
INFORMATIQUE THÉORIQUE ET APPLICATIONS

KAI SALOMAA

D. WOOD

SHENG YU
Pumping and pushdown machines
Informatique théorique et applications, tome 28, no 3-4 (1994),
p. 221-232
<http://www.numdam.org/item?id=ITA_1994__28_3-4_221_0>

© AFCET, 1994, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1994__28_3-4_221_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Informatique théorique et Applications/Theoretical Informaties and Applications

(vol. 28, n° 3-4, 1994, p. 221 à 232)

PUMPING AND PUSHDOWN MACHINES (*)

by KAI SALOMAA C1), D. WOOD C1) and SHENG YU (l)

Abstract. - We present a new technique for proving that certain languages are not acceptée
by any pushdown machine of a spécifie type. We define the technique by example. Essentially, we
combine context-free pumping lemmas with the Floydian view of pushdown machines as transition
Systems or finite-state machines, to give machine-based pumping lemmas. We give two applications
and explications of the technique.

The first application is to reprove the well-known results that the languages E = {a* &*, a* b21 :
i *t. 1} and {xxR : x e {a, b}*} are not deterministic context-free languages. As the second
application, we prove that the context-free language {ab%1 ab%2 a... ab%t : t ^ 2 and it — ij for
some j , 1 £ j < t} has a nondeterminism-degree complexity Q, (log n). Therefore, there are at
least two levels in the suspected infinité hierarchy of context-free languages with respect to this
complexity measure.

1. INTRODUCTION

We explore a beautiful idea originated by Bob Floyd about 20 years ago;
namely, treating machines, in particular pushdown machines, as being made
up of a finite number of devices that form transition Systems, and treating
instruction (or transition) séquences as first-class objects. The idea has
resurfaced twice since Kurki-Suonio [6] investigated their basic properties
in 1975. First, Jonathan Goldstine, in a séquence of three articles [2, 3, 4]
rediscovered Floyd's idea and he applied it to AFA theory and to the theory
of pushdown and Turing machines. Second, Floyd and Beigel have written a
text [1] on the language of machines that develops the ideas rigorously and
also applies them consistently to the standard collection of machines that are
studied in a first theory of computation course. Wood [11] is also using this
approach in the second édition of his text.

(*) This research was supported by grants from the Natural Sciences and Engineering Research
Council of Canada.

(*) Department of Computer Science, University of Western Ontario, London, Ontario N6A 5B7,
Canada.

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754/94/03-04/$ 4.00/© AFCET-Gauthier-Villars



2 2 2 K. SALOMAA, D. WOOD, S. YU

Based on the state diagram approach to pushdown machines, we can show
that the sets of well-formed instruction séquences are context-free. Therefore
we can apply any of the context-free pumping lemmas to them. We can then
combine knowledge of the pumping positions of an instruction séquence with
properties of the underlying pushdown machine to pro vide contradictions.

We believe that it is, in gênerai, easier to prove pumping lemmas for
context-free grammars than it is to prove pumping lemmas for pushdown
machines. There have been few attempts to prove pumping lemmas for
pushdown machines directly. One exception can be found in Floyd and
Beigel's text [1], As a resuit, we can apply pumping lemmas for context-
free languages to instruction-sequence languages of pushdown machines to
give system-dependent pumping lemmas for pushdown machines. We apply
these system-dependent pumping lemmas to establish three results about
pushdown languages.

The first application, in Section 4, is to reprove two well-known results;
namely, the languages

{al b% : j — i or j = 2i and i ^ 0}

and

{xxR :xe{a, b}*}

are not deterministic context-free languages. The second application, in
Section 5, is to prove that the language

{abh abi2 a . . . abil :t^>2 and it = ij for some j , 1 ^ j < t}

has nondeterminism-degree complexity fi(log n).
We begin, in Section 2, by explicating the relationship between instruction

séquences for pushdown machines and context-free languages. Then in
Section 3 we recall two pumping lemmas and discuss system-dependent
and systern-independent pumping lemmas.

