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BIJECTIVE SEQUENTIAL MAPPINGS
OF A FREE MONOID ONTO ANOTHER

by C. CHOFFRUT

Abstract. — Given two free monoids * and A* we show that there exists a bijective sequential
mapping of $* onto A* if and only if the cardinality of T is greater or equal to that of A.

1. INTRODUCTION

Given two finite alphabets ¥, A and ¥*, A* the free monoids they
generate, it is well known that there exists a bijective morphism of X*
onto A* if and only if ¥ and A have the same cardinality. Here, we
consider the more general class of sequential mappings of ¥* into A*, i. e.,
of g-s-m mappings in the sense of Ginsburg and Rose [5] or generalized
sequential total functions in the sense of Eilenberg [4] Chapter IX, p. 296.
Such functions are defined by finite deterministic automata provided with an
output function: given a input word z € X*, its image is the output word
y € A* that is obtained by concatenating the outputs along the path labeled
by z in the automaton. We address the question of determining conditions on
the cardinalities of ¥ and A under which there exists a bijective sequential
mapping of £* onto A*. The prefix-preservation of such functions is a strong
property since it leaves very little leeway of how the images are produced.
It is not even clear whether there exists a solution at all, but surprisingly
enough an example is mentioned in [4], p. 305, in the special case where
Card (¥) = 3 and Card (A) = 2. We prove that this can be generalized
to arbitrary free monoids with the necessary and sufficient condition that
Card (£) = Card (A) or 1 < Card (A) < Card (X) holds.

The problem is concerned with properties of sequential functions for
their own sake. Though sequential mappings were introduced some thirty
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years ago, they were somehow neglected when the more general notion of
rational transduction was discovered and applied as a means for investigating
formal languages. The concept of rational transduction had the great merit
of perfectly suiting the nature of contex-free languages and thus permitting
a tremendous development of the theory of the so-called abstract families of
languages, cf. [1]. Nevertheless, some authors have used the more restrictive
notion of sequential functions with the same purpose. More precisely,
using slightly different definitions of sequential mappings, algorithms for
determinng under which conditions there exists a sequential function mapping
a given rational language onto another have been devised, c¢f., [7] and [8].
In [6] the same problem is considered where bijective rational transductions
are used in place of sequential functions.

2. PRELIMINARIES

2.1. Free monoids — Rational N-subsets — Transducers

Given a set X (an alphabet) consisting of letters, ¥.* denotes the free
monoid it generates. The elements of ¥* are words. The length of a word w
is denoted by |w|. The empty word, denoted by 1, is the word of length 0.
We refer to [S] Chapters VI and VII, for all standard definitions on N-
subsets and more specifically on rational N-subsets. Intuitively, N-subsets
are ordinary subsets with multiplicity, i. e. every word is associated with an
integer recording not only whether it belongs to the subset but also how
many times it does so. We recall that given two N-subsets X, Y, their sum
is denoted by X + Y, their contacenation or product is denoted by XY,
and the star of X is denoted by X*.These are the usual rational operations
in the N-algebra of the rational N-subsets. In particular a N-subset is
unambiguous if the multiplicity associated with an arbitrary word is either 0
or 1. More generally, a rational N-subset is recognized by a (non-necessarily
deterministic) finite automaton for which every word labels at most one
successful path. The rational N-subsets are also known as rational power
series over the integers in the non commuting indeterminates ¥ where the
multiplicity is known as the coefficient of a word (cf. [3]). The support of a
N-subset L is the (ordinary) subset of all the words in L whose multiplicity
is different from 0. When the support is finite we say L is a polynomial
and when it is reduced to one element we say L is a monomial. E. g., if
L = 3z + y + 5zy then the support is the subset {z, y, zy}.

Sequential functions are mappings of a free monoid into another defined by
finite sequential transducers. Given an input and an output alphabets ¥ and
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A, a finite sequential transducer (abbreviated transducer) 7 is a complete
finite deterministic automaton whose states are all accepting, equipped with
an output function from the set of transitions into A*. Formally, we have
T =(Q, i, A) where Q is the set of states and ¢ the initial state; the next state
function of the underlying automaton associates with all pairs (g, a) a next
state ¢-a and the output function A associates with all pairs (¢, a) € @ x X a
word in A (g, a) € A*. These two functions are extended to X* by induction
on the length of the words:

eforall g e Q. q-1=¢q

sforallge @, a€eX, ue X, qg-ua=(q-u)a

eforall g € @, A(g,1) =1

eforallge Q,a € X, u€ X* A(q, ua) = A(q, u) A (q-u, a)
The cardinality of @ is the dimension of the transducer. A function
f : X* — A* is sequential if there exists a sequential transducer 7 such that

f(uw) = A (3, v) holds for all u € X* (observe that all states are final). We
say the function f is realized by the transducer 7.

