadcast in 7). Thus the required
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broadcast capabilities are achieved only in case h* > 2 + \3/(k — 1)] holds.
Recall that the required period is h* + 1.

To see that the given scheme performs a gossip in 2 kh+1 rounds, we note
that accumulation in the root is achieved in kh rounds. Leaf l of the toptree
thus receives the cumulative message in round kh + 1 + sig (/). Performing
the same analysis as in the case of broadcast (i. e. substituting r by kh + 1)
yields the claimed result.

Summarizing the above discussion we get.

THEOREM 4.6: For k ^ 2 and h > 0

As in case of two-way mode, the gossip scheme given achieves a runtime
that requires just one round of communication more than stated in the lower
bound. In the rest of this section we will speed up the scheme by one round
at the cost of increasing slightly the length of the period using a idea very
similar to the one applied in two-way mode. Thus we obtain systolic gossip
schemes with an optimal number of communication rounds.

The improvement is based on the observation, that only a few vertices
receive the cumulative message in the last round. We first consider the
one-way mode of communication.

Recall the gossip scheme applied to T £ . Let / be any leaf of the toptree
of height h*. The cumulative message was broadcast successfully in T/ after
round kh + 1 + k (h - h*) + sig (l), if sig (Z) > h* + fc. Thus, among all
these subtrees, only the rightmost one requires 2 kh + 1 round to broadcast
the cumulative message, because for all leaves l of the toptree, except
the rightmost one, sig (Z) < kh* - 1 holds. If sig (Z) ^ h* + fe, then
the broadcast of the cumulative message is finished in T/ after round
kh + 1 + fe (h - h*) + sig (/) + jfc + 1 < 2 kh + 2 k + 2 - (k - 1) h\lf we
now choose h* ^ 2 + [4/(fc — 1)], all these subtrees finish their broadcast
in or before round 2 kh. Thus inductively we can conclude, that whenever
we apply the previous scheme with a period of (3 + [4/(fc - 1)]) (k - 1)
only one vertex, namely the rightmost leaf has not received the cumulative
message after round 2 kh. We will now modify the scheme in such a way,
that all vertices receive the cumulative message either in the same round as
before or one round earlier. Especially all vertices in the rightmost subtree
of the root will receive the cumulative message one round earlier, which
guarantees a gossip complexity of 2 kh rounds.
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The modification is as foliows:

1. The pattern of the root is changed from

( c 1
ï , . . . J c J E,p i , c 1

1 , . . . , c i ! J pT,JV ) . . . , JNr )

to

( C j , . . . , Ck, C1,..., Ck, iV,.. . , TV)

2. The pattern of the j-th child r? of the root for 1 < j ; ^ & — 1 is
changed from

k times

to

(CJ, . . . , Cl P\ JV,..., AT, p i , JV, CJ , . . . , C j , JV,..., N)
(k—l) times

3. The pattern of the fc-th child r^ of the root is changed from

(Cj,..., Cj, PT, i ^ ^ j V , Pi, C},..., Cl N,..., N)
k times

to

(k~l) times

4. All vertices in the subtree rooted at r&, except r^, obtain the pattern of
the corresponding vertex in the subtree rooted at r&_i.

The alignment of these patterns in time is such that the root pattern,
perforais opération Ck in round kh. All other patterns are then fixed by the
compatibility constraints. This modification has the effect that the subtrees
rooted at r& and at r^-i now work absolutely synchronously, except for
the parent communication in r^ and at r&_i. Moreover, all vertices with
depth d > 1 not in the subtree rooted at r& perform exactly the same
communication as in the unmodified scheme. Especially, they deliver the
cumulative message of their subtrees in the same round as before, and also
expect the overall cumulative message in the same rounds as before. It is now
easy to check that n , . . . , r^-i indeed perform their child communications
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exactly as before, especially that rj, for j ^ k - 1, holds the cumulative
message of its subtree after round k(h — l)+j and passes the overall
cumulative message in round kh + j + i + 1 to its i-th child. It follows that
the broadcast of the cumulative message in the subtree at rj forj^k-1
is finished after round 2 kh as before. Since the broadcast in the subtree at
r& is performed synchronously with the broadcast in the subtree of r^_ i , we
can conclude that gossip is performed in 2 kh rounds.

This yields

THEOREM 4.7: For k ^ 2 and h ^ 0

Note that the lengths of the periods in the time-optimal and nearly time-
optimal gossip schemes from Theorem 4.6 and Theorem 4.7 differ only for
k = 2 and 4.

5. CONCLUSION

Here we discuss the results achieved and formulate some of the main
resulting open problems.

In this paper we have introduced the concept of systolic communication.
In section 2 we have shown that the complexity of systolic gossip is at most
four times the complexity of systolic min-broadcast. This contrasts to the
gênerai relation r (G) ^ 2 - min b (G) for any G [BHMS90].

Open problem 1 : Can the multiplicative constant 4 in the result
[2 k] - sr(G) £ 4 - [k] - min sb (G) + 2 k of Theorem 2.6 improved?
Note that 2 does not suffice because due to Theorem 3.2, [k] - sr(Pn) ^
dk * 2 • min b(Pn), where d& > 1 for any k G N, holds. On the opposite,
trees are the hardest graphs for the relation between genera! gossip and
min-broadcast (r (T) = 2 • min b (T) for any tree T), and we can prove
[d] - sr (Tfc) — 2 • min b (T%) for some suitable constant d. This gives up
hope for a much better relation between systolic gossip and broadcast than
the relation given in Theorem 2.6.

Section 4 shows that we can systolically gossip in T^ in the optimal gossip
time r ( T £ ) [V2 (TJ})]. We only have to pay for this with a systolic period
longer than the minimal possible period length k + 1 [2 k + 2] for one-way
[two-way] systolic communication algorithms for T%.

Informatique théorique et Applications/Theoretical Informaties and Applications



THE COMPLEXTTY OF SYSTOLIC DISSEMINATION OF INFORMATION.. 341

Open problem 2: What is the minimal period length for a time-optimal
gossip? Which time can be achieved by a [2 k + 2]-systolic one way gossip
algorithm? (An upper bound of 3 kh - (k - 1) can easily be obtained for
[2 k -f 2]-systolic gossiping.)
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