2. PRELIMBVARIES

We give a nonstandard définition of a pushdown machine that is similar
to the définition of Floyd (see the report of Kurki-Suonio [6] and the text
of Floyd and Beigel [1]).

Given an alphabet E, we let SA dénote E U {À} and E"1 dénote
{aTl : a G E}. We treat a"1 as the right inverse of a; thus, aa"1 = À.

Informatique théorique et Applications/Theoretical Informaties and Applications



PUMPING AND PUSHDOWN MACHINES 223

Given the identities aaT1 = À, for all a G S, a string x G (EUE^1)* is well
formed with content y G S* if either x G E* and x — y, or x — uaoT1 v,
for some u and f in (E U E"1)*, and uv is well formed with content y.
Each well-formed string in (S U S"1)* corresponds to exactly one content
string; thus, we dénote the content of a well-formed string x G (S U S"1)*
by content (x). When the content of a string x is A, we say that the string
is balanced.

We need the notion of a restricted morphism, called a projection. Given
two alphabets S and F such that S Q F, a fonction 7T£ is a projection with
respect to F if, for ail a G £, TT̂ : (a) = a and, for ail a ^ S, 7r̂  (a) = À.
Clearly, a projection is a morphism that preserves some symbols and erases
others; thus, it has a natural inverse. An inverse projection -K^1 : E* —> 2r*
is defined by, for ail a; G S*,

^Ë 1 (*) = {y : y e r* a n d ^ (») = x}*

It is well known that the families of.regular languages and context-free
languages are closed under projection and inverse projection.

We specify a pushdown machine M with a tuple (Q, S, F, 6, s, F , Z),
where Q is a state alphabet, S is an input alphabet, F is a pushdown
alphabet, 6 Ç Q x S^F"1 F* x Q is a finite transition relation, where
F" 1 = {a"1 : a G F}, 5 is a start state, F Q Q is a set of final
states, and Z G F is the initial pushdown symbol. The inverse pushdown
symbol a"1 dénotes the pop opération that pops the symbol a from the
top of the pushdown, whereas a string x G F* dénotes the push opération
that pushes the string x onto the top of the pushdown. Observe that we
view M as a finite-state machine (or transition System) with input alphabet
{x : 0 , x, q) G S}.

Given a pushdown machine M =(Q, S, F, 6, 5, F, Z), we consider a tuple
in 6 to be an instruction and we define an instruction séquence as follows.
A séquence Z po x\ p\ * • • xm pm is an instruction séquence if po — -5 and
(pi, Xi+i, Pï+i) G 5, 0 < i < m. It is a well-formed instruction séquence
if, in addition, Tr^ur-1 (^Po %i Pi * * * %mPm) is well formed.

We associate three languages with a pushdown machine M —(Q, S, F,
6, 5, F, Z). First, we have the instruction séquence language, ISL(M),
that is defined by

ISL(M) = {ZpQXipi '-XmPrn : Z PQ X\ p\ '-XmP

is an instruction séquence and pm G F}.

vol. 28, n° 3-4, 1994



2 2 4 K. SALOMAA, D. WOOD, S. YU

Second, we have the well-formed instruction séquence language,
WFL (Af), that is defined by

WFL (Af) = {ZpQ Xi pi • • • Xm Pm - ZpoXipi'" Xm Pm

is a well-formed instruction séquence and pm G F}.

Lastly, we have the (input) language, L (Af), that is defined by

L (M) = {x : Z po x\ p\ - - - xm pm is a well-formed instruction

séquence, pm G F, and TTS (Zpo xipi--xmPm) = #}*

The first language is regular since its séquences are given by paths in the
state diagram of the machine. The second language is context-free since
its séquences are given by paths in the state diagram of the machine that
manipulate the pushdown correctly. The third language corresponds to one
définition of acceptance by a pushdown machine, namely, acceptance by
final state. (If we want to accept by final state and empty pushdown, then
we must use balanced instruction séquences, based on balanced pushdown
strings rather than on well-formed instruction séquences.)