ExampLE 2.1: Consider the following sequential transducer where
Y. ={a, b, ¢} and A = {z, y}. The initial state is indicated as usual by
an entering arrow (it is the state labeled by 0). Then, e. g.,

AL, cc) = (yzy) (yy) = yzyyy.

bly

afx
a/x b/xy
clyy
Figure 1. — A sequential function of dimension 4.

The question we ask is the following:

Given ¥ and A does there exist a bijective sequential function of *
onto A*?
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Clearly, we must have
Card (A) = Card () or 1 < Card (A) < Card (X).

Indeed, assume Card (A) > Card () holds and let A’ be the proper
subalphabet of A consisting of all the letters appearing as first occurrences
of the words A (%, a) where a € ¥. Then all words in f(X*) start with
a letter in A’ and the function can not be onto. Moreover, the case
Card (¥) = Card (A) is easily treated:

ProrosiTion 2.1: Let T be a sequential transducer realizing a sequential
function of ¥* onto itself. Then it is a bijection if and only if for each state
g € Q, a — X(q, a) is a bijection of the alphabet 3.

The proof of this assertion is a direct consequence of the following
observation:

LemMma 2.2: Let f be a prefix-preserving function of ¥* onto itself. Then it
is bijective if and only if for all integers n > 0 it defines a bijective mapping
on the set of words of length n.

Proof: Indeed, assume by contradiction, there exists a maximum integer
n such that f defines a bijection of ¥, onto itself, where ¥,, denotes the
set of all words of length n. It suffices to prove that f~1 (Z,41) € Zp+1.
Consider ub € L,41, with b € I, i. e., |u] = n. Then there exists z € £*
and a € ¥ such that f (za) = ub. By hypothesis, we have |u| 2 n. Since
f (z) is a proper prefix of ub thus a prefix of u, by induction hypothesis we
have |z| £ n, completing the verification. ®

Now assume Card (A) < Card (¥) holds and for all integers & > 0 set:
a (k) = max {| f (u)| Ju| < k}

Since f is sequential, @ (k) < ak for some constant a. If f is bijective
then it maps the set of all words of length less than or equal to k£ in 3*
into the set of all words of length less than or equal to ak in A*. The
former set has cardinality kC274(%) and the latter (ak)°**¢(2). This implies
Card (A) > 1. As a result, in the sequel we make the following assumption:

1 < Card (A) < Card (¥)

2.2. Normal forms

It is desirable to recognize the solutions that are artificially different.
Distinct transducers may define the same sequential function but given a
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sequential function it can be realized by a so-called minimal transducer that
is unique to within a renaming of the states (cf., e. g., [5], Chapter XII. 3).
This automaton is determined by the condition:

for all ¢, ¢ € Q the functions v — A (g, u) and u — A (¢, u) are equal
if and only if ¢ = ¢.

There is a further observation that classifies the possible bijections
f + ¥* - A*. Consider two sequential bijections ¢ : ¥* — X* and
6 : A* — A*. Then the composition § o f o ¢ is again a sequential bijection
from 2* to A*. It is reasonable to consider the two sequential functions f
and g as basically identical and we will say that they are equivalent.

2.3. Matrix interpretation

Actually, for our purpose there is no need of specifying the input alphabet
which in a sense is immaterial. E. g., by ignoring the input letters, the
previous transducer can be represented as a finite regular graph of degree
equal to the cardinality of ¥ and labelled by words in A*:

Conversely, such a graph is solution of our problem if and only if the
N-subset of the labels of all paths starting in the initial mode ¢ is equal to
A*. This again is computed as follows. For each node g € @, denote by
L, the N-subset of all the words that label some path starting in g (each
word occurring as many times as the number of paths it labels). Provided no
image of the output function A is equal to the empty word, L; is the unique
solution of the following system of linear equations where the unknowns are
the Ly’s and ¢ € Q (cf. [5], Propositions VIL.6.2)

(1) Lq=1+Z’quLp
q€eQ

with the notation that for all p, ¢ € @Q, vgp is the N-subset of the labels
of an edge from ¢ to p.