We now express WFL (Af) and L (M) in terms of ISL (M) using the
Dyck language, Drur-1* over the alphabet F U F" 1 , and the language
Ppur-1 of préfixes of all strings in Dpur-1 • The Dyck language, £> r u r- i , is
defined as the set of all balanced strings over (F U F""1)*, whereas Prur-1

is the set of all well-formed strings over (F U F"1)*. We interpret a symbol
as a left-labeled bracket and an inverse symbol as a right-labeled bracket
We can now express WFL (M) is terms of ISL (M) as follows:

WFL (Af) - ISL (M) n TT^p.! (iVur-0-

In addition, we can express L (M) in terms of WFL (M) as follows:

L(M) =7r

Note that these simple équations establish that every pushdown language
is a context-free language. If we prefer to have pushdown machines accept
strings by both final state and empty pushdown, then we must replace the
Dyck prefix language with the Dyck language in the équation that expresses
WFL (M) is terms of ISL(M).

Informatique théorique et Applications/Theoretical Informaties and Applications



PUMPING AND PUSHDOWN MACHINES 225

3. PUSHDOWN MACHINES AND PUMPING

There are two varieties of pumping lemmas for language families. First, we
have the system-dependent pumping lemmas that present a pumping lemma
in terms of a class of language-description Systems. For example, we can
give a pumping lemma for context-free grammars that describes pumping for
syntax trees, which are sufficiently tall. Similarly, we can give a pumping
lemma for deterministic finite-state machines that describes pumping for
computations that are sufficiently long.

Second, we have system-independent pumping lemmas that present
pumping lemmas without any référence to a language-description System.
The following pumping lemma for context-free languages has this form. We
will use it in Section 4.

LEMMA 3.1: For each context-free language L there is a constant p > 0
such that, for all strings z in L oflength at least p, there are strings u, v, w,
x, and y such that the following four conditions hold:

1. z = uvwxy.

2. \vx\ ^ 1.

3. \vwx\ ^ p.

4. For all % ^ 0, uvl wx% y £ L.

We also recall the following pumping lemma for context-free languages

(see Harrison's text [5] for more details). We use it in Section 5.

LEMMA 3.2: For each context-free language L there is a constant p > 0
such that, for each z € L and for any set S of distinguished positions in
z, if #S Tl p, then there are strings t>i, . . . , i>5 such that the following
four conditions hold (where Si is the set of distinguished positions that
corresponds to the substring V{, 1 ^ i < 5):

1. Z = V\ V2 V3 V4V5.

2. Either Slt 52, S3 £ 0 or S3, 54, #> / 0.

3. #(S2 U S3 U S4) £ p.

4. For all i > 0, v\ v\ ^3 v\ v$ G L.

Since we can always transform system-dependent pumping lemmas into
system-independent pumping lemmas, why do we make the distinction?
The reason is simple. We can use system-dependent pumping lemmas to
provide system-dependent information about sentences and their génération
or acceptance. We will demonstrate this idea in both Sections 4 and 5.

vol. 28, n° 3-4, 1994



2 2 6 K. SALOMAA, D. WOOD, S. YU

4. APPLICATION I: TWO NONDETERMINISTIC CONTEXT-FREE LANGUAGES

We reprove the well-known results that the languages

£ = {a^\a^2 i :^l}

and

H = {xxR :xe K 6}*}

are not deterministic context-free languages. Since the family of deterministic
context-free languages is defined by the class of deterministic pushdown
machines that accept by final state, it is exactly the set of languages L (M),
where M is a deterministic pushdown machine. We begin by defining this
subclass of pushdown machines.

A pushdown machine (Q, £, F, 6, s, F , Z) is deterministic if it satisfies
the following two conditions.

1. For all p G Q, for all i E E ^ , and for all B G F, there is at most one
instruction of the form (p, AB"1 x, q) in <5.

2. For all p G Q and for all B E F, if there is an instruction of the form
(p, B~x x, q) in <5, then for all a G S, there is no instruction of the form
O, aB~ly, r) in 6.

Without more ado we reprove the following theorem using our new
technique.

THEOREM 4.1: E = {à1 6% a% b2% : i > 1} is not a deterministic context-free
language.

Proof: We argue by contradiction. Assume that E = L(M) for some
deterministic pushdown machine M — (Q, S, F, <5, 5, F, Z), where
S = {a, b}. Since WFL(M) is context-free and infinité, we can apply
the context-free pumping lemma (Lemma 3.1) to it. Thus, there is a constant
p > 0 such that, for all strings W in WFL (M) of length at least p, we
can décompose W into uvxyz, where \vy\ ^ 1 and |i;a:y| ^ py and, for all
i > 0, uv'xy'z e WFL(M).

We consider the pumping of the well-formed instruction séquence W
whose input string is w = TT̂ ; (W) = a2pb4p. Now if v is empty, then
y must be nonempty. Thus y can have one of four forms TT̂  (y) — A,
7T2 (y) E a + , 7T£ (y) e &*> or 7T£ (y) G a+ &+. The last three forms lead to
an immédiate contradiction when we consider the string uv2 xy2 z. The first
possibility implies that y corresponds to a séquence of null-input instructions;

Informatique théorique et Applications/Theoretical Informaties and Applications



PUMPING AND PUSHDOWN MACHINES 227

therefore, uv2 xy2 z is well-formed and is an accepting séquence for w. Since
M is deterministic and we have two distinct accepting séquences, we have
obtained a contradiction. We can argue in a similar marnier if y is empty
and v is nonempty. Hence both v and y must be nonempty.

If v and y are both nonempty, then by similar arguments we can deduce that
TTs (v) and 7rs (y) are nonempty. If 7T£ (vy) G A + a+ + 6+ , 7T£ (V) G a+ 6~*~,
or TTs (y) G a+6+, then uv2 xy2 z provides a contradiction. Therefore,
7T£ (u) G a+ and TT̂  (J/) G £>+ is the only remaining possibility (the reverse
assignment is impossible).

Now, letting |v|o = Z, we must have that \y\t, — 21; otherwise, the input
string uxz is outside E. Since \vxy\ £ p, the number of 6's in xy is at most
p\ therefore, the décomposition does not affect the rightmost 3p 6's.

We now use this analysis in conjunction with the determinism of M to
obtain a contradiction. Since M is deterministic, the well-formed instruction
séquence W' of the string wf — 7T£ (W1) = a2p b2p must be a prefix of
the well-formed instruction séquence W for w. Moreover, a corresponding
décomposition of W' is uvxyz1\ where z1 is a prefix of z. Lastly, observe that
uxz1 is in WFL(M), yet |uarj2/|a ^ luxz'lb and 2\uxzf\a ^ (ita;^^. Thus
we have obtained a contradiction and £" is not a deterministic context-free
language. D

THEOREM 4.2: i ï = {xxR : x G {a, 6}*} w no? a deterministic context-free
language.

Proof: We argue by contradiction. If H is deterministic context-free,
then clearly the language Hf — H n (6a+ 6)* is also deterministic context-
free. Assume that H' = L (M) for some deterministic pushdown machine
M =(Q, S, T, <5, 5, F , Z), where S = {a, 6}. Since WFL (M) is context-
free and infinité, we can apply the context-free pumping lemma (Lemma 3.1)
to it. Thus, there is a constant p > 0 such that, for ail strings W in WFL (M)
of length at least p, we can décompose W into uvxyz, where \vy\ > 1 and
\vxy\ ^ p, and, for ail i ^ 0, w* xy2 z G WFL (M).