ExampLE 2.2: (continued):

Lo=14xzLo+yLl1+yxyLs
Li =1+yLy+(z+yyy) Ls
Ly=14+(x+zy+y)Ls
Ly=1+(z+zy+yy)Ls =
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yxy X

yy
Figure 2. — Labelled graph associated with the sequential function of Figure 1.

Equivalently, set n = Card(@, and consider the n-column vector
L = (Lg)geq and the n X n-matrix M = (7ygp)gp. Denote by E the n-
column vector whose entries are all equal to 1. Then the system (1) has a
unique solution which is the vector M* E, where M* = [+ M - - M.
(cf-, [5], Proposition VII, 6.2). Determining all possible bijective sequential
mappings of the free monoid ¥* onto the free monoid A* reduces to
determining all possible square matrices M with entries in the polynomials
in the indeterminates A subject to the conditions

(2) the sum of all the entries in each row of M is an ambiguous polynomial
with Card (¥) monomials

(3) the sum of all the entries in the first row of the matrix M™* is the
N-rational subset A*

ExampLE 2.3: (continued):

z y 0 yry
M=190 0 v ztyyy

0 00 z+zy+y

0 0 0 z4+zy+yy

The sums of the different rows are the polynomials =+ y + yzy, ¥+ + yyy,
T + zy + y, and x + zy + yy respectively and the sum of the entries of
the first row in M™* equals

o (yr+yzy+ > + ¥+ oy + ) (e oy +yy)t 0w
3. SOME EXAMPLES

In the previous paragraph we saw how the present problem could be
regarded as equating the free monoid A* with an unambigous rational
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subset subject to some constraints related to the structure of the underlying
deterministic automaton. A natural source of inspiration is the case of groups
where each group can be expressed as a disjoint union of cosets. For free
monoids this situation is most closely reproduced by using maximal suffix
codes, cf. [2], p. 98. Indeed, if X is such a code and S is the set of all the
non empty words that are proper suffixes of X, then we have the following
equality of N-rational subsets:

@) A* = (1+8)X*

To fix ideas assume ¥ has 3 elements and A = {z, y}. Then the only
maximal suffix code of cardinality 3 (up to a renaming of the letters) is
X = {z, zy, yy} and the set of its non empty proper suffixes is reduced
to {y}. Using the previous equality (4) and the ordinary axioms of N-
algebras (cf. [5] Chapter VI, 3 or [4] Chapters 3, 4, 12 and 13), we have
the following equalities:

A'=14+y) X' =1+ X=y) X' =1+@z+zy+yy+y) X"
=14+z(1+y) X"+ (y+yy) X*
=14+zA"+ (y+yy) X*

which leads to the following bijective sequential mapping:

y
yy X

X Xy

yy

Figure 3. — A sequential bijection of dimension 2.

We can build on this example by modifying the labelled graph, i. e., by
creating new nodes or/and rearranging existing nodes without changing the
N-rational subset. In order to formalize this notion of rearrangement we need
a definition that helps describe the structure of the set of labels associated
with the paths of a uniform tree such as

Figure 4. — Labelled complete tree of degree 3.
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272 C. CHOFFRUT

Then, e. g., the polynomial whose monomials are all the possible labels
of a path starting at the root in the above tree can be factored as:

z(l+(z+yz+yy(Q+yzy+z+yz)))+y+yz

A prefix-factorization of an unambiguous N-polynomial p in the
indeterminates A, when it exists, is inductively defined by:

e p = 0 (the zero polynomial)

* otherwise p = w1 (1+p1) + w2 (1 +p2) + w3 (1 + p3) where for
1=1, 2, 3 w; # 1 is a monomial and p; is a prefix-factorization.

Clearly, the following labelled graph obtained by creating two new states
defines the same bijection as Figure 3:

Xy
vy Yy
X
X Xy
yy
X
y Xy
yy

Figure 5. — Labelled graph defining the same sequential bijection as Figure 3.