We consider the pumping of the well-formed instruction séquence W
whose input string w = 7T£ (W) = 6ap 66ap 6&ap 66ap è. If TT̂  (V) or 7rs (y)
belongs to £+ - a+ , then we obtain a contradiction by considering the
string 7T£ (uv2 xy2 z) which is not in Hf. If TT̂  (V) = TT̂  (y) = A, then
W and wu2 xy2 z are two different well-formed instruction séquences that
correspond to the input string w, an impossibility since M is deterministic.
Thus, necessarily TT̂ ; (vy) G a+ .

vol. 28, n° 3-4, 1994



2 2 8 K. SALOMAA, D. WOOD, S. YU

We now consider the string uv2 xy2 z and see that the only possible
décomposition is that 7T£ (V) = 7Ts (y) = ak> 1 ^ k < p, and the a's of v
and of y belong to the second and the third substring baP b of w, respectively.
Let Wf be the well-formed instruction séquence whose input string
w' — 7TE (W) - baP bbaP b. Note that w' e Hf. Since M is deterministic, it
follows that Wf is a prefix of W and W' = uvxf, where xf is a prefix of x.
Since x! ends with a final state, it follows that uv2 x' G WFL (M), which
is a contradiction because 7T£ (UI;2 X') = boP bbap+k b.

Hence H is not a deterministic context-free language. D

5. APPLICATION II: A NEW LOWER BOUND

Nondeterminism, which is similar to time and space, is a resource
that can and should be measured. Two measurements of nondeterminism
for pushdown automata were introduced by Vermeir and Savitch [10]
and investigated by Salomaa and Yu [7, 9]. Recently, a new measure
of nondeterminism for pushdown machines, which is more natural and
compatible with other complexity measures, has been introduced [8].
The basic unit of this measure is a nondeterminism computational step.
A computational step of a pushdown machine is a nondeterminism
computational step if it is one of at least two applicable instructions.
An instruction is applicable if either it is defined for the current state,
the current input symbol, and current top of pushdown symbol or it is a
null-input instruction that is defined for the current state and current top
of pushdown symbol.

Let M be a pushdown machine and C = Z po x\ pi • • • xm pm be a well-
formed instruction séquence for M. The computational step of C defined
by an instruction (pi, x2+i, pi+i) in C, 0 £ i < m, is a nondeterministic
computational step if one of the following four possibilities holds:

1. Xi+i = au"1 v, a G S, u G F, v G F* and there are v1 G F* and
p G Q such that

(a) (vf, p) ^ (v, Pi+i) and (pj, cm"1 ?/, p) G 6. (The machine can exécute
another instruction by reading the next input symbol a.)

(b) (pi, u~l v1 ,p) G 6. (The machine can exécute a null-input instruction
instead of reading the next input symbol a.)

2. Xï+i = n" 1 v, u G F, v G F*, a is the first symbol of 7T£ {X%+2 * * * #m)
and there are v1 G F* and p € Q such that (pj, an"1 v\ p) G 5. (Instead

Informatique théorique et Applications/Theoretical Informaties and Applications



PUMPING AND PUSHDOWN MACHINES 229

of executing a null-input instruction (pj, z^+i, Pi+i), the machine can read
the next input symbol a.)

3. xj+i = u~lv, u G T, v G T* and there are v' e F*, p e Q, and
(t/, p) ^ (v, pi+i) such that (p;, u"1 u', p) G £. (The machine can exécute
another null-input instruction.)

Let NCS (C) be the number of nondeterministic computational steps in
C and define the nondeterminism degree ND (x) of a string x with respect
to M as 0 if x is not in L (M) and, otherwise, as

inf {NCS (C) : C is a well-formed instruction

séquence of M and ir^ (C) — x}.

The (worst-case) nondeterminism degree of M is a function NM • M —> M
that is defined by

Nu{n) = max {7VD (x) : |x| = n and x G S*}.

Salomaa and Yu [8] called it the minmax nondeterminism measure.

Example 5.1: Let M =(Q, E, F, 5, s, F, Z) be a pushdown machine,
where Q = {s, p, ƒ}, E - {a, b}, T - {Z, A, B}, F = {ƒ}, and 6
consists of the following instructions:

1. (s, CY~lYX,s\ for all (C, X) G {(a, A), (6, B)} and for all
Y G {Z, A, B}.

2. (s, Y"1 y, p), for ail Y G {Z, A, S} .

3. (p, CX- 1 , p), for ail (C, X) G {(a, A), (b, B)}.

4. (p, Z-\ ƒ).
Obviously, M accepts the language {wwR : tu G S*}. It is straightforward
to verify that the nondeterminism degree of M is O (n).

We say that a context-free language has nondeterminism-degree
complexity N if there is a pushdown machine M such that L — L (M) and
the nondeterminism degree of M is TV. The two context-free languages

L = {a1 V ak\i = j or j = fe, i, j , k > 0}

and

Lfc, for an integer constant fe > 0

vol. 28, n° 3-4, 1994



2 3 0 K. SALOMAA, D. WOOD, S. YU

have constant nondeterminism-degree complexity.

Salomaa and Yu [8] conjectured that there is an infinité hierarchy of
nondeterminism-degree complexity classes of context-free languages. The
only result, however, has been the démonstration that there is a context-free
language with nondeterminism-degree complexity o;(l). We now use the
transformation of pumping lemmas for context-free languages into pumping
lemmas for pushdown machines to improve this result. We show that there is a
context-free language that has nondeterminism-degree complexity Q (log n).

THEOREM 5.1: Let K = {abH ab%2 a . . . ablt : £ > 2 and it = ij for some
j , 1 ^ j < t}. The nondeterminism-degree complexity of K is Q (log n).

Proof: Let M be a pushdown machine that accepts if. Without loss of*
generality we assume that each nondetenninistic step of a computation has
exactly two choices. Since WFL (M) is a context-free language, it satisfies
the positional pumping lemma (Lemma 3.2) for context-free languages. Let
p be the constant for WFL (M) in the pumping lemma and let m > p be
a constant. Consider the following m strings:

Wk = abm+1 abm+2 a . . . ab2m abm+\ 1 ^ k < m.

It is clear that wj~ E K, 1 ^ k ^ m. Choose Wi and WJ such that i < j ,
and let Ci and Cj be two well-formed instruction séquences of M for the
acceptance of Wi and WJ, respectively. It is easy to see that Ci ^ Cj since
Wi ^ WJ . We now prove by contradiction that Ci is not a prefix of Cj.

We assume that Ci is a prefix of Cj and we apply the pumping lemma
to Cj. We choose the first p appearances of b in the last group of bs as
the distinguished positions in Cj for the pumping lemma. It is easy to
verify that in a décomposition Cj = uvxyz given by the pumping lemma,
y must contain d of the p distinguished positions, for some 1 ^ d < p,
and v necessarily contains d appearances of 6s from the jth group of &s
(and no other bs). When stating that y (or v) contains an appearance of
the symbol 6 in a spécifie group of bs, we mean that in the décomposition
Wj = 7TS (^) 7TE {v) 7Tx; (x) 7T£ (y) 7T£; (z) the substring TT̂  {y) (or 7T£ {V))
contains an appearance of the symbol b in this group.

Now Ci = uvxyz1, where z1 is a proper prefix of z. Since z1 ends with
a final state, it follows that

uvr xyr zf = C% [r] G WFL (M),

Informatique théorique et Applications/Theoretical Informaties and Applications



PUMPING AND PUSHDOWN MACHINES 231

for all r ^ 0. Now,

7TS (d [m + 1])

= abm+1 • • • aft"14*"1 a6m+>+TÎM/ a6 m + J ' + 1 • • • a&2m a& m + i + r o d

and since % ^ j , 7T£ (C* [m + 1]) ^ ÜT. We have obtained a contradiction.

Thus the two instruction séquences of M on W{ and wj differ at some
point earlier than final instructions. Not that this statement holds for any
i and j , 1 ^ i, j < m, such that i ^ j . Therefore, we can consider the
instruction séquences as a binary tree with the start state as the root and
nondeterministic steps as branches. Since there are m frontier nodes, there
is one path from the root to the frontier that passes through at least log m
branch points. In other words, there is necessarily an i, 1 £ i ^ m, such that
the computation of wi takes at least log m nondeterministic steps. Let n be
the length of Wi. Because n ~ m2, log m is fi (log n) and we have shown
that the nondeterminism-degree complexity of K is fï (log n). •

6. CONCLUSIONS

We have combined context-free pumping lemmas and the Floydian view
of pushdown machines to synthesize machine-specific pumping lemmas.
Based on this approach we have obtained elegant and short proofs that two
well-known context-free languages are not deterministic. Our expérience is
that these proofs are the simplest to understand. In the second édition of his
text [11], the second author uses this approach. We believe that the approach
shows great promise from both the pedagogie and research points of view. To
demonstrate the second claim, we have established the first nontrivial lower
bound for nondeterminism-degree complexity of a context-free language. We
anticipate that the application of the Floyd-pumping synthesis will provide
further insight and clarification of the conjectured nondeterminism-degree
hierarchy.

REFERENCES

1. R. W. FLOYD and R. BEIGEL, The Language of Machines: An Introduction
to Computability and Formai Language Theory, Computer Science Press, San
Francisco, CA, 1994.

2. J. GOLDSTDSFE, Automata with data storage, In Proceedings of the Conference on
Theoretical Computer Science^ Waterloo, Canada, 1977, University of Waterloo,
pp. 239-246.

vol. 28, n° 3-4, 1994



2 3 2 K. SALOMAA, D. WOOD, S. YU

3. J. GOLDSTINE, A rational theory of AFLs, In Proceedings of the Sixth Colloquium on
Automata, Languages, and Programming, Volume 71 of Lecture Notes in Computer
Science, New York, NY, 1979, Springer-Verlag, pp. 271-281.

4. J. GOLDSTINE, Formai languages and their relation to automata: What Hopcroft &
Ullman didn't teil us, In R.V. Book, Editor, Formai Language Theory: Perspectives
and Open Problems, New York, NY, 1980, Academie Press, pp. 109-140.

5. M. A. HARRISON, Introduction to Formai Language Theory, Addison-Wesley, Reading,
MA, 1978.

6. R. KURKI-SUONIO, Describing automata in terms of languages associated with
their peripheral devices, Technical Report STAN-CS-75-493, Computer Science
Department, Stanford University, Stanford, CA, 1975.

7. K. SALOMAA and S. Yu, Degrees of nondeterminism for pushdown automata,
In Proceedings of the 8th Fundamentals of Computation Theory Conference,
Volume 529 of Lecture Notes in Computer Science, New York, NY, 1991. Springer-
Verlag, pp. 380-389.

8. K. SALOMAA and S. Yu, Limited nondeterminism for pushdown automata, Bulletin of
the European Association for Theoretical Computer Science, 1993, 50, pp. 186-193.

9. K. SALOMAA and S. Yu, Measures of nondeterminism for pushdown automata, Journal
of Computer and System Sciences, to appear.

10. D. VERMEIR and W. SAVITCH, On the amount of nondeterminism in pushdown
automata, Fundamenta Informaticae, 1981, 4, pp. 401-418.

11. D. WOOD, Theory of Computation, John Wiley & Sons, Inc., New York, NY, second
édition, 1993, In préparation.

Note added in proof: What we have called the Floydian view of pushdown machines
should probably be called the Chomsky-Schützenberger-Royd view. Chomsky and
Schützenberger used inverse pushdown symbols in an early formulation of pushdown
machines (see, for example, N. CHOMSKY, Context-free grammars and pushdown storage,
MIT Quarterly Progress Report, 1962, 65, pp. 187-194).

Informatique théorique et Applications/Theoretical Informaties and Applications