In order to obtain new bijections it suffices to rearrange the transitions:

Xy

vy, vy

y 6
vy

i. e., since the initial state has already a loop, it suffices to factorize in
all possible ways the polynomial Z = (y+yy)(1+ 2z + zy + yy) into
wy (1+p1) + w2 (1 + p2) where for 2 = 1, 2, w, # 1 is a monomial and
p; a prefix-factorization. Here are the solutions:

®) y(1+y(Q+z+zy+yyy) + oy +yy) +yzx

© yl+y(Q+z+zy+yy) +x+yy) +yzy
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M y(1+y(l+z+zy+y)+2z+yyy) +yzy
®) y(l+y(1+w+y+y§)+w+ywy)+ywy
) y(A+y(l+zy+y+yy) +z+yz)+yzy
(10) y(1+y(l+zy+y+yy) +z+zy) +yyz
(11) yl+y(l+z+zy+y)+z+zy) + yyyy
(12) y(l+y(l+z+zy+yy)+2z+ay)+yyy

Expression (6) yields the following solution of dimension 3 (since two
nodes can be merged)

y x
y
yy
yxy X
X xy

yy

The solution g corresponding to expression (12) is equivalent to the
previous solution f under the sequential bijection § : A* — A* whose
transducer is:

Xx/x x/x
yhy Xy yly

y/x

Factorizations (7) and (8) also yield two sequential bijections that are
equivalent.

4. THE GENERAL CASE
We are now in a position to prove the main result.

THEOREM 4.1: Let ¥ and A be two alphabets of cardinality m and n
respectively. Then there exists a bijective sequential mapping of ¥* onto A*
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if and only if m > n > 1 or m = n. Furthermore, in this case there exists
a mapping of dimension 2.

Proof: Because of the observations of section 2.1, the condition is clearly
necessary. Conversely, because of Proposition 2.1 it suffices to consider the
case m > n > 1.

Assume first that k (n — 1) = m — 1 holds for some integer k£ > 1. Let X
be a complexe suffix of A* of cardinality m and let S be the set of its non
empty proper suffixes. We have Card (S) = k and furthermore:

(13) A* = (1 +5) X*

ie,(1—=A)"1=(1+58)(1 - X)"l. Multiplying by 1 — A to the left and
by 1 — X to the right we get: A(1+S) = S+ X. If b is an arbitrary
letter of A we have:

S+X=(A-b)1+S5)+b(1+5)

which shows that S+ X — b (1 + S) is an unambiguous polynomial whose
support has m + k — (k + 1) = m — 1 elements. Starting from (13) we get
A* = (1+8)X* =1+ (S+ X)X* and further:
A = 14+ (S+X-b(1+8)+b(1+9))X*.
This yields:
A*=14+b0(1+89) X" +(S+X-b(1+85) X"
=1+bA"+(S+X-b(1+9)X"

*

which shows that the pair ( ) is the unique solution of the linear system:

X*
Lo=14+bLo+(S+X -b(1+89)) L
Li=1+XIL,

yielding the following sequential bijection:

S+X -b(1+S)

In terms of matrices as interpreted in paragraph 2.3, this means that A* is
the first component of the solution of the vector equation L = I + ME,
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where E is 2-column vector (i and M is the matrix

(b S+X-b(1+S5)
w=o TR
Let us now turn to the general case. There always exists an integer 1 < p < n
such that n—p—1 divides m—p—1: m—p—1 =k (n — p — 1) for some & > 1.
Consider two partitions £ = X1 UX3 and A = AjUA3 where Card (21) =
m — p, Card (A;) = n — p, and therefore Card (X;) = Card (A;) = p.
Because of the previous discussion there exists a bijective sequential mapping
of the free monoid X7 onto the free monoid Aj. Let M; be the corresponding
2 x 2-matrix with entries in A7 and satisfying the conditions (2) and (3) of
paragraph 2.3. Now consider the matrix M = M; + My where

_ (A2 0O
= (a1 0)
Clearly the sum of all the entries in each row of the matrix M is an
unambiguous polynomial with Card (¥) monomials. Let us verify that the

sum of all the entries in the first row of the matrix M™* is the N-rational
subset A*. First we set

M = (ﬁ g) and My = (ﬁ f[)

where A} = A* + CB* = F + G. Using the identity M* = (M + Ma)* =
(My M3)* My we obtain

. (F G\ (D2 O)_ [AjA; 0
MlM?‘(o H) (Az 0)—(HA2 0

« T (AT Ag)* 0 F G
(M M) Ml_((A’{Ag)*HAz o)lo &

The first row of this last matrix is equal to

Thus

(AT A2)" (F+G) = (A1 M) AT =(A1+ M) =A" =
